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Abstract Big data analytics and machine learning appli-

cations are often used to detect and classify anomalous

behaviour in telecom network measurement data. The

accuracy of findings during the analysis phase greatly

depends on the quality of the training dataset. If the

training dataset contains data from network elements (NEs)

with high number of failures and high failure rates, such

behaviour will be assumed as normal. As a result, the

analysis phase will fail to detect NEs with such behaviour.

Effective post-processing techniques are needed to analyse

the anomalies, to determine the different kinds of anoma-

lies, as well as their relevance in real-world scenarios.

Manual post-processing of anomalies detected in an Ano-

maly Detection experiment is a cumbersome task, and

ways to automate this process are not much researched

upon. There exists no universally accepted method for

effective classification of anomalous behaviour. High

failure ratios have traditionally been considered as signs of

faults in NEs. Operators use well-known key performance

indicators (KPIs) such as drop call ratio and handover

failure ratio to identify misbehaving NEs. The main

problem with these KPIs based on failure ratios is their

unstable nature. This paper proposes a method of measur-

ing the significance of failures. The usage of this method is

proposed in two stages of anomaly detection: training set

filtering (pre-processing stage) and classification of

anomalies (post-processing stage) using an automated

process.

Keywords Anomaly detection � Pre-processing �
Post-processing � Self-organizing maps �
Training set filtering � Hierarchical clustering

1 Introduction

Anomalies in telecommunication networks can be signs of

errors or malfunctions, which originate from a wide variety

of reasons. Huge amount of data collected from network

elements (NEs) in the form of counters, server logs, audit

trail logs, etc. can provide significant information about the

normal state of the system as well as possible anomalies

[1]. Anomaly detection (AD) forms a very important task

in telecommunication network monitoring [2] and has been

the topic of several research works in the past few years

[1, 3]. Since it is very difficult to obtain reference data with

labelled anomalies from industrial processes, unsupervised

methods are chosen for AD [4]. Among these unsupervised

techniques, self-organizing maps (SOMs) [5] are a tool

often used for analysing telecommunication network data

[1, 6, 7], characterized by its high volume and high

dimensionality. The key idea of SOM is to map high-di-

mensional data into low-dimensional space by competitive

learning and topological neighbourhood so that the topol-

ogy is preserved [8].

Network traffic data obtained from several sources need

to be pre-processed before they can be fed to SOMs or

other AD mechanisms. These pre-processing steps could

include numerization of log data, cleaning and filtering of

training set, scaling and weighting of variables, etc.

depending on the type of data analysed and goal of the AD
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task. SOMs, as well as other neural network models, follow

the ‘‘garbage in–garbage out’’ principle. If poor-quality

data are fed to the SOM, the result will also be of poor

quality [4].

The important events that happen in various NEs during

the operation of the network are counted, which forms the

raw low-level data called counters. Since the number of

these low-level data counters is too large and often

unmanageable, several of these counters are aggregated to

form high-level counter variables called key performance

indicators (KPIs) [9].

Several well-known KPIs used by telecom operators

such as drop call ratio (DCR), handover failure ratio

(HO_Fail) and SMS failure ratio (SMS_Fail) are typical

examples of failure ratio-based KPIs. The failure ratio

metric (u, n) for u failures out of n attempts, defined in

Eq. (1), does not take the magnitude of the number of

attempts into account. Hence, one failure out of one

attempt, as well as hundred failures out of hundred

attempts, gives the same resultant failure ratio.

frðu; nÞ ¼ ðu=nÞ ¼ ðfailure count=total attemptsÞ ð1Þ

If there has been a lot of activity and both numerator and

denominator of the equation are high, the failure ratio is a

meaningful metric. However, if there has not been much

activity, both numerator and denominator are low, and the

resulting failure ratio metric can be randomly high. Using

frðu; nÞ as a metric for filtering, the training set can have

mainly two drawbacks.

Firstly, it removes random points from the training

dataset and overall quality of the dataset cannot be guar-

anteed to be high. Secondly, network monitoring personnel

can be misguided by such wrong signals and is likely to

spend their time analysing an anomaly which might result

due to a high failure ratio and low number of attempts. It is

possible to give thresholds for n and u, above which the

failure ratio can be considered as a measure of failure.

However, this approach too, comes with its own set of

problems. Regional, seasonal, daily, weekly and even

hourly traffic variations can lead to such rules being unable

to detect important anomalies.

The post-processing phase is a very critical phase in an

AD experiment and includes validation of information,

interpretation and presentation. If the analysis results are

not presented in an understandable and plausible way to a

human analyst, he/she will be unable to verify the results

against the data and domain knowledge [10].

Post-processing of anomalies detected from multidi-

mensional KPI counter data poses a serious challenge.

There are no well-defined ways of classifying behaviour of

data points in general and anomalous data points in par-

ticular. Consider an AD experiment performed on a set of

k KPIs where k is a large number. This experiment

produces p anomalies. It is a tedious task to classify each of

these p anomalies in order to find what the fault in the

network and its impact. For that, he/she may have to go

through a maximum of (k 9 p) attribute values. Automated

tools are highly required for the process.

Clustering of data points can be used here. Consider a

scenario in which KPI counter data obtained from thou-

sands of NEs need to be analysed automatically. Clustering

solutions such as k-means clustering [11] can be used here

to classify behaviour into different clusters. Once the

cluster centroids are found, they can further be analysed to

identify the behaviour of the cluster and identify faults (if

any). This technique can prove to be useful for identifying

NEs having similar faulty behaviour and the operator could

then suggest further action. However, the problem with

many clustering techniques is that the number of detected

clusters can be high and manually going through each of

the k KPIs of the cluster centres is in itself a cumbersome

and error-prone task.

For each of the data points, its attributes are classified

based on its magnitude (high or low) and multiple attri-

butes needs to be observed to identify what functionality is

broken. For example, monitoring a KPI which denotes

SMS failure counts alone is not sufficient. The number of

SMS attempts is also needed to identify if there is a serious

fault in the SMS functionality in a cell. This task is prone to

human errors and misjudgement. Automated systems of

identifying the behaviour of cluster centres are required

which help in quick decision-making process.

A good automated tool for identifying the data beha-

viour from the cluster centre should work by taking in the

k KPIs and provide a meaningful abstraction for the

behaviour of the cluster centre and the data points

belonging to the cluster. For this to happen, the automated

tools need to have application domain knowledge built into

them using specific formulas.

In this paper, we introduce more stable failure signifi-

cance metric in Sect. 2 and introduce the use of this metric in

two areas of anomaly detection: training set filtering (pre-

processing stage) in Sect. 2.1 and data point classification

(post-processing stage) in Sect. 2.2. Sections 3 and 4 shortly

introduce an AD method and a few training dataset filtering

techniques that we used. Section 5 presents a case study of

approaches listed in Sect. 2 on LTE network management

data. Finally, Sect. 6 concludes the paper.

2 Failure significance metric

The failure significance metric (fsm) is a metric that eval-

uates the significance of a failure based on the number of

attempts that have been made. The fsm metric balances the

failure ratio so that the failure ratios based on lesser
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number of attempts are scaled to be of smaller value, when

compared to the failure ratio based on higher number of

attempts. Equation (2) defines a weight function that helps

in scaling a value based on the sample size n.

f ðnÞ ¼ 2=ð1þ e
w
nÞ ð2Þ

The term w is a term that can be used to adjust the

sensitivity of the function. The value of this parameter

could vary from 0 to 1. In cases when w is 0, there is no

scaling based on number of attempts as the whole fraction

becomes equal to 1. The behaviour is opposite at the other

end of the range (w = 1). Figure 1 depicts how the value of

the scaling function f nð Þ varies for different values of the
sensitivity tuning parameter w.

As the number of attempts increases, the denominator

increases, resulting in high value of f ðnÞ. This property of the
function can be used to scale the difference of a failure ratio

from the average value of failure ratio in the training set.

When the difference between the failure ratio of a data point

and the average failure ratio of the training set is high, the

scaling function f ðnÞ results in a higher scaled value in cases
where the number of attempts is high, in contrast to cases

where the number of attempts is low. On applying this

scaling function to the difference of the failure ratio with the

average failure ratio gives a scaled value of failure ratio

frscaledðu; nÞ as shown in Eq. (3). Here frðu; nÞavg represents
the average failure ratio in the entire dataset.

frscaledðu; nÞ ¼
2

1þ e
w
n

fr u; nð Þ � fr u; nð Þavg
� �

ð3Þ

Let us consider u as the total number of failures that occur

in an NE during an aggregation interval and uavg as the

average number of failures that occur for all the NEs during

the same aggregation interval in training set. When the

number of failures u is high, the impact it has on the network

is also high. The value of logarithm of (uþ 1Þ to the base

ðuavg þ 1Þ (which is also log ðuþ 1Þ=logðuavg þ 1Þ) gives a

measure of relative magnitude of failure count when com-

pared to average failure counts. This factor defined here as an

impact factor is given in Eq. (4).

iðuÞ ¼ logðuþ 1Þ=logðuavg þ 1Þ ð4Þ

Adding one to the numerator and denominator elimi-

nates the need to separately handle the zeroes in the data.

The value of fsm ðu; nÞ is further obtained by multiplying

the two terms frscaledðu; nÞ and iðuÞ as represented by

Eq. (5). Figure 2 depicts two views of a three-dimensional

plot of the obtained fsm function.

fsm ðu; nÞ ¼ 2

1þ e
w
n

u=nÞ � ðu=nÞavg
� �� �

� log uþ 1ð Þ
log uavg þ 1

� �

ð5Þ

2.1 Significance metric in training dataset filtering

This section proposes a method of training set filtering

using the failure significance metric. An operator moni-

toring the network for anomalies will be interested in

observing the network elements which have faults corre-

sponding to high fsm. By removing the data points, which

correspond to high fsm from the training set, the observa-

tions in the analysis dataset which correspond to similar

behaviour will be detected as anomalies. This is a typical

example of a case in which application domain knowledge

is used in filtering the training dataset.

Consider a set of n observations measured from m cells.

The fsm-based training set filtering approach removes the

top k percentile of observations which have the highest

value of the fsm metric. For the experiments done as part of

this research, the values of k was kept at 1 %. The top 1 %

of the observations in the training set are considered as

corresponding to high values of failure significance metric.

A suitable value of the threshold for filtering depends on

the dataset under consideration. A higher value of threshold

percentage results in higher number of anomalies detected

Fig. 1 Variation in scaling

function with sensitivity tuning

parameter w
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in the analysis phase. By choosing a higher threshold

percentage, we assume that the acceptable failure levels are

much lesser in the training set. As a result, if our

assumption is wrong, there will be a higher number of false

positive anomalies detected in the analysis phase.

As can be seen in Fig. 1, the value of w does not affect

significantly when number of attempts n is larger than 10.

Thus, w is a tool to tune sensitivity of failures in NEs with

low traffic. After some preliminary experiments, the value

of w was set to 0.5 and kept at that.

2.2 Anomaly classification using significance metric

This section proposes a method of classifying anomalous

data point behaviour using the fsm derived in Eq. (5). The

steps involved in the process are described below:

Step 1 The features (KPIs) to be observed from a set of

observations are decided. In telecom network measure-

ment data, a suitable selection of features for following

the most common services could be call set-up failure

ratio, dropped call ratio, handover failure ratio, SMS

failure ratio, data connection failure ratio, etc. The

selection of KPIs depends on the information needed,

which is derived from the objective of the monitoring or

analysis task at hand. Composition of monitored KPI set

can vary from physical link layer KPIs to those of

highest application layer.

Step 2 The failure significance metric for each of the

features selected in Step 1 is calculated using Eq. (5).

For this, the system has to have access to numerator and

denominator of each ratio. For example, in the calcula-

tion of the failure significance metric for dropped calls,

the required metrics are: number of dropped calls and

total number of calls.

Step 3 The metrics obtained are clustered into multiple

severity levels as shown in Fig. 3. We have used

univariate clustering (threshold selection) for classifying

into different severity levels, denoted by different

colours in the figure below.

Step 4 The severity of each observation is further derived

from the fsm severity levels of the contributing KPIs.

3 The anomaly detection mechanism

The AD system used in this research work is based on the

method by Höglund et al. [12]. This method uses quanti-

zation errors of a one or two-dimensional SOM for AD.

The basic steps in the algorithm are listed step by step

below.

1. A SOM is fitted to the reference data of n data points.

Nodes without any hits are dropped out.

Fig. 2 Graphical representation of the failure significance metric (w = 0.5)

Fig. 3 Classification of fsm into severity levels. The figure is a plot

with y-axis representing the fsm values and x-axis representing

consecutive data points
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2. For each of the n data points in the reference data, the

distance from the sample to its BMU is calculated.

These distances, denoted by D1 … Dn, are also called

as quantization errors.

3. A threshold is defined for the quantization error which

is a predefined quantile of all the quantization errors in

the reference data.

4. For each of the data points in the analysis dataset, the

quantization errors are calculated based on the distance

Dnþ1 from its BMU.

5. A data point is considered as an anomaly if its

quantization error is larger than the threshold defined

in Step 3.

4 Training dataset filtering techniques

This section focuses on some techniques of cleaning up the

training set before it is used in the AD process. The pres-

ence of outliers in the training set can dominate the anal-

ysis results and thus hide essential information. The

detection and removal of these outliers from the training set

result in improved reliability of the analysis process [13].

The objective for training set filtering is to remove from the

training set, those data points that have a particular pattern

associated with them. As a result, similar behaviour in the

analysis dataset is detected as anomalous. The training set

filtering techniques evaluated as part of this research are

listed in the following subsections.

4.1 SOM smoothening technique

This is one of the widely used training set filtering tech-

niques. This technique is a generic one and does not use

any application domain knowledge in filtering the training

set. The steps in this process are:

1. The entire training set is used in the training to learn a

model M of the training data.

2. AD using model M is carried out on the training set to

filter out the non-anomalous data points.

3. The non-anomalous data points from the training set

obtained in the previous step are used to learn a refined

model M0 of the training set.

4. This new modelM0 is used in the analysis of anomalies

in the analysis dataset.

4.2 Statistical filtering techniques

The general assumption behind this kind of techniques is

that extreme values in either side of distribution are rep-

resentative of anomalies. Hence, statistical filtering

techniques try to eliminate extreme values from the train-

ing set to reduce their impact on scaling variables.

Two statistical filtering techniques are evaluated as part

of this research: one which uses application domain

knowledge and another which does not.

• Percentile-based filtering: This kind of filtering

removes k% of the observations of each of the KPIs

from either side of the distribution.

• Failure ratio-based filtering: This kind of filtering

removes from the training set k% of the observations,

which correspond to the highest values of a relative

KPI. The failure ratio-based technique can be consid-

ered to be one that uses the application domain

knowledge in filtering the training set, as high failure

ratios are considered as anomalies in networks.

5 Case study: LTE network management data

5.1 Traffic measurement data

The AD tests done as part of this research were performed

on mobile network traffic measurement data obtained from

Nokia Serve atOnce Traffica [14]. This component moni-

tors real-time service quality, service usage and traffic

across the entire mobile network owned by the operator. It

stores detailed information about different real-time events

such as call or SMS attempts and handovers. Based on the

goal of the AD task, as well as the monitored network

functionalities, KPIs are extracted out and they form the

data on which the AD task is carried out.

5.2 Training set filtering using failure significance

metric

The impact of the fsm-based training set filtering technique

is evaluated by measuring the SMS counters of a group of

11,749 cells over a period of 2 days. The measurement data

from the first day are chosen as the training dataset, and the

data from the subsequent day are chosen as the analysis

dataset. A set of five KPIs were chosen for this experiment.

The five SMS KPIs monitored for this experiment were (1)

number of text messages sent from the cell, (2) number of

text messages received to the cell, (3) number of failed text

messages, (4) number of failures due to core network errors

and (5) number of failures due to uncategorized errors.

A set of five anomalous cells are modelled program-

matically, and 120 synthetic observations corresponding to

them are added into the analysis dataset. The error condi-

tions which describe the operation of these synthetically

added anomalous NEs are described in Table 1. The SMS

counts and the failure percentage are uniformly distributed
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over the range specified in the table. The percentage of

anomalies and the percentage of anomalous NEs detected

through the AD experiment would give a good measure of

the effectiveness of the fsm-based filtering approach.

The performance of a technique is evaluated in five

realms: (1) number of synthetic anomalies detected, (2)

number of synthetic anomalous NEs detected, (3) total

number of anomalies detected, (4) total number of

anomalous NEs detected and (5) quality of anomalies

detected.

To measure comparatively the AD capabilities of the

fsm-based filtering technique with other techniques, three

other methods were chosen: (1) SOM smoothening method

(2) percentile-based training set filtering and (3) failure

ratio-based training set filtering. In each of the cases, 1 %

of the observations from the training set were filtered out.

Linear scaling technique was used for scaling the KPIs

prior to feeding them to the AD system. This kind of

scaling divides the variable by its standard deviation as

shown in Eq. (6).

xs ¼
x

sx
ð6Þ

A total of 50 neurons in a 5 9 10 grid were allocated to

learn the training set. The initial and final learning rates

were chosen as 8.0 and 0.1, respectively. The neighbour-

hood function was chosen to be Gaussian and a rectangular

neighbourhood shape was used.

5.2.1 Illustration

Figure 4 represents the structure of the 2-D SOM (in log-

arithmic scale) trained with the training set data and pro-

jected to two dimensions by using Neural Net Clustering

App of MATLAB 2014a [15]. The graphs show SOM

structures obtained with and without different training set

filtering techniques. Logarithmic scales are suitable to

understand in more detail the structure of SOMs. The

darker and bigger dots represent the positions of the neu-

rons and smaller green (or grey) dots represent the data

points. The figure shows only the first two dimensions (sent

SMS count and received SMS count), for the sake of

simplicity in understanding the SOM structure changes

with different filtering techniques. The main regions where

the structures of the SOMs are different when compared to

the case with no filtering are marked with ellipses for easy

comprehension. For each of the figures, the ellipses cor-

respond to the region from the training set from where the

data points were filtered out before training. Since the data

points from this region are removed due to the filtering, the

neurons which correspond to this behaviour are removed as

well.

5.2.2 Quantitative evaluation

The severity levels were defined manually using the

application domain knowledge, percentage failure rates as

well as the traffic volumes. Synthetic NEs with ids 30003

and 30004 were not detected in the experiment. The reason

for these not being detected is due to the lower traffic

produced by the cells. Table 2 summarizes the results in

terms of the total number of non-synthetic anomalies and

anomalous NEs detected in each of the scenarios.

The number of anomalies detected using the fsm-based

filtering technique is higher when compared to all other

techniques. The results clearly show that filtering the

training set has a huge impact on the number of anomalies

and anomalous NEs detected. This behaviour is consistent

for synthetic anomalies as well. It is interesting to note that

approximately 43 % of the synthetic anomalies still remain

undetected even using the fsm-based filtering technique. In

the absence of training set filtering techniques, none of the

anomalous NEs nor their anomalous observations could be

detected.

5.2.3 Qualitative evaluation

Since this experiment monitored just a few KPIs, a manual

analysis of quality of anomalies was not a tedious task and

hence was chosen in this case. Detailed analysis of the

entire set of anomalies exhibited ten different kinds of

anomalies. The detected types of anomalies along with

their severity are provided in Table 3. The severity levels

were defined manually using the application domain

knowledge, percentage failure rates as well as the traffic

volumes. Synthetic NEs with ids 30003 and 30004 were

not detected in the experiment. The reason for these not

being detected is due to the lower traffic produced by the

cells.

Table 4 presents the number of anomalies and anoma-

lous groups with their severity levels. fsm-based training

set filtering outperforms all other filtering techniques on the

basis of the number of critical and important anomalies

detected. It is interesting to note here that fsm-based

training set filtering finds approximately four times the

Table 1 Synthetic NEs and their error conditions

Synthetic NE Id Total SMS count SMS failure %

30000 (10–18) times average traffic (60–100)

30001 (5–9) times average traffic (60–100)

30002 (2.5–4.5) times average traffic (30–60)

30003 (0.5–0.9) times average traffic (60–100)

30004 (0.5–0.9) times average traffic (30–60)
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number of critical anomalies that are found without any

sort of filtering.

However, it is also important to note that the fsm-based

filtering does not outperform other methods in terms of the

proportion of critical anomalies detected out of the total

number of anomalies detected. Moreover, the number of

distinct anomaly groups found by using the application

domain knowledge incorporated filtering techniques

Fig. 4 SOM weight positions (weight 1—sent SMS count, weight 2—received SMS count) in logarithmic scale for different filtering techniques
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(failure ratio and fsm) is higher than the cases which do not

employ it.

5.3 Anomaly classification using failure significance

metric

A total of 845 anomalies were detected as part of the AD

experiment. One of the main goals of an AD experiment is

to detect different types of anomalies. It is a cumbersome

task to go through 845 anomalies to decipher the number of

distinct kinds of anomalies that were detected. Hence, the

process outlined in Sect. 2.2 are used. The steps are:

Step 1 Hierarchical clustering was able to identify a total

of 15 different kinds of anomalies corresponding to 15

clusters. Ward’s minimum variance method [16] was

used to identify the number of clusters.

Step 2 The cluster centres (centroids) were calculated to

find the failure significance metric corresponding to

Table 2 Statistics of detected

anomalies and anomalous NEs
Filtering

technique

Non-synthetic

anomaly

count

Non-synthetic

anomalous

NE count

Synthetic

anomaly count

(out of 120)

Synthetic

anomalous NE

count (out of 5)

None 121 11 0 0

Percentile 160 17 17 1

SOM smoothening 253 65 31 2

Failure ratio based 525 119 48 2

fsm based 629 172 68 3

Table 3 Anomaly group id, description and severity

Group

identifier

Anomaly description Severity

AG1 Sent SMS count = 0, high received SMS count, failure percentage (*100 %), reason for failure—uncategorized Critical

AG2 Received SMS count = 0, high sent SMS count, failure percentage (*100 %), reason for failure—core network Critical

AG3 Received SMS count = 0, high sent SMS count, failure percentage (*100 %), reason for failure—uncategorized Critical

AG4 Moderate/high sent SMS count, moderate/high received SMS count, failure percentage (90–100 %), reason for

failure—core network

Critical

AG5 Moderate/high sent SMS count, moderate/high received SMS count, failure percentage (90–100 %), reason for

failure—uncategorized

Critical

AG6 Moderate/high sent SMS count, moderate/high received SMS count, failure percentage (30–90 %), reason for

failure—core network

Important

AG7 Moderate/high sent SMS count, moderate/high received SMS count, failure percentage (30–90 %), reason for

failure—uncategorized

Important

AG8 Moderate/high sent SMS count, moderate/high received SMS count, failure percentage (10–30 %), reason for

failure—core network

Moderate

AG9 Moderate/high sent SMS count, moderate/high received SMS count, failure percentage (10–30 %), reason for

failure—uncategorized

Moderate

AG10 Moderate/high sent SMS count, moderate/high received SMS count, failure percentage (0–10 %) Irrelevant

Table 4 Qualitative analysis: number of anomalies and anomalous groups with their criticality

Filtering technique Irrelevant Moderate Important Critical

#Anomalies #Groups #Anomalies #Groups #Anomalies #Groups #Anomalies #Groups

None 0 0 1 1 12 1 108 4

Percentile 3 1 2 1 29 1 143 3

SOM smoothening 35 1 9 1 55 2 185 5

Failure ratio based 14 1 14 2 158 2 387 5

fsm based 22 1 38 2 228 2 409 5
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known faults in a telecom system such as call set-up

failure, dropped calls, handover failures, SMS failures

and overall call failures.

Step 3 Plotting consecutive points of the failure signif-

icance metric for each of the known fault scenarios (call

set-up failure, dropped calls, etc.) revealed that choosing

two levels of severity would give a good enough

classification as shown in Fig. 5. The classification was

done manually after looking the graphs as they generally

indicated two levels of values.

Step 4 Using the fsm severity of each fault area, the

centroids are classified into two severity levels. In the

current analysis, if any of the fault areas of the cluster

centroids are of level 1, the centroid itself is considered

to be of level 1, else the centroid is of level 2 (see

Table 5). Level 1 is considered as more severe compared

to level 2. Table 5 depicts the process.

As can be seen from Table 5, 9 level 1 category and 6

level 2 category anomalies were detected by the AD

experiment. Such concise information representation is

valuable to the telecom network monitoring person as it

helps in better understanding of the reason behind

anomalies. There is a high probability that the anomalies

which fall into the same cluster are a result of same kind of

network problems. Hence, the network monitoring person

Fig. 5 fsm-based severity calculation approach using plots of the fsm

metric. y-axis corresponds to the fsm metric and x-axis to consecutive

data points. a Call set-up fsm categorization, b dropped call fsm

categorization, c handover failure fsm categorization, d SMS failure

fsm categorization, e overall call fsm categorization
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can suggest the same kind of maintenance activity for

anomalous NEs which have same kind of anomalies.

Another benefit of the approach is the substantial

decrease in the number of anomalies to analyse. The

monitoring person only needs to identify the anomaly

cluster centroids (15 in number), instead of the entire 845

anomalies. Moreover, sufficient clues about the behaviour

of the cluster centroids are also provided by the severity

levels of the fsm of the contributing KPIs.

6 Conclusions

The fsm-based training set filtering technique does not aim

to replace any of the standard methods of AD in the

presence of outliers. This technique should be considered

more as a supplement to existing techniques. In cases when

there exists some form of prior knowledge about what can

be considered as an anomaly, using this information in the

training set filtering stage can lead to improved accuracy of

AD experiments. The results presented in this paper

emphasize the importance of pre-processing techniques in

general and training set filtering techniques in particular.

Since this approach is a generic approach for cleaning up

training data, there is no dependency on the AD algorithms

or mechanisms used commonly.

This paper introduced a novel approach of training set

filtering using fsm and analysed its impact on the quantity

and quality of anomalies detected in an AD experiment

performed on network management data obtained from a

live LTE network. fsm-based training set filtering was

found to detect the largest number of synthetic anomalies

as well as anomalous NEs. The total number of anomalies

and anomalous NEs found were also the highest using this

approach. In the absence of training set filtering, the results

were poor. AD as well as other data analysis experiments

produces results, which need to be easily comprehendible

by the analyst. Currently, there are no well-known ways of

post-processing of anomalies detected from counter data.

This paper proposed a technique of classifying anoma-

lies into clusters and providing information regarding the

behaviour of the anomaly cluster by analysing its centroid.

This technique was further used to determine the severity

of the anomaly group by making use of the failure signif-

icance metric. AD experiments performed on live LTE

network measurement data from a group of cells detected

845 anomalies which were further classified using this

approach to detect 15 different kinds of anomalies. These

anomalies were further classified into different severity

levels.

In general, it is much easier to detect anomalies than to

find out reasons for anomalous behaviour. As shown in [4]

by clustering found anomalies, it is possible to find

symptom combinations that can be used to suggest cor-

rective actions. This will require careful manual analysis

by experts. Unfortunately, in many cases, the most

anomalous KPI does not even refer to the root cause of the

problem. Instead, it shows the greatest deviation in

reflections of problem under selected distance measure and

normalization functions. Depending on the information

needed for the task at hand and also due to complexity of

the telecommunications network, successful root cause

Table 5 Anomaly cluster

centroid and their classification
Anomaly Id Call set-up

failure

significance

Call dropped

failure

significance

Handover

failure

significance

Overall call

failure

significance

SMS failure

significance

metric

A1 L2 L2 L2 L2 L2

A2 L2 L2 L2 L2 L1

A3 L1 L1 L2 L2 L2

A4 L2 L1 L2 L2 L2

A5 L2 L1 L2 L2 L2

A6 L1 L2 L2 L2 L2

A7 L2 L2 L2 L2 L2

A8 L2 L2 L1 L1 L2

A9 L2 L2 L2 L2 L2

A10 L2 L2 L2 L2 L2

A11 L2 L2 L2 L2 L2

A12 L2 L2 L2 L2 L1

A13 L2 L1 L2 L2 L1

A14 L2 L2 L2 L2 L2

A15 L2 L2 L1 L1 L2

Italics denotes level 1; bold denotes level 2
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analysis requires lots of expertise and competence. As

presented in this research, good-quality AD can help in

pointing out possible starting points from vast amounts of

data.
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6. Laiho J, Raivio K, Lehtimäki P, Hätönen K, Simula O (2005)

Advanced analysis methods for 3G cellular network. IEEE Trans

Wirel Commun 4(3):930–942

7. Kumpulainen P, Hätönen K (2008) Local anomaly detection for

mobile network monitoring. Inf Sci 178(20):3840–3859

8. Yin H (2008) The self-organizing maps: background, theories,

extensions and applications. Comput Intell Compend Stud

Comput Intell 115:715–762

9. Suutarinen J (1994) Performance measurements of GSM base

station system. Thesis (Lic.Tech.), Tampere University of

Technology, Tampere

10. Hätönen K, Kumpulainen P, Vehviläinen P (2003) Pre and post-
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