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Abstract Training artificial neural networks is considered

as one of the most challenging machine learning problems.

This is mainly due to the presence of a large number of

solutions and changes in the search space for different

datasets. Conventional training techniques mostly suffer

from local optima stagnation and degraded convergence,

which make them impractical for datasets with many fea-

tures. The literature shows that stochastic population-based

optimization techniques suit this problem better and are

reliably alternative because of high local optima avoidance

and flexibility. For the first time, this work proposes a new

learning mechanism for radial basis function networks

based on biogeography-based optimizer as one of the most

well-regarded optimizers in the literature. To prove the

efficacy of the proposed methodology, it is employed to

solve 12 well-known datasets and compared to 11 current

training algorithms including gradient-based and stochastic

approaches. The paper considers changing the number of

neurons and investigating the performance of algorithms

on radial basis function networks with different number of

parameters as well. A statistical test is also conducted to

judge about the significance of the results. The results show

that the biogeography-based optimizer trainer is able to

substantially outperform the current training algorithms on

all datasets in terms of classification accuracy, speed of

convergence, and entrapment in local optima. In addition,

the comparison of trainers on radial basis function net-

works with different neurons size reveal that the biogeog-

raphy-based optimizer trainer is able to train radial basis

function networks with different number of structural

parameters effectively.

Keywords Optimization � Biogeography-based optimizer �
BBO � Radial basis function network � Training neural

network � Evolutionary algorithm

1 Introduction

Radial basis function (RBF) networks are one of the most

popular and applied type of neural networks. RBF net-

works are universal approximators and considered as spe-

cial form of multilayer feedforward neural networks that

contain only one hidden layer with Gaussian based acti-

vation functions. RBF networks were first introduced by

Broomhead et al. [8] with a strong foundation in the con-

ventional approximation theory [13, 16].

The advantages of RBF networks compared to other

neural networks include the high generalization capability,

its simple and compact structure (i.e; only three layers),

easier parameters adjustment, very good noise tolerance

and the high learning speed [26, 60]. Due to these advan-

tages, RBF networks have been a common alternative to
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MLP networks [16]. Moreover, RBF networks have been

successfully applied to many applications like: systems

identification [2, 36], process faults classification [31],

nonlinear control [30] and time series forecasting [11, 18].

Like other neural networks, RBF networks have two

major components: the structure and the training method.

The training method has a significance influence on the

performance of the network. In literature, researchers

proposed and investigated a wide variety of learning

schemes for RFB network.

Castao et al. [9] classified the training methods of RBF

networks into two categories: quick learning and full

learning. The quick learning methods are more popular

where the learning process can be performed in two inde-

pendent stages: In the first stage, the structure of the net-

work (i.e; the centers and widths of the network) is

identified usually by an unsupervised learning algorithm

like K-Means algorithm, while in the second stage, the

connection weights between the hidden and output layers

are tuned using least mean squares (LMS), gradient-based

methods and variations of the backpropagation algorithm

[42]. The drawback of using an unsupervised technique to

locate the centers is that it depends only on the input fea-

tures and it does not consider the distribution of the label

class [50]. Moreover, using the common K-Means algo-

rithm does not necessarily guarantee that the centers are

best located [33]. On the other side, the main issue with the

gradient methods is that its highly probable that the search

process will be trapped in a local minima. Moreover,

Vakil-Baghmisheh and Pave reported in [48] that applying

customized version of the backpropagation algorithm to

RBF networks could suffer from some drawbacks like the

slow convergence and over-training which consequently

affects the generalization ability of the model. Alterna-

tively, the full learning methods optimize the RBF

parameters simultaneously as a supervised task.

Nature-inspired Metaheuristic algorithms have been

widely investigated in evolving and training RBF net-

works. These algorithms are based on stochastic search

algorithm that are simulated by natural systems and phe-

nomenons. Most of Nature-inspired metaheuristics are

population based and rely on randomness as an essential

principle of their process. The advantage of these search

methods is their flexibility, self-adaptation, conceptual

simplicity and ability of searching for a global optima

rather than a local one [17]. Nature-inspired metaheuristic

were deployed in different ways in training RBF networks.

Some were applied for finding one parameter of the net-

work like the centers [28], others optimized all the

parameters [43], while others investigated optimizing all

the parameters along with the structure of the network.

Such algorithms applied to RBF networks training include:

Genetic Algorithms (GA) [6, 15, 21], particle swarm

optimization (PSO) [25, 37, 40, 47], Ant Colony Opti-

mization (ACO) [12, 45], Differential Evolution (DE)

[4, 14, 58], Firefly algorithm (FFA) [24], Cuckoo search

(CS) [3, 10], Honey Bee Mating Optimization (HBMO)

[23], Artificial Bee Colony [29] and BAT Algorithm [46].

According to the No Free Lunch theorem (NFL), there is

no heuristic algorithm that certainly performs better than

all other algorithms in all optimization problems

[7, 22, 49]. Motivated by this reason, in this work, we

propose a novel RBF training algorithm based on the recent

biogeography-based optimizer (BBO) for optimizing the

parameters (centers, widths and weights) of RBF network,

simultaneously. BBO is an evolutionary algorithm, which

was developed by Simon [44]. BBO was inspired by the

studies related to the geographical distribution of biological

organisms in terms of time and space. Recently, BBO

optimizer has been applied in training neuro-fuzzy net-

works [38] and feedforward MLPs [35] and showed high

modeling capability. However, according to our knowl-

edge, there is no previous work investigating the efficiency

of the well-regarded BBO algorithm in any type of RBF

network training.

In order to evaluate the efficiency and effectiveness of

the new BBO trainer, the proposed trainer is applied on

twelve popular benchmark datasets, which are selected

from the UCI machine learning repository.1 The results of

the proposed BBO trainer are compared with those

obtained with other eleven algorithms. Six algorithms out

of the eleven are classical evolutionary algorithms, which

are the GA, PSO, DE, Evolutionary Strategy (ES), ACO

and the population-based incremental learning (PBIL).

While four algorithms are recent nature-inspired algo-

rithms which are the FFA, CS, ABC and BAT Algorithm.

The eleventh algorithm is actually a hybrid two stages

training algorithm based on K-Means and gradient decent

optimization.

This paper is organized as follows: in Sect. 2 a

description of the RBF network, and its classical two-

phases learning approach is given. In Sect. 3 the BBO

algorithm is explained. Section 4 describes in detail the

developed BBO-based approach for training RBF network.

Experimental results are outlined in Sect. 5. Finally, the

finding and remarks of this work, and future works are

concluded in Sect. 6.

2 Radial based function neural networks

RBF neural network is a special type of fully connected

feedforward networks that consists of only three layers:

input, hidden and output layers. The number of neurons in

1 http://archive.ics.uci.edu/ml/.
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the input layer depends on the number of dimensions of the

input vector, whereas output layer neurons depend on the

number of class labels in the data. The number of neurons

in the hidden layer determines the topology of the network

which also determines the decision boundary between data

clusters. Each hidden neuron has an RBF activation func-

tion that calculates the similarity between the input and a

stored prototype in that neuron. Having more prototypes

results in a more complex decision boundary, which means

higher accuracy. However, it results of more computations

to evaluate the network.

Figure 1 shows the structure of RBF network in com-

parison with the Multilayer Perceptron network. Inspect-

ing this figure, it may be seen that the arrows between the

input layer and the hidden neurons in the RBF network

represent the Euclidean distance between the input vector

and the prototypes stored in the hidden neurons. On the

other side, in MLP, arrows between the input layer and

output layer represent weights. Moreover, in RBF net-

works, activation functions in the hidden nodes are

Gaussian basis functions, while in MLP the sigmoidal

functions are typically used.

RBF ANN process works as follows, first the input data

enter the network through the input layer. After that, each

neuron in the RBF layer (hidden layer) calculates the

similarity between the input data and the prototype stored

inside it, using the nonlinear Gaussian function shown in

Eq. 1.

/ð x� cj
�
�

�
�Þ ¼ exp�

x� cj
�
�

�
�2

2r2j

 !

ð1Þ

where x� cj
�
�

�
� is Euclidean norm.

The output of the RBF is calculated using weighted

average method by the following equation:

yi ¼
Xn

j¼1

xji/jðxÞ ð2Þ

where xji represents the ith weight between the hidden

layer and output layer, and n represents the number of

hidden nodes.

The output of the RBF neuron is closer to 1 whenever

the similarity between the input and the prototype is high,

and close to zero otherwise. The output layer neurons takes

the weighted sum of every RBF neuron output in order to

decide the class label. Which means that every RBF neuron

contributes in the labeling decision, higher similarity has

larger contribution.

2.1 Classical radial basis function network training

Classical RBF process depends mainly on three points, the

prototypes inside each RBF neurons and how to be chosen

perfectly, the beta value in the similarity equation, and the

weights between hidden layer and output layer (which

affects the last decision). Choosing the prototypes can be

done using many approaches such as choosing random data

points from the data, or using K-Means clustering approach

and use the clusters centers as prototypes or any other

approach you may choose. Using K-Means clustering is the

most used approach in the literature as it helps in smartly

choosing small number of RBF neurons (K neurons), where

each neuron represents a cluster in the data. Moreover,

having only K neurons does not affect the complexity of

the RBF network nor the accuracy of the classification

decision.

Beta coefficient in the RBF activation function controls

the width of the bell curve and should be determined in a

manner that optimizes the fit between the activation func-

tion and the data. When K-Means is used to choose the

(a) (b)

Fig. 1 Representation of ANN networks. a RBF Networks. b MLP Networks
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RBF neurons prototypes, then Beta can be set using the

following equation:

Beta ¼ 1

2� r2
ð3Þ

where r equals to the average distance between all points

in the cluster and the cluster center.

Training the output weights is the third important

parameter to set for RBF to work perfectly. Training these

weights can be done using the Gradient decent which is an

optimization technique that takes the outputs of the RBF

neurons as input and optimize the weights according to

them. Gradient descent must be run separately for each

output node. The following subsections describe more

details about K-Means and gradient decent methods that

are selected in this work as a classical approach for opti-

mizing the connection weights.

2.1.1 K-Means

K-Means is considered one of the most efficient clus-

tering algorithms that used in many applications in the

literature. K-Means clustering has many advantages,

such as simplicity to implement and has good perfor-

mance with large dataset. K-Means is a partitioning

clustering algorithm, where the objective is to maximize

the similarity between the members in each cluster and

minimize the similarity between the members in differ-

ent clusters. The main idea of the K-Means clustering is

to define k centers, one center for each cluster. The data

points are assigned to the proper cluster based on the

minimum distances to all cluster centers. After that,

cluster centers should be modified in an iterative way by

calculating the mean of cluster’s members to achieve the

best clustering quality (The squared error function). This

process is continued until centers do not change any

more.

2.1.2 Gradient decent

Gradient decent (GD) is considered an optimization algo-

rithm uses the first-order derivative calculation to find a

local minimum of a function. The algorithm applies con-

secutive steps to find the gradient of the objective function

at the current point. The output of a RBF network can be

represented as shown in Eqs. 4, and 5, while the error

function E is given in Eq. 7, where ŷi;k is the response

value of the ith output unit, and yi;k is the actual response.

The Gradient decent algorithms can be used to find the

solution matrix W as shown in Eq. 7, where g is a small

decreasing value called the learning rate.
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xij ¼xij � g
oE
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In this work, the conjugate gradient (CG) is used to opti-

mize the weights in the standard RBF network. CG is a

special type of gradient descent with regularization that

used to compute search directions. The CG uses a line

search with quadratic, and cubic polynomial approxima-

tions. The stopping criteria that used in CG is the Wolfe–

Powell, and CG guesses the initial step sizes using slope

ratio method.

3 Biogeography-based optimization optimizer

Evolutionary Algorithms (EAs) belong to the class of

stochastic population-based algorithms. As the name

implies, such techniques approximate the global optima for

optimization problems using stochastic operators. The

optimization process first starts with a set of random

solutions as candidate solutions for a given problem. This

set is then evolved using different mechanism defined by

the algorithm to find a better approximation of the global

optimum. This framework is common between all EAs

despite different mechanisms to evolve the solutions.

One of the most recent and well-regarded EAs proposed

in the literature is the biogeography-based optimization

(BBO) algorithm [44]. This algorithm mimics evolutionary

phenomena in the field of biogeography to solve optimiza-

tion problem. The main inspiration of BBO is based on the

fact that nature balances between the prey and predator

using migration in the same habitat and different habitats.

In BBO, each solution represents a habitat and each

variable in the solution indicates a habitant (prey of

predator). The objective function is called Habitat

Suitability Index (HSI), which obviously shows how suit-

able a habitat is. The following rules should be considered

to simulate the evolvement of habitats and habitants in

nature:

532 Neural Comput & Applic (2018) 29:529–553
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1. Habitants in any habitat face mutation regardless of

their HSI.

2. Habitants in a habitat with better HSI are more likely

to migrate to habitats with worse HSI.

3. Habitants in a habitat with worse HSI are more likely

not to migrate.

4. Immigration is always from better habitat to worse

habitat.

5. Each habitat has a rate of immigration and emigration,

which define the rate of immigration to or from other

habitats.

The immigration between habitats are simulated by

exchanging the variables of solutions. In BBO algorithm,

each habitat has different emigration and immigration rates

to simulate habitats with different characteristics in nature.

Obviously, with constant migration rates between habitats,

the BBO is not able to balance exploration and exploita-

tion. Therefore, this algorithm has been equipped with the

following adaptive immigration and emigration rates:

lk ¼
E � n

N
ð8Þ

kk ¼ I
1� n

N
ð9Þ

where n is the habitants number, N is the maximum habi-

tants allowed, E is the maximum allowed emigration rate,

and I is the maximum immigration rate. The mutation rate

has also been required to change adaptively as follows:

mn ¼ M 1� pn

pmax

� �

ð10Þ

where M is the initial value, Pn is the mutation probability,

and Pmax shows the maximum probability.

The significant number of works in the literature proves

that the BBO algorithm is able to solve optimization

problems. This is due to the high exploration of this

algorithm, which originate from the migration mechanism

between the habitats. The migration mechanisms abruptly

changes the solution, which assist the BBO to avoid local

solutions and determine an accurate approximation of the

global optima for challenging problems effectively. This

motivated our attempts to propose a trainer based on BBO

to train RBFN for the first time in the literature.

4 Biogeography-based optimization for training
radial basis function networks

In contrast to the classical approach where RBF network

are trained in two independent phases, our proposed BBO-

based approach searches for all RBF network parameters

simultaneously. The parameters are the centers, widths and

connection weights including the bias terms. In the pro-

posed training algorithm, each habitat is encoded to rep-

resent these parameters as shown in Fig. 2 where Ci is the

center of the hidden neuron i, ri is the width of that neuron

and xij is weight connecting between neuron i and output

unit j. Habitats are implemented as real vectors with a

length D which can be calculated as follows: suppose that n

is number of hidden neurons, I is the number of features in

the dataset and m is the number of output units then D can

be calculated as given in Eq. 11.

D ¼ ðn� IÞ þ nþ ðn� mÞ þ m ð11Þ

In order to evaluate the fitness value (HSI) of the

habitats (candidate RBF networks), the mean squared error

(MSE) is calculated over all training samples for each

habitat. MSE can be given as in Eq. 12 where y is the

actual output, ŷ is the estimated output and k is the total

number of instances in the training dataset.

MSE ¼ 1

k

Xk

i¼1

ðy� ŷÞ2 ð12Þ

Based on the encoding scheme and the fitness eval-

uation described above, the BBO algorithm is designed

to train the RBF networks as described in the

flowchart in Fig. 3. This figure shows that the BBO first

creates a set of random candidate solutions, which

includes RBF networks with random connection weights

and biases. This algorithm then repeatedly calculates

the MSE for all the RBF networks when classifying the

training data. The MSE shows which ‘‘random’’ RBF is

Fig. 2 Representation of BBO individuals structure
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better. Based on the rules discussed above, the BBO

algorithm creates a set of new RBF networks consid-

ering the best RBF networks found so far. The process

of calculating MSEs and improving the RBFs continues

until the satisfaction of the end criterion, which could

be a threshold or maximum iterations. It should be

noted that the average MSE is calculated when classi-

fying all training samples in the dataset for each RBF

network in the proposed BBO-based trainer. Therefore,

the computational complexity is of O(ntd) where n is

the number of random RBF networks, t indicates the

maximum iterations, and d shows the number of train-

ing samples in the dataset.

5 Experiments and results

In this section, the BBO training algorithm is evaluated on

twelve datasets to verify the power of BBO for RBF neural

network training. Furthermore, a comprehensive compar-

ison of the BBO with other ten well-known metaheuristic

algorithms is conducted. The metaheuristic algorithms that

are used in this experiment are: GA, PSO, ACO, ES, PBIL,

DE, Firefly, Cuckoo search, ABC and BAT Algorithm

which are the most common metaheuristic-based trainers

for RBF network in the literature. In addition, the BBO

trainer is compared with the RBFclassic (Gradient-based)

technique, which is considered the common method for

training the RBF neural network.

5.1 Experimental setup

The MATLAB R2010b is used to implement the proposed

BBO trainer and other algorithms. All datasets are divided

using 66, 34 % for training and testing, respectively. 10

different runs are executed for all experiments, and 250

iterations in each run. Moreover, the population size is

fixed to 50 individuals for all algorithms. The parameter

settings for each algorithm are shown in Table 1.

In CS, besides the population size, the discovery rate pa
is the only parameter needs to be tuned. pa is set to 0.25

since it was stated in [55] that this value is sufficient for

Fig. 3 RBF networks using BBO trainer flowchart
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most optimization problems. For Firefly, Beta is set to 1 as

it was reported in [56] that parametric studies suggest

setting the value of Beta to 1 can be used for most appli-

cations while gamma can be set to 1=
ffiffiffi

L
p

where L is a

scaling factor and if the scaling variations are not signifi-

cant, then we can set gamma = O(1). Alpha is roughly

tuned and set to 0.2. Same values were used and applied in

previous studies as in [52, 53].

For PSO, acceleration constants are typically set to �2

[1, 57]. We use also linear decreasing strategy to update the

Inertia in the interval [0.9,0.6]. It was found by experiments

in the literature that this strategy improves the efficiency and

performance of PSO achieving excellent results [5, 51].

For GA, the crossover probability is usually set to a

much high rate, while the mutation probability is set to a

much low probability [19]. With a rough tuning, the

crossover and mutation probabilities are set to 0.9 and 0.1,

respectively. For DE, the DE/rand/1/bin variant is applied

with the crossover probability and differential weight equal

to 0.9 and 0.5 as applied and recommended in [34, 59].

Table 1 The metaheuristic

algorithms with initial

parameters

Algorithm Parameter Value

GA Crossover probability 0.9

Mutation probability 0.1

Selection mechanism Stochastic Universal Sampling

PSO Acceleration constants [2.1, 2.1]

Inertia weights [0.9, 0.6]

DE Crossover probability 0.9

Differential weight 0.5

BBO Habitat modification probability 1.0

Immigration probability [0, 1]

Step size 1.0

Maximum immigration 1.0

Migration rates 1.0

Mutation probability 0.05

ACO Initial pheromone (s) 1e� 06

Pheromone update constant (Q) 20

Pheromone constant (q) 1

Global pheromone decay rate (pg) 0.9

Local pheromone decay rate (pt) 0.5

Pheromone sensitivity (a) 1

Visibility sensitivity (b) 5

ES k 10

r 1

PBIL Learning rate 0.05

Good population member 1

Bad population member 0

Elitism parameter 1

Mutational probability 0.1

FireFly Alpha 0.2

Beta 1

Gamma 1

Cuckoo Discovery rate Pa 0.25

ABC Acceleration Coefficient Upper Bound 1

BAT Loudness 0.5

Pulse rate 0.5

Frequency minimum 0

Frequency maximum 1

Neural Comput & Applic (2018) 29:529–553 535
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For ACO, ES and PBIL, all parameters are set as used

and applied in [35, 44]. And for ABC and BAT, the

defaults parameters are used [27, 54].

For BBO, we used the same parameters as in [35, 44]

habitat modification probability is set to 1, immigration

probability bounds per gene = [0, 1], step size is set to 1,

maximum immigration and migration rates for each island

is set to 1, while the mutation probability is set 0.05 as in

[35].

However, it is worth mentioning that finding the best

parameters of these algorithms is considered as another

optimization problem by itself and it is known as meta-

optimization. Therefore, fine tuning the optimization

algorithms is out of scope if this work [39]. All dataset are

normalized to the interval of [0, 1].

An RBF network with large number of neurons in the

hidden layer may achieve good results based on the train-

ing data; however, this could lead to a bad generalization

[41]. In our experiments, we assess the performance of the

proposed training algorithm based on different number of

neurons in the hidden layer: 4, 6, 8, 10 respectively.

In our experiments, we used five different measurements

to evaluate the developed RBF network models. The

measurements are Accuracy, Specificity, Sensitivity,

Complexity and MSE. MSE was given previously in

Eq. 12, while the rest are calculated using the following

Eqs. 13, 14, 15 and 16, respectively. Accuracy, Specificity,

Sensitivity and MSE assess the prediction accuracy, while

the complexity equation reflects the network structure

complexity based on the number of neurons.

Accuracy ¼Number of correctly classified instances

Total number of instances

ð13Þ

Specificity ¼Number of predicted instances of negative class

Number of actual negative instances

ð14Þ

Sensitivity ¼Number of predicted instances of positive class

Number of actual positive instances

ð15Þ

Complexity ¼ 1

2

Xjwj

i¼1

ðwiÞ2 ð16Þ

where jwj ¼ 2 � ðnþ 1Þ, n is the number of neurons.

5.2 Datasets description

The proposed BBO trainer is evaluated using twelve known

real datasets, which are selected from UCI Repository [32].

All datasets contains two classes. Table 2 describes these

datasets in terms of number of features, training samples,

testing samples and the accuracy of the baseline classifier

for each dataset. The baseline classifier is the Zero Rule

classifier or ZeroR for short. ZeroR is the simplest classifier

which relies only on the output class by simply predicting

the majority class.

5.3 Results

The proposed BBO trainer is evaluated by comparing its

results with standard RBFclassic and other ten meta-

heuristic (GA, PSO, ACO, ES, PBIL, DE, FF, Cuckoo,

ABC and BAT) trainers using the Accuracy, Sensitivity,

Specificity, MSE, and Complexity evaluation measures.

Table 3 shows the the results in terms of the average

accuracy (AVE) and standard deviation (STD), as well as

the best accuracy result of the proposed BBO and other

algorithms on Blood dataset. The table reports the results

with different number of neurons in the hidden layer. The

best accuracy results are highlighted in bold. According to

the results of AVE, STD, and best results using 4 neurons,

BBO is able to classify 77.1 % of the test samples, which is

more than PSO, ACO, ES, PBIL, DE and ABC results and

Table 2 Summary of the

classification datasets
Dataset #Features #Training samples #Testing samples Accuracy of baseline classifier

Blood 4 493 255 0.7647

Breast 8 461 238 0.6597

Hepatitis 10 102 53 0.8113

Diabetes 8 506 262 0.6336

Vertebral 6 204 106 0.7075

Diagnosis I 6 79 41 0.5366

Diagnosis II 6 79 41 0.5366

Parkinson 22 128 67 0.7612

Liver 6 227 118 0.5763

Sonar 60 137 71 0.5352

German 24 660 340 0.6706

Australian 14 455 235 0.5702
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with slight difference with GA, FireFly, Cuckoo, BAT and

RBFclassic. Furthermore, BBO outperforms all other

methods using 6 neurons and 8 neurons with accuracy rates

77.29 and 77.45 %, respectively. In addition, the accuracy

results of RBFclassic, BAT and BBO using 10 neurons are

very close for this dataset, and the three algorithms out-

perform the other methods.

The accuracy results of BBO and other optimizers for

Breast cancer dataset are presented in Table 4. According

to the results of AVE, STD, and best results, BBO out-

performs all other methods using 4, 6 and 10 neurons.

Moreover, the BBO able to classify 96.55, 97.61, 96.97,

and 97.86 % of the test samples using 4, 6, 8, and 10

neurons, respectively.

Table 5 presents the accuracy results of the Hepatitis

dataset. The results of BBO are significantly better than all

the other algorithms using 6 neurons. Moreover, BBO has

better results compared with most algorithms using 4, 8,

and 10 neurons as well.

The accuracy results of BBO and other training algo-

rithms on Diabetes and Vertebral datasets are presented in

Tables 6, and 7, respectively. According to the results of

Table 3 The average accuracy, and standard deviation results of the Blood dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 0.7710 ± 0.0046 0.7765 0.7729 ± 0.0039 0.7765 0.7745 ± 0.0028 0.7765 0.7733 ± 0.0036 0.7765

GA 0.7718 ± 0.0045 0.7765 0.7714 ± 0.0045 0.7765 0.7722 ± 0.0057 0.7765 0.7718 ± 0.0052 0.7765

PSO 0.7671 ± 0.0033 0.7725 0.7690 ± 0.0039 0.7765 0.7663 ± 0.0027 0.7725 0.7671 ± 0.0053 0.7765

ACO 0.7031 ± 0.1515 0.7686 0.6929 ± 0.1305 0.7686 0.7290 ± 0.0523 0.7765 0.7639 ± 0.0045 0.7686

ES 0.7643 ± 0.0050 0.7725 0.7549 ± 0.0332 0.7765 0.7455 ± 0.0445 0.7686 0.7408 ± 0.0554 0.7725

PBIL 0.7671 ± 0.0096 0.7804 0.7663 ± 0.0059 0.7765 0.7616 ± 0.0118 0.7725 0.7667 ± 0.0081 0.7765

DE 0.7655 ± 0.0017 0.7686 0.7624 ± 0.0083 0.7725 0.7553 ± 0.0252 0.7725 0.7663 ± 0.0033 0.7725

FireFly 0.7722 ± 0.0043 0.7804 0.7694 ± 0.0045 0.7765 0.7686 ± 0.0041 0.7765 0.7694 ± 0.0055 0.7765

Cuckoo 0.7718 ± 0.0041 0.7765 0.7702 ± 0.0046 0.7765 0.7714 ± 0.0042 0.7765 0.7686 ± 0.0037 0.7725

RBFclassic 0.7765 ± 0.0000 0.7765 0.7686 ± 0.0000 0.7686 0.7686 ± 0.0000 0.7686 0.8118 ± 0.0000 0.8118

ABC 0.7639 ± 0.0086 0.7725 0.7659 ± 0.0026 0.7725 0.7663 ± 0.0027 0.7725 0.7663 ± 0.0038 0.7725

BAT 0.7729 ± 0.0034 0.7765 0.7725 ± 0.0037 0.7765 0.7718 ± 0.0045 0.7765 0.7757 ± 0.0052 0.7804

Table 4 The average accuracy and standard deviation results of the Breast dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 0.9655 ± 0.0119 0.9790 0.9761 ± 0.0053 0.9832 0.9697 ± 0.0108 0.9832 0.9786 ± 0.0037 0.9832

GA 0.9647 ± 0.0168 0.9790 0.9639 ± 0.0143 0.9790 0.9689 ± 0.0121 0.9832 0.9664 ± 0.0097 0.9790

PSO 0.9294 ± 0.0510 0.9790 0.9294 ± 0.0438 0.9622 0.9315 ± 0.0272 0.9622 0.9118 ± 0.0333 0.9538

ACO 0.6765 ± 0.1691 0.8151 0.6303 ± 0.2806 0.9034 0.6013 ± 0.2291 0.9622 0.6853 ± 0.2100 0.9328

ES 0.7025 ± 0.1942 0.8866 0.5887 ± 0.2510 0.9244 0.6605 ± 0.2319 0.9412 0.6441 ± 0.1497 0.8445

PBIL 0.9311 ± 0.0361 0.9706 0.9105 ± 0.0914 0.9706 0.8874 ± 0.0475 0.9496 0.8319 ± 0.1982 0.9706

DE 0.7895 ± 0.1094 0.9412 0.6929 ± 0.2318 0.8908 0.8626 ± 0.0917 0.9706 0.8546 ± 0.0736 0.9664

FireFly 0.9567 ± 0.0086 0.9664 0.9563 ± 0.0147 0.9832 0.9462 ± 0.0239 0.9706 0.9660 ± 0.0090 0.9790

Cuckoo 0.9639 ± 0.0077 0.9790 0.9567 ± 0.0116 0.9748 0.9643 ± 0.0103 0.9790 0.9525 ± 0.0131 0.9706

RBFclassic 0.9580 ± 0.0000 0.9580 0.9622 ± 0.0000 0.9622 0.9538 ± 0.0000 0.9538 0.9454 ± 0.0000 0.9454

ABC 0.9613 ± 0.0090 0.9706 0.9546 ± 0.0106 0.9748 0.9248 ± 0.0443 0.9748 0.9311 ± 0.0329 0.9790

BAT 0.9550 ± 0.0480 0.9832 0.9685 ± 0.0112 0.9790 0.9744 ± 0.0046 0.9790 0.9693 ± 0.0136 0.9790
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AVE, STD, and best results using 4, 6, 8, and 10 neurons,

BBO outperforms most of other methods except RBF-

classic which has better accuracy. These results support the

merits of the proposed BBO algorithm in training RBF

networks.

The accuracy results of BBO and other algorithms on

Diagnosis I and Diagnosis II datasets are presented in

Tables 8, and 9, respectively. According to the results of

AVE, STD, and best results, the results of BBO on the

Diagnosis I are significantly better than the other algo-

rithms using 4, 6, and 8 neurons. Furthermore, the BBO

results on the Diagnosis II are very comparable with other

optimizers using different neurons.

Tables 10, and 11 show the accuracy results of BBO and

other algorithms on Parkinsons and Liver datasets,

respectively. The accuracy results of BBO on the Parkin-

son, and Liver datasets outperform all other algorithms

using different number of neurons.

The accuracy results of BBO and other training algo-

rithms on Sonar and German datasets are presented in

Tables 12, and 13, respectively. According to both dataset

results using 4, 6, 8, and 10 neurons, BBO comes second

Table 5 The average accuracy and standard deviation results of the Hepatitis dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 0.8377 ± 0.0221 0.8868 0.8472 ± 0.0165 0.8679 0.8283 ± 0.0188 0.8679 0.8302 ± 0.0126 0.8491

GA 0.8453 ± 0.0232 0.8868 0.8321 ± 0.0165 0.8491 0.8453 ± 0.0318 0.9057 0.8472 ± 0.0259 0.9057

PSO 0.8358 ± 0.0252 0.8868 0.8245 ± 0.0296 0.8868 0.8321 ± 0.0273 0.8868 0.8245 ± 0.0268 0.8491

ACO 0.5472 ± 0.2871 0.8302 0.6642 ± 0.2200 0.9057 0.6585 ± 0.1972 0.8491 0.5528 ± 0.2655 0.8302

ES 0.7472 ± 0.1249 0.8113 0.5830 ± 0.2892 0.8113 0.6887 ± 0.2292 0.8491 0.7057 ± 0.1845 0.8679

PBIL 0.8283 ± 0.0259 0.8679 0.8264 ± 0.0214 0.8679 0.8321 ± 0.0259 0.8679 0.8189 ± 0.0419 0.9245

DE 0.8000 ± 0.0497 0.8302 0.7038 ± 0.1797 0.8491 0.6755 ± 0.2328 0.8302 0.7887 ± 0.0716 0.8491

FireFly 0.8547 ± 0.0252 0.9057 0.8321 ± 0.0165 0.8491 0.8340 ± 0.0292 0.8679 0.8340 ± 0.0149 0.8491

Cuckoo 0.8623 ± 0.0282 0.8868 0.8396 ± 0.0160 0.8679 0.8472 ± 0.0243 0.8868 0.8245 ± 0.0296 0.8679

RBFclassic 0.8302 ± 0.0000 0.8302 0.8302 ± 0.0000 0.8302 0.8113 ± 0.0000 0.8113 0.7736 ± 0.0000 0.7736

ABC 0.8340 ± 0.0306 0.8868 0.8358 ± 0.0252 0.8679 0.8321 ± 0.0273 0.8868 0.8377 ± 0.0347 0.8868

BAT 0.8509 ± 0.0165 0.8868 0.8453 ± 0.0149 0.8679 0.8321 ± 0.0208 0.8679 0.8264 ± 0.0195 0.8679

Table 6 The average accuracy and standard deviation results of the Diabetes dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE±STD Best

BBO 0.6950 ± 0.0237 0.7443 0.6996 ± 0.0268 0.7481 0.6996 ± 0.0181 0.7214 0.7160 ± 0.0190 0.7481

GA 0.6702 ± 0.0223 0.6947 0.6863 ± 0.0239 0.7176 0.6916 ± 0.0275 0.7405 0.7000 ± 0.0206 0.7290

PSO 0.6599 ± 0.0360 0.7061 0.6645 ± 0.0310 0.7176 0.6752 ± 0.0291 0.7023 0.6569 ± 0.0257 0.7023

ACO 0.6008 ± 0.0855 0.6527 0.5767 ± 0.0921 0.6489 0.5687 ± 0.1170 0.6489 0.5668 ± 0.1248 0.6527

ES 0.5794 ± 0.1263 0.6794 0.6244 ± 0.0510 0.7176 0.5679 ± 0.0880 0.6489 0.6130 ± 0.0452 0.6603

PBIL 0.6676 ± 0.0242 0.7176 0.6630 ± 0.0363 0.7557 0.6626 ± 0.0425 0.7557 0.6401 ± 0.0282 0.6794

DE 0.6378 ± 0.0120 0.6527 0.6176 ± 0.0642 0.7023 0.6263 ± 0.0686 0.7099 0.6126 ± 0.0743 0.6679

FireFly 0.6771 ± 0.0421 0.7595 0.6931 ± 0.0374 0.7634 0.6863 ± 0.0365 0.7557 0.6763 ± 0.0318 0.7290

Cuckoo 0.6817 ± 0.0375 0.7710 0.6863 ± 0.0223 0.7405 0.6954 ± 0.0267 0.7443 0.6672 ± 0.0275 0.7099

RBFclassic 0.7405 ± 0.0000 0.7405 0.7672 ± 0.0000 0.7672 0.7748 ± 0.0000 0.7748 0.7481 ± 0.0000 0.7481

ABC 0.6985 ± 0.0250 0.7405 0.6989 ± 0.0219 0.7481 0.6985 ± 0.0305 0.7519 0.6782 ± 0.0282 0.7214

BAT 0.7034 ± 0.0228 0.7366 0.7118 ± 0.0176 0.7405 0.7069 ± 0.0239 0.7443 0.7088 ± 0.0254 0.7634
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after the RBFclassic method and it outperforms all other

metaheuristic methods.

The accuracy results of BBO and other optimizers for

Australian dataset are presented in Table 14. According to

the results of using 4, 6, 8, and 10 neurons, BBO has

superior classification accuracy results compared with

other methods. Moreover, the BBO was able to classify

85.32, 84.98, 84.51, and 85.11 % of the test samples using

4, 6, 8, and 10 neurons, respectively.

To give a better insight on the classification performance

regarding each class label, the specificity and sensitivity

are measured and listed in Tables 15, 16, 17 and 18 for

RBF networks with 2, 6 ,8 and 10 neurons in the hidden

layer respectively. According to these tables, it can be

noticed that RBF networks optimized by BBO have higher

and more balanced specificity and sensitivity than most of

the other optimizers in the following datasets: Breast can-

cer, Hepatitis, Vertebral, Diagnosis I, Diagnosis II,

Parkinsons, Liver, Sonar and Australian.

To summarize the above results, we can note that

BBO outperform most of other algorithms, which sup-

ports the merits of the proposed BBO algorithm in

Table 7 The average accuracy and standard deviation results of the Vertebral dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 0.7632 ± 0.0340 0.8019 0.7708 ± 0.0298 0.8208 0.7840 ± 0.0201 0.8208 0.7792 ± 0.0260 0.8302

GA 0.7604 ± 0.0236 0.8019 0.7519 ± 0.0281 0.8019 0.7623 ± 0.0217 0.8113 0.7708 ± 0.0236 0.8113

PSO 0.7406 ± 0.0425 0.8302 0.7104 ± 0.0256 0.7453 0.7255 ± 0.0525 0.8019 0.7283 ± 0.0444 0.8113

ACO 0.6189 ± 0.1727 0.7075 0.6453 ± 0.1328 0.7547 0.6217 ± 0.1547 0.7830 0.6094 ± 0.1458 0.7075

ES 0.7208 ± 0.0549 0.8302 0.6698 ± 0.0712 0.7736 0.6481 ± 0.1059 0.7358 0.6613 ± 0.0805 0.7264

PBIL 0.7368 ± 0.0421 0.8396 0.7406 ± 0.0339 0.7925 0.7113 ± 0.0408 0.7925 0.7000 ± 0.0307 0.7453

DE 0.6943 ± 0.0214 0.7264 0.7019 ± 0.0244 0.7453 0.6698 ± 0.0868 0.7358 0.6623 ± 0.1048 0.7547

FireFly 0.7443 ± 0.0365 0.7925 0.7519 ± 0.0263 0.7925 0.7519 ± 0.0248 0.7925 0.7575 ± 0.0336 0.8113

Cuckoo 0.7557 ± 0.0296 0.8019 0.7500 ± 0.0223 0.7736 0.7462 ± 0.0296 0.8113 0.7566 ± 0.0481 0.8396

RBFclassic 0.8208 ± 0.0000 0.8208 0.8302 ± 0.0000 0.8302 0.8302 ± 0.0000 0.8302 0.8302 ± 0.0000 0.8302

ABC 0.7208 ± 0.0271 0.7642 0.7264 ± 0.0537 0.8302 0.7047 ± 0.0199 0.7358 0.7019 ± 0.0214 0.7264

BAT 0.7594 ± 0.0463 0.8208 0.7632 ± 0.0245 0.8113 0.7623 ± 0.0217 0.8113 0.7783 ± 0.0253 0.8113

Table 8 The average accuracy and standard deviation results of the Diagnosis I dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 1.0000 ± 0.0000 1.0000 1.0000 ± 0.0000 1.0000 1.0000 ± 0.0000 1.0000 0.9780 ± 0.0694 1.0000

GA 0.9951 ± 0.0154 1.0000 1.0000 ± 0.0000 1.0000 1.0000 ± 0.0000 1.0000 0.9707 ± 0.0926 1.0000

PSO 0.8634 ± 0.0899 0.9512 0.8171 ± 0.1357 1.0000 0.7610 ± 0.1114 0.9756 0.8439 ± 0.0672 0.9512

ACO 0.5293 ± 0.1436 0.7561 0.5732 ± 0.1869 0.9268 0.5244 ± 0.2179 0.9756 0.5195 ± 0.1048 0.7805

ES 0.5244 ± 0.1068 0.7561 0.5634 ± 0.0533 0.6341 0.6024 ± 0.1602 0.8780 0.5634 ± 0.0817 0.6829

PBIL 0.8146 ± 0.1455 1.0000 0.8220 ± 0.1260 1.0000 0.7073 ± 0.1988 0.9268 0.8000 ± 0.1739 1.0000

DE 0.6341 ± 0.1751 0.8780 0.7024 ± 0.1476 0.8780 0.5951 ± 0.1771 1.0000 0.6317 ± 0.2177 0.9024

FireFly 0.9805 ± 0.0427 1.0000 0.9659 ± 0.0504 1.0000 0.9463 ± 0.0561 1.0000 0.9683 ± 0.0431 1.0000

Cuckoo 0.9707 ± 0.0926 1.0000 0.9805 ± 0.0427 1.0000 0.9878 ± 0.0263 1.0000 0.9683 ± 0.0920 1.0000

RBFclassic 0.8780 ± 0.0000 0.8780 0.8780 ± 0.0000 0.8780 1.0000 ± 0.0000 1.0000 0.9756 ± 0.0000 0.9756

ABC 0.9244 ± 0.0825 1.0000 0.7659 ± 0.1207 0.9756 0.7951 ± 0.0997 0.9268 0.8683 ± 0.0997 1.0000

BAT 0.9878 ± 0.0386 1.0000 0.9780 ± 0.0694 1.0000 1.0000 ± 0.0000 1.0000 1.0000 ± 0.0000 1.0000
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training MLPs. Moreover, and to support this summary,

Friedman statistical test is calculated to check the sig-

nificance of the accuracy results. Friedman test is

accomplished by ranking the different trainers (BBO,

GA, PSO, ACO, ES, PBIL, DE, FireFly, Cuckoo, ABC,

BAT and RBFclassic) based on the average accuracy

values for each dataset using different neurons. Table 19

shows the average ranks for each technique in using

Friedman test for 4, 6, 8, and 10 neurons. The Friedman

test in the Table 19 shows that significant difference

exists between the 12 trainers (lower is better). In terms

of F-test ranking, BBO outperforms other trainers for all

number of neurons that used.

Figure 4 shows the complexity of trained RBF network

and its corresponding MSE on different datasets for each

number of neurons in the hidden layer. As shown in all sub-

figures for all datasets, BBO has the best results, which has

relatively the smallest MSE comparing with all other

Table 9 The average accuracy and standard deviation results of the Diagnosis II dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 1.0000 ± 0.0000 1.0000 0.9829 ± 0.0364 1.0000 0.9951 ± 0.0154 1.0000 0.9927 ± 0.0231 1.0000

GA 0.9976 ± 0.0077 1.0000 1.0000 ± 0.0000 1.0000 1.0000 ± 0.0000 1.0000 1.0000 ± 0.0000 1.0000

PSO 0.8220 ± 0.0948 1.0000 0.8390 ± 0.1302 1.0000 0.8854 ± 0.0830 1.0000 0.8537 ± 0.1222 1.0000

ACO 0.5732 ± 0.1086 0.7073 0.5488 ± 0.1317 0.8537 0.5195 ± 0.0976 0.7317 0.5683 ± 0.2136 0.9268

ES 0.4780 ± 0.1036 0.6098 0.5902 ± 0.1412 0.8049 0.6220 ± 0.2173 1.0000 0.6561 ± 0.1005 0.8049

PBIL 0.8512 ± 0.1779 1.0000 0.8073 ± 0.1169 1.0000 0.7512 ± 0.1957 1.0000 0.8098 ± 0.0967 1.0000

DE 0.6122 ± 0.1303 0.8049 0.6268 ± 0.1965 1.0000 0.6317 ± 0.1652 0.8537 0.6707 ± 0.1157 0.8293

FireFly 0.9707 ± 0.0524 1.0000 0.9585 ± 0.0502 1.0000 0.9512 ± 0.0660 1.0000 0.9512 ± 0.0586 1.0000

Cuckoo 1.0000 ± 0.0000 1.0000 0.9756 ± 0.0325 1.0000 0.9659 ± 0.0611 1.0000 0.9463 ± 0.0648 1.0000

RBFclassic 1.0000 ± 0.0000 1.0000 1.0000 ± 0.0000 1.0000 1.0000 ± 0.0000 1.0000 1.0000 ± 0.0000 1.0000

ABC 0.9537 ± 0.0775 1.0000 0.9293 ± 0.0848 1.0000 0.8951 ± 0.0927 1.0000 0.8756 ± 0.0841 1.0000

BAT 0.9927 ± 0.0165 1.0000 0.9634 ± 0.0773 1.0000 0.9927 ± 0.0231 1.0000 1.0000 ± 0.0000 1.0000

Table 10 The average accuracy and standard deviation results of the Parkinson dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 0.8358 ± 0.0416 0.8657 0.8493 ± 0.0164 0.8657 0.8522 ± 0.0110 0.8657 0.8642 ± 0.0192 0.8955

GA 0.8194 ± 0.0458 0.8955 0.8194 ± 0.0431 0.8657 0.8373 ± 0.0192 0.8657 0.8478 ± 0.0231 0.8806

PSO 0.7716 ± 0.0483 0.8657 0.7806 ± 0.0559 0.8657 0.7746 ± 0.0495 0.8657 0.7478 ± 0.1213 0.8657

ACO 0.6090 ± 0.2162 0.8060 0.6522 ± 0.2121 0.8209 0.5866 ± 0.2497 0.8507 0.5821 ± 0.2338 0.7910

ES 0.5672 ± 0.2055 0.7761 0.5104 ± 0.2386 0.7612 0.5090 ± 0.2293 0.7761 0.5343 ± 0.2351 0.7761

PBIL 0.7776 ± 0.0164 0.8060 0.7716 ± 0.0173 0.8060 0.7612 ± 0.0000 0.7612 0.7612 ± 0.0000 0.7612

DE 0.5478 ± 0.2429 0.7761 0.5552 ± 0.2491 0.7612 0.7403 ± 0.0672 0.7910 0.5463 ± 0.2372 0.7761

FireFly 0.7910 ± 0.0244 0.8358 0.7881 ± 0.0271 0.8209 0.7955 ± 0.0338 0.8507 0.7955 ± 0.0467 0.8806

Cuckoo 0.8239 ± 0.0297 0.8507 0.8134 ± 0.0354 0.8507 0.8030 ± 0.0252 0.8358 0.7896 ± 0.0277 0.8209

RBFclassic 0.7910 ± 0.0000 0.7910 0.8209 ± 0.0000 0.8209 0.8358 ± 0.0000 0.8358 0.8507 ± 0.0000 0.8507

ABC 0.7955 ± 0.0330 0.8358 0.7985 ± 0.0292 0.8358 0.7791 ± 0.0321 0.8507 0.7642 ± 0.0609 0.8358

BAT 0.8254 ± 0.0273 0.8657 0.8463 ± 0.0299 0.8955 0.8149 ± 0.0399 0.8806 0.8343 ± 0.0192 0.8507
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algorithms except the RBF classic. BBO outperforms all

algorithms in terms of complexity, which has the smallest

complexity values. Moreover, the RBFclassic has the

smallest MSE values, but the complexity values are the

largest, which outputs complex structure of the RBF net-

work with very low smoothness. The complexity results

show the merits of the proposed BBO algorithm in

achieving very smooth RBF networks.

Convergence graphs for all algorithms are shown in

the Figs. 5, 6, 7, and 8 using 4, 6, 8, and 10 neurons,

respectively. The convergence curves show the MSE

averages of 10 independent runs over 250 iterations.

All sub-figures show that BBO is the fastest algorithm

in convergence for all datasets. Furthermore, most of

other algorithms like DE, ACO, ES, and PBIL have

some drawbacks such as trapping at local minima with

Table 11 The average accuracy and standard deviation results of the Liver dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 0.6288 ± 0.0298 0.6780 0.6500 ± 0.0256 0.6864 0.6568 ± 0.0266 0.6949 0.6915 ± 0.0436 0.7542

GA 0.6059 ± 0.0358 0.6864 0.6068 ± 0.0260 0.6610 0.6466 ± 0.0277 0.6949 0.6288 ± 0.0379 0.6864

PSO 0.5797 ± 0.0256 0.6271 0.5805 ± 0.0517 0.7034 0.5898 ± 0.0260 0.6271 0.5746 ± 0.0450 0.6356

ACO 0.5136 ± 0.0601 0.5763 0.5068 ± 0.0675 0.5763 0.5203 ± 0.0655 0.5932 0.5220 ± 0.0634 0.5847

ES 0.5508 ± 0.0504 0.5763 0.5051 ± 0.0663 0.5763 0.5339 ± 0.0744 0.5847 0.5339 ± 0.0594 0.6102

PBIL 0.5627 ± 0.0582 0.6356 0.5720 ± 0.0286 0.6271 0.5593 ± 0.0325 0.5932 0.5542 ± 0.0272 0.5847

DE 0.5610 ± 0.0232 0.5932 0.5525 ± 0.0527 0.6186 0.5432 ± 0.0612 0.6102 0.5220 ± 0.0638 0.6356

FireFly 0.6169 ± 0.0236 0.6525 0.6051 ± 0.0398 0.6864 0.5856 ± 0.0220 0.6271 0.6110 ± 0.0431 0.6780

Cuckoo 0.6229 ± 0.0302 0.6695 0.6102 ± 0.0496 0.6864 0.6178 ± 0.0380 0.6780 0.5983 ± 0.0335 0.6356

RBFclassic 0.5763 ± 0.0000 0.5763 0.5932 ± 0.0000 0.5932 0.6017 ± 0.0000 0.6017 0.6102 ± 0.0000 0.6102

ABC 0.5712 ± 0.0223 0.6186 0.5653 ± 0.0400 0.6102 0.5720 ± 0.0358 0.6186 0.5534 ± 0.0383 0.5932

BAT 0.6449 ± 0.0287 0.6949 0.6254 ± 0.0312 0.6695 0.6568 ± 0.0166 0.6864 0.6483 ± 0.0332 0.6949

Table 12 The average accuracy and standard deviation results of the Sonar dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 0.7549 ± 0.0365 0.8028 0.7296 ± 0.0608 0.8169 0.7197 ± 0.0698 0.8028 0.7380 ± 0.0431 0.7887

GA 0.6507 ± 0.1148 0.7746 0.5718 ± 0.1016 0.7183 0.5254 ± 0.1208 0.7746 0.6183 ± 0.1166 0.7324

PSO 0.5352 ± 0.0594 0.6197 0.4944 ± 0.0438 0.5775 0.4887 ± 0.0953 0.6761 0.5000 ± 0.0761 0.6197

ACO 0.5028 ± 0.0567 0.6338 0.5014 ± 0.0451 0.5915 0.5296 ± 0.0853 0.6901 0.5113 ± 0.0358 0.5352

ES 0.4930 ± 0.0398 0.5493 0.5099 ± 0.0759 0.7042 0.5014 ± 0.0498 0.5915 0.4915 ± 0.0490 0.5775

PBIL 0.4648 ± 0.0000 0.4648 0.4648 ± 0.0000 0.4648 0.4648 ± 0.0000 0.4648 0.4648 ± 0.0000 0.4648

DE 0.5085 ± 0.0348 0.5352 0.5239 ± 0.0459 0.5915 0.4944 ± 0.0462 0.5493 0.5000 ± 0.0840 0.6479

FireFly 0.5408 ± 0.0876 0.7042 0.5254 ± 0.0903 0.6338 0.5155 ± 0.1143 0.7183 0.5056 ± 0.0672 0.6338

Cuckoo 0.5423 ± 0.0772 0.7042 0.5423 ± 0.0851 0.6479 0.5549 ± 0.1012 0.7183 0.5268 ± 0.0930 0.6901

RBFclassic 0.8451 ± 0.0000 0.8451 0.7746 ± 0.0000 0.7746 0.7746 ± 0.0000 0.7746 0.8028 ± 0.0000 0.8028

ABC 0.5183 ± 0.0555 0.6197 0.5225 ± 0.0764 0.7183 0.5465 ± 0.0875 0.6761 0.4775 ± 0.0776 0.6197

BAT 0.5577 ± 0.1152 0.6761 0.5634 ± 0.0888 0.6761 0.6014 ± 0.1255 0.7324 0.5901 ± 0.1162 0.8028
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slow convergence rate. Based on the convergence

results, BBO has the superior ability to avoid the local

optima.

In summary, the algorithms employed in this work can

be classified into four groups: random, evolutionary,

swarm-based, and gradient-based.

The results show that evolutionary trainers (including

BBO) outperform the other four groups. This is due to the

superior local optima avoidance of these algorithms. Evo-

lutionary algorithms mostly have cross-over operators that

combine the search agents to create new population(s).

Such operators abruptly change the individuals in the

population, which results in emphasizing exploration of the

search space and local optima avoidance. The gradient-

based technique has the least local optima avoidance

capability, which resulted in showing the worse

Table 13 The average accuracy and standard deviation results of the German dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 0.7091 ± 0.0268 0.7382 0.7094 ± 0.0193 0.7382 0.7138 ± 0.0150 0.7441 0.7191 ± 0.0098 0.7353

GA 0.6756 ± 0.0059 0.6882 0.6809 ± 0.0222 0.7147 0.6779 ± 0.0191 0.7029 0.6794 ± 0.0211 0.7059

PSO 0.5638 ± 0.1095 0.6765 0.5532 ± 0.0947 0.6765 0.5556 ± 0.1034 0.6765 0.5247 ± 0.1112 0.6706

ACO 0.4609 ± 0.1400 0.6706 0.5200 ± 0.1604 0.6706 0.5591 ± 0.1452 0.7000 0.4679 ± 0.1363 0.6588

ES 0.5685 ± 0.1381 0.6706 0.4747 ± 0.1662 0.6706 0.5156 ± 0.1552 0.6706 0.5615 ± 0.1166 0.6706

PBIL 0.6703 ± 0.0009 0.6706 0.6709 ± 0.0009 0.6735 0.6706 ± 0.0014 0.6735 0.6703 ± 0.0009 0.6706

DE 0.4406 ± 0.1436 0.6647 0.4824 ± 0.1635 0.6706 0.5265 ± 0.1435 0.6706 0.4862 ± 0.1395 0.6706

FireFly 0.5703 ± 0.1100 0.6706 0.5691 ± 0.1279 0.6912 0.6012 ± 0.1159 0.6765 0.6129 ± 0.0971 0.6882

Cuckoo 0.6682 ± 0.0048 0.6735 0.6579 ± 0.0168 0.6706 0.6429 ± 0.0435 0.6794 0.6471 ± 0.0392 0.6765

RBFclassic 0.7235 ± 0.0000 0.7235 0.7235 ± 0.0000 0.7235 0.7265 ± 0.0000 0.7265 0.7147 ± 0.0000 0.7147

ABC 0.6712 ± 0.0041 0.6824 0.6615 ± 0.0117 0.6735 0.6571 ± 0.0243 0.6765 0.6550 ± 0.0313 0.6971

BAT 0.6674 ± 0.0170 0.6941 0.6685 ± 0.0086 0.6824 0.6609 ± 0.0414 0.7059 0.6726 ± 0.0113 0.6912

Table 14 The average accuracy and standard deviation results of the Australian dataset using different algorithms

Algorithm The number of neurons of hidden layer

4 6 8 10

AVE ± STD Best AVE ± STD Best AVE ± STD Best AVE ± STD Best

BBO 0.8532 ± 0.0177 0.8894 0.8498 ± 0.0164 0.8638 0.8451 ± 0.0095 0.8638 0.8511 ± 0.0083 0.8638

GA 0.8413 ± 0.0149 0.8596 0.8255 ± 0.0175 0.8426 0.8362 ± 0.0234 0.8681 0.8455 ± 0.0117 0.8638

PSO 0.7157 ± 0.0666 0.8043 0.6630 ± 0.0533 0.7617 0.6209 ± 0.0847 0.7319 0.6272 ± 0.1146 0.7872

ACO 0.5098 ± 0.0998 0.6596 0.5885 ± 0.1160 0.8383 0.4962 ± 0.1538 0.7489 0.5289 ± 0.0935 0.6766

ES 0.5409 ± 0.0903 0.7064 0.5604 ± 0.1344 0.7362 0.5911 ± 0.0804 0.7362 0.5745 ± 0.1425 0.7319

PBIL 0.6885 ± 0.1087 0.8340 0.6949 ± 0.1498 0.8298 0.7085 ± 0.0926 0.7745 0.6009 ± 0.1197 0.7660

DE 0.6064 ± 0.0887 0.7106 0.5221 ± 0.1139 0.6809 0.5740 ± 0.0737 0.7064 0.6038 ± 0.1160 0.7404

FireFly 0.7574 ± 0.0721 0.8255 0.7694 ± 0.0606 0.8170 0.7400 ± 0.0507 0.8128 0.7421 ± 0.0784 0.8468

Cuckoo 0.7843 ± 0.0440 0.8298 0.7945 ± 0.0366 0.8340 0.7872 ± 0.0160 0.8128 0.7851 ± 0.0272 0.8085

RBFclassic 0.8511 ± 0.0000 0.8511 0.8468 ± 0.0000 0.8468 0.8426 ± 0.0000 0.8426 0.8426 ± 0.0000 0.8426

ABC 0.8064 ± 0.0235 0.8340 0.7574 ± 0.0569 0.8426 0.7489 ± 0.0530 0.8340 0.7694 ± 0.0547 0.8426

BAT 0.8281 ± 0.0405 0.8723 0.8340 ± 0.0261 0.8553 0.8362 ± 0.0200 0.8553 0.8255 ± 0.0379 0.8596
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performance on the test cases. The swarm-based algorithms

perform better than the gradient-based algorithm because

of the higher local optima avoidance. The high local

optima avoidance of swarm-based algorithms mostly

originate from the population-based nature of these algo-

rithms. However, such algorithms have less intrinsic

exploration ability compared to evolutionary algorithms

because there are less sudden changes in the search agents.

The results also prove that evolutionary algorithms

employed in this work show a better result accuracy and

faster convergence rate in average. This shows that high

random changes in the search agents of such algorithms do

not negatively impact the result accuracy and convergence

curve. This originates from the fact that evolutionary

algorithms reduce randomness and favor gradual changes

with a mechanism called mutation. The mutation operator

causes small perturbations and consequently local search

around individuals in the population. In other words, the

effects of mutation in the overall population are much less

than cross-over operators. This operator assists evolution-

ary algorithms to improve the accuracy of solutions pro-

portional to the number of iterations. Also, the convergence

rate is accelerated toward the global optimum by the

mutation operator.

Among the swarm-based techniques employed in this

work, BAT algorithm outperforms Cuckoo, Firefly algo-

rithm, PSO, ABC and ACO. BAT algorithm is equipped

with frequency tuning principle which gives solutions that

closed the ideal solutions. Furthermore, Cuckoo algorithm

gives good results and very close to BAT algorithm. The

Table 15 The average sensitivity and specificity results of all datasets using different algorithms with (4 Neurons)

Algorithm BBO GA PSO ACO ES PBIL

Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

Blood 1.0000 0.0267 0.9969 0.0400 0.9995 0.0117 0.8764 0.1400 0.9908 0.0283 0.9887 0.0467

Breast 0.9771 0.9432 0.9771 0.9407 0.9573 0.8753 0.7924 0.4519 0.8408 0.4346 0.9885 0.8198

Diabetes 0.3583 0.8898 0.2115 0.9355 0.2635 0.8892 0.2271 0.8169 0.2719 0.7572 0.1677 0.9566

Hepatitis 0.5500 0.9047 0.5300 0.9186 0.2700 0.9674 0.2900 0.6070 0.2700 0.8581 0.2700 0.9581

Vertebral 0.9027 0.4258 0.8933 0.4387 0.9120 0.3258 0.7587 0.2806 0.8893 0.3129 0.9133 0.3097

Diagnosis I 1.0000 1.0000 1.0000 0.9909 0.8684 0.8591 0.5526 0.5091 0.8632 0.2318 0.9684 0.6818

Diagnosis II 1.0000 1.0000 1.0000 0.9947 0.9136 0.7158 0.6273 0.5105 0.6000 0.3368 0.9091 0.7842

Parkinsons 0.9961 0.3250 0.9941 0.2625 0.9451 0.2188 0.6667 0.4250 0.5843 0.5125 0.9882 0.1063

Liver 0.1900 0.9515 0.0980 0.9794 0.1900 0.8662 0.3740 0.6162 0.1820 0.8221 0.2880 0.7647

Sonar 0.6447 0.8818 0.5053 0.8182 0.5895 0.4727 0.4342 0.5818 0.3184 0.6939 0.0000 1.0000

German 0.9513 0.2161 0.9820 0.0518 0.6811 0.3250 0.3833 0.6188 0.6925 0.3161 0.9996 0.0000

Australian 0.8426 0.8612 0.8485 0.8358 0.6614 0.7567 0.3535 0.6276 0.3901 0.6545 0.3317 0.9575

Algorithm DE FireFly Cuckoo RBFclassic ABC BAT

Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

Blood 0.9995 0.0050 0.9995 0.0333 1.0000 0.0300 0.9897 0.0833 0.9938 0.0167 0.9964 0.0467

Breast 0.9191 0.5383 0.9605 0.9494 0.9745 0.9432 0.9809 0.9136 0.9643 0.9556 0.9752 0.9160

Diabetes 0.0531 0.9759 0.2823 0.9054 0.3271 0.8867 0.5625 0.8434 0.3729 0.8867 0.4094 0.8735

Hepatitis 0.0600 0.9721 0.5300 0.9302 0.5000 0.9465 0.7000 0.8605 0.4100 0.9326 0.6000 0.9093

Vertebral 0.9387 0.1032 0.8587 0.4677 0.8920 0.4258 0.8667 0.7097 0.8427 0.4258 0.8720 0.4871

Diagnosis I 0.6842 0.5909 1.0000 0.9636 1.0000 0.9455 1.0000 0.7727 0.9526 0.9000 1.0000 0.9773

Diagnosis II 0.6273 0.5947 1.0000 0.9368 1.0000 1.0000 1.0000 1.0000 0.9909 0.9105 1.0000 0.9842

Parkinsons 0.5843 0.4313 0.9824 0.1812 0.9804 0.3250 0.9412 0.3125 0.9667 0.2500 0.9863 0.3125

Liver 0.1540 0.8603 0.2260 0.9044 0.2160 0.9221 0.5600 0.5882 0.2260 0.8250 0.3140 0.8882

Sonar 0.6553 0.3394 0.6237 0.4455 0.3105 0.8091 0.7895 0.9091 0.3816 0.6758 0.4158 0.7212

German 0.3224 0.6813 0.6618 0.3839 0.9864 0.0205 0.8947 0.3750 0.9982 0.0054 0.9807 0.0295

Australian 0.4208 0.7463 0.6881 0.8097 0.7396 0.8179 0.9010 0.8134 0.8069 0.8060 0.8069 0.8440
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Cuckoo algorithm has been equipped with a lévy flight

which abruptly changes the search agents of this algorithm.

Similarly to evolutionary algorithms, this causes extensive

exploration of the search space and local optima avoidance

significantly. However, other swarm-based algorithm have

less operators to promote sudden changes. The ACO

algorithm utilizes a pheromone matrix which mostly boosts

exploitation and makes this algorithm more suitable for

combinatorial problems. The performance of the PSO and

ABC algorithms also largely depends on the distribution of

initial population. These algorithms can easily be trapped

in local solution if there is no good distribution in the initial

population. The Firefly algorithm also does not random

walk or lévy flight, which leads this algorithm to have

tendency toward local solutions and less able to avoid

them.

In contrary, most of the evolutionary algorithms per-

formed well on the test cases and suppressed swarm-based

techniques. Among them, ES and DE showed the poorest

performance. In ES, the selection of individual is deter-

ministic which reduces randomness level and exploration

of this algorithm. The main operators in this algorithm are

mutations which favor exploitation and convergence.

These are the main facts that contributed to the failure of

this algorithm in solving the datasets. The same statements

can be made for DE, but this algorithms has stochastic

selection and more crossover operators, which assist it for

showing a better performance compared to ES. The

Table 16 The average sensitivity and specificity results of all datasets using different algorithms with (6 Neurons)

Algorithm BBO GA PSO ACO ES PBIL

Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

Blood 0.9969 0.0450 1.0000 0.0283 0.9969 0.0283 0.8574 0.1583 0.9626 0.0800 0.9872 0.0483

Breast 0.9796 0.9691 0.9822 0.9284 0.9662 0.8580 0.6904 0.5136 0.6987 0.3753 0.9879 0.7605

Diabetes 0.3719 0.8892 0.3187 0.8988 0.2083 0.9283 0.2729 0.7524 0.1427 0.9030 0.1552 0.9566

Hepatitis 0.5900 0.9070 0.4900 0.9116 0.1300 0.9860 0.4900 0.7047 0.2500 0.6605 0.1600 0.9814

Vertebral 0.8787 0.5097 0.8880 0.4226 0.8893 0.2774 0.8253 0.2097 0.7413 0.4968 0.9253 0.2935

Diagnosis I 1.0000 1.0000 1.0000 1.0000 0.9053 0.7409 0.7263 0.4409 0.6211 0.5136 0.9789 0.6864

Diagnosis II 1.0000 0.9632 1.0000 1.0000 0.9182 0.7474 0.6182 0.4684 0.7136 0.4474 0.8727 0.7316

Parkinsons 0.9941 0.3875 1.0000 0.2437 0.9490 0.2437 0.7745 0.2625 0.5569 0.3625 0.9980 0.0500

Liver 0.3040 0.9044 0.1460 0.9456 0.3140 0.7765 0.4800 0.5265 0.3900 0.5897 0.2220 0.8294

Sonar 0.6579 0.8121 0.3447 0.8333 0.3289 0.6848 0.3974 0.6212 0.3605 0.6818 0.0000 1.0000

German 0.9500 0.2196 0.9311 0.1714 0.6478 0.3607 0.5561 0.4464 0.4360 0.5536 0.9996 0.0018

Australian 0.8505 0.8493 0.8178 0.8313 0.4941 0.7903 0.4238 0.7127 0.3149 0.7455 0.6970 0.6933

Algorithm DE FireFly Cuckoo RBFclassic ABC BAT

Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

Blood 0.9908 0.0200 0.9985 0.0250 0.9933 0.0450 0.9795 0.0833 1.0000 0.0050 0.9985 0.0383

Breast 0.7987 0.4877 0.9656 0.9383 0.9707 0.9296 0.9809 0.9259 0.9484 0.9667 0.9777 0.9506

Diabetes 0.2667 0.8205 0.3469 0.8934 0.3052 0.9066 0.5729 0.8795 0.3271 0.9139 0.4260 0.8771

Hepatitis 0.2300 0.8140 0.4500 0.9209 0.5500 0.9070 0.7000 0.8605 0.3900 0.9395 0.6700 0.8860

Vertebral 0.9267 0.1581 0.8760 0.4516 0.9187 0.3419 0.8933 0.6774 0.8720 0.3742 0.8720 0.5000

Diagnosis I 0.8579 0.5682 0.9789 0.9545 1.0000 0.9636 1.0000 0.7727 0.9526 0.6045 0.9947 0.9636

Diagnosis II 0.8273 0.3947 1.0000 0.9105 1.0000 0.9474 1.0000 1.0000 0.9955 0.8526 1.0000 0.9211

Parkinsons 0.5882 0.4500 0.9706 0.2062 0.9882 0.2562 1.0000 0.2500 0.9569 0.2938 0.9922 0.3812

Liver 0.2160 0.8000 0.4400 0.7265 0.2420 0.8809 0.4600 0.6912 0.1440 0.8750 0.2760 0.8824

Sonar 0.6079 0.4273 0.6000 0.4394 0.3447 0.7697 0.7368 0.8182 0.4395 0.6182 0.4026 0.7485

German 0.4526 0.5429 0.6684 0.3670 0.9522 0.0589 0.8904 0.3839 0.9596 0.0545 0.9689 0.0571

Australian 0.4228 0.5970 0.7554 0.7799 0.7950 0.7940 0.8812 0.8209 0.7604 0.7552 0.8495 0.8224
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performance of the PBIL is better than ES and DE but

worse than GA and BBO. This is because PBIL performs

crossover on the entire population combined in a vector,

which cause better exploration and local optima avoidance

compared to ES and DE. However, each individual faces

less sudden random changes in comparison with GA and

BBO.

BBO outperformed GA because the random changes in

the individuals are much higher in this algorithm. The GA

algorithm assigns a similar reproduction rate to all the

individuals in the population, which causes the same cross-

over rate over the course of generations. In contrary, the

BBO algorithm assigns each individual a unique emigra-

tion and immigration rates. This results in different

reproduction rates for each individual and consequently

promotion of the exploration and local optima avoidance.

Needless to day, this is the main reason of the significant

superiority of the BBO-based trainer compared to all

trainers employed on all datasets in this work.

The results and discussion of this section show that the

BBO algorithm is able to effectively alleviate the draw-

backs of the current algorithms when training RBF net-

works in terms of local optima entrapment, result accuracy,

and convergence rate.

5.4 Comparisons with traditional classifiers

in the literature

In this section, we compare the results of the optimized

RFB network using BBO with other five popular classifiers

Table 17 The average sensitivity and specificity results of all datasets using different algorithms with (8 Neurons)

Algorithm BBO GA PSO ACO ES PBIL

Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

Blood 0.9979 0.0483 0.9969 0.0417 0.9995 0.0083 0.9185 0.1133 0.9672 0.0250 0.9851 0.0350

Breast 0.9790 0.9519 0.9720 0.9630 0.9656 0.8654 0.7261 0.3593 0.7191 0.5469 0.9943 0.6802

Diabetes 0.4354 0.8524 0.3063 0.9145 0.3469 0.8651 0.3052 0.7211 0.1927 0.7849 0.1833 0.9398

Hepatitis 0.6300 0.8744 0.5600 0.9116 0.2100 0.9767 0.4300 0.7116 0.2400 0.7930 0.3300 0.9488

Vertebral 0.8973 0.5097 0.8920 0.4484 0.8773 0.3581 0.7453 0.3226 0.8000 0.2806 0.9000 0.2548

Diagnosis I 1.0000 1.0000 1.0000 1.0000 0.9474 0.6000 0.5000 0.5455 0.5947 0.6091 0.8158 0.6136

Diagnosis II 1.0000 0.9895 1.0000 1.0000 0.9591 0.8000 0.5545 0.4789 0.7773 0.4421 0.8364 0.6526

Parkinsons 0.9922 0.4063 0.9922 0.3438 0.9255 0.2938 0.6549 0.3688 0.5373 0.4188 1.0000 0.0000

Liver 0.3500 0.8824 0.2700 0.9235 0.1880 0.8853 0.3360 0.6559 0.3280 0.6853 0.1580 0.8544

Sonar 0.6816 0.7636 0.1237 0.9879 0.3763 0.6182 0.5947 0.4545 0.3684 0.6545 0.0000 1.0000

German 0.9518 0.2295 0.9662 0.0911 0.5877 0.4902 0.6596 0.3545 0.5592 0.4268 0.9996 0.0009

Australian 0.8634 0.8313 0.8218 0.8470 0.5356 0.6851 0.6307 0.3948 0.5673 0.6090 0.6099 0.7828

Algorithm DE FireFly Cuckoo RBFclassic ABC BAT

Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

Blood 0.9754 0.0400 0.9990 0.0200 0.9985 0.0333 0.9744 0.1000 1.0000 0.0067 0.9974 0.0383

Breast 0.9191 0.7531 0.9732 0.8938 0.9688 0.9556 0.9745 0.9136 0.9675 0.8420 0.9822 0.9593

Diabetes 0.1438 0.9054 0.3104 0.9036 0.3740 0.8813 0.5833 0.8855 0.3542 0.8976 0.4031 0.8825

Hepatitis 0.2300 0.7791 0.3800 0.9395 0.3900 0.9535 0.7000 0.8372 0.3100 0.9535 0.6100 0.8837

Vertebral 0.8760 0.1710 0.8667 0.4742 0.8827 0.4161 0.8933 0.6774 0.8293 0.4032 0.8813 0.4742

Diagnosis I 0.6053 0.5864 0.9579 0.9364 1.0000 0.9773 1.0000 1.0000 0.8895 0.7136 1.0000 1.0000

Diagnosis II 0.6591 0.6000 0.9955 0.9000 1.0000 0.9263 1.0000 1.0000 0.9318 0.8526 1.0000 0.9842

Parkinsons 0.8725 0.3187 0.9922 0.1688 0.9549 0.3187 0.9412 0.5000 0.9118 0.3563 0.9902 0.2562

Liver 0.2020 0.7941 0.3020 0.7941 0.3420 0.8206 0.4600 0.7059 0.1820 0.8588 0.3800 0.8603

Sonar 0.6132 0.3576 0.5789 0.4424 0.3947 0.7394 0.7632 0.7879 0.4395 0.6697 0.4684 0.7545

German 0.5662 0.4455 0.7925 0.2116 0.8939 0.1321 0.8904 0.3929 0.9513 0.0580 0.9351 0.1027

Australian 0.5356 0.6030 0.6287 0.8239 0.7802 0.7925 0.8713 0.8209 0.6733 0.8060 0.8545 0.8224
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from the literature: Naive Bayes (NB), decision trees

algorithm C4.5 (J48), Random Forests (RF), Support

Vector Machines (SVM), and the Zero-R Rule Classifier

(ZeroR) which is the base classifier. We used the Java-

based open source data mining framework Weka as an

implementation [20].

Table 20 shows the average accuracy results of NB, J48,

RF, SVM, Zero-R, and BBO. It can be seen that optimized

RFB network achieves very competitive results and per-

forms reasonably. The BBO results for Breast, Liver and

Australian datasets are higher and significantly better than

all other classifiers. Moreover, the results of the BBO for

Parkinson, and Blood datasets are very close to the other

classifiers. Examining these results, we can notice that the

BBO-RBF classifier has achieved better results than the

base classifier in all datasets and better than NB and J48 in

7 and 6 datasets, respectively. Moreover, comparing BBO-

Table 18 The average sensitivity and specificity results of all datasets using different algorithms with (10 Neurons)

Algorithm BBO GA PSO ACO ES PBIL

Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

Blood 0.9974 0.0450 0.9995 0.0317 0.9985 0.0150 0.9959 0.0100 0.9513 0.0567 0.9692 0.1083

Breast 0.9809 0.9741 0.9822 0.9358 0.9554 0.8272 0.7076 0.6420 0.8561 0.2333 0.8898 0.7198

Diabetes 0.4625 0.8627 0.3469 0.9042 0.2375 0.8994 0.2104 0.7729 0.1646 0.8723 0.1812 0.9054

Hepatitis 0.6300 0.8767 0.6300 0.8977 0.3300 0.9395 0.4100 0.5860 0.2100 0.8209 0.1400 0.9767

Vertebral 0.8880 0.5161 0.8933 0.4742 0.8907 0.3355 0.8000 0.1484 0.8347 0.2419 0.8413 0.3581

Diagnosis I 1.0000 0.9591 1.0000 0.9455 0.9000 0.7955 0.5526 0.4909 0.5474 0.5773 0.9789 0.6455

Diagnosis II 1.0000 0.9842 1.0000 1.0000 0.9682 0.7211 0.6727 0.4474 0.6500 0.6632 0.9818 0.6105

Parkinsons 0.9961 0.4437 0.9902 0.3937 0.9098 0.2313 0.6392 0.4000 0.5627 0.4437 1.0000 0.0000

Liver 0.4320 0.8824 0.2420 0.9132 0.1980 0.8515 0.3800 0.6265 0.2720 0.7265 0.2540 0.7750

Sonar 0.6395 0.8515 0.4316 0.8333 0.6526 0.3242 0.6658 0.3333 0.3474 0.6576 0.0000 1.0000

German 0.9268 0.2964 0.9263 0.1768 0.5851 0.4018 0.3789 0.6491 0.6912 0.2973 0.9996 0.0000

Australian 0.8881 0.8231 0.8218 0.8634 0.6980 0.5739 0.6168 0.4627 0.3238 0.7634 0.5257 0.6575

Algorithm DE FireFly Cuckoo RBFclassic ABC BAT

Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

Blood 1.0000 0.0067 0.9944 0.0383 0.9964 0.0283 0.9590 0.3333 0.9964 0.0183 0.9974 0.0550

Breast 0.9497 0.6704 0.9752 0.9481 0.9764 0.9062 0.9554 0.9259 0.9414 0.9111 0.9732 0.9617

Diabetes 0.1281 0.8928 0.3083 0.8892 0.3042 0.8771 0.5417 0.8675 0.3292 0.8801 0.4229 0.8741

Hepatitis 0.2600 0.9116 0.3300 0.9512 0.4300 0.9163 0.6000 0.8140 0.3000 0.9628 0.6100 0.8767

Vertebral 0.8213 0.2774 0.9013 0.4097 0.8987 0.4129 0.8933 0.6774 0.8853 0.2581 0.8760 0.5419

Diagnosis I 0.6263 0.6364 0.9947 0.9455 1.0000 0.9409 1.0000 0.9545 0.8842 0.8545 1.0000 1.0000

Diagnosis II 0.8000 0.5211 1.0000 0.8947 0.9682 0.9211 1.0000 1.0000 0.9773 0.7579 1.0000 1.0000

Parkinsons 0.5490 0.5375 0.9510 0.3000 0.9941 0.1375 0.9608 0.5000 0.9373 0.2125 0.9843 0.3563

Liver 0.2740 0.7044 0.2800 0.8544 0.2540 0.8515 0.4600 0.7206 0.1900 0.8206 0.3860 0.8412

Sonar 0.5632 0.4273 0.4711 0.5455 0.4737 0.5879 0.7632 0.8485 0.3368 0.6394 0.4184 0.7879

German 0.4899 0.4786 0.8110 0.2098 0.9184 0.0946 0.8684 0.4018 0.9259 0.1036 0.9772 0.0527

Australian 0.5208 0.6664 0.7931 0.7037 0.7267 0.8291 0.8515 0.8358 0.7396 0.7918 0.8525 0.8052

Table 19 The Average ranking results obtained by each algorithm in

the Friedman test using all datasets

Algorithm The number of neurons of hidden layer

4 6 8 10

Ranking

BBO 2.4167 1.6250 2.4167 2.0000

GA 3.7083 3.6250 3.2500 3.0000

PSO 7.9583 8.3333 7.9167 7.9167

ACO 11.3333 11.0000 11.0833 11.1250

ES 10.8750 11.2500 10.8333 10.8333

PBIL 8.3750 8.1667 8.3758 8.7500

DE 10.2500 10.1667 10.3333 9.9583

FireFly 5.3750 5.7500 6.2083 5.3750

Cuckoo 4.0417 4.7083 4.5833 5.9167

RBFclassic 3.5417 3.3750 3.1250 3.0833

ABC 6.4583 7.0000 6.6667 7.0417

BAT 3.6667 3.0000 3.2083 3.0000
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RBF network with very powerful classifiers like RF and

SVM, we can see that it stays competitive with better

accuracy results in 5 datasets.

As a summary, the obtained results by the proposed

BBO support the merits of the proposed BBO algorithm in

training RBF networks and solving data classification

problems.

6 Conclusion

This paper proposed the use of the well-regarded BBO

algorithm for training RBF networks to alleviate the

drawbacks of conventional and new training algorithms:

local optima entrapment, low result accuracy, and slow

convergence speed. After proposing the method of training
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Fig. 4 The MSE versus complexity of the classification of different

datasets (with 4, 6, 8, and 10 Neurons). Results for a Blood, b Breast,

c Diabetes, d Hepatitis, e Vertebral, f Diagnosis I, g Diagnosis II,

h Parkinson, i Liver, j Sonar, k German, and l Australian datasets,

respectively
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using BBO, it was employed to solve 12 well-known

datasets and compared to 11 training methods in the liter-

ature including gradient-based, evolutionary, and swarm-

based algorithms. The algorithms were compared by sta-

tistical test on RBF networks with different number of

neurons to confidently confirm the performance of the

proposed trainer. The results evidently demonstrated that

the BBO algorithm is able to outperform the current

techniques on the majority of datasets substantially.

According to the results, finding, analysis, and discussion

of this paper, the following conclusions can be drawn:

1. BBO shows a fast convergence speed and high result

accuracy.
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Fig. 5 MSE Convergence curves with (4 Neurons). Convergence curves for a Blood, b Breast, c Diabetes, d Hepatitis, e Vertebral, f Diagnosis I,
g Diagnosis II, h Parkinson, i Liver, j Sonar, k German, and l Australian datasets, respectively
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2. BBO can avoid local optima in the search space of the

training RBF networks problem.

3. BBO is able to train RBF networks effectively to

classify different datasets with a diverse number of

features and training samples.

4. BBO is able to train RBF networks with different

number of neurons.

For future works, this research is planned to be

extended in two main lines. First, the proposed BBO-

RBF network could be investigated for other data mining
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Fig. 6 MSE Convergence curves with (6 Neurons). Convergence curves for a Blood, b Breast, c Diabetes, d Hepatitis, e Vertebral, f Diagnosis I,
g Diagnosis II, h Parkinson, i Liver, j Sonar, k German, and l Australian datasets, respectively

Neural Comput & Applic (2018) 29:529–553 549

123



 0

 0.15

 0.3

 0.45

 0.6

 0.75

 0.9

 1.05

 0  50  100  150  200  250

M
S

E

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0  50  100  150  200  250

M
S

E

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0  50  100  150  200  250

M
S

E

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0  50  100  150  200  250

M
S

E

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0  50  100  150  200  250

M
S

E

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0  50  100  150  200  250

M
S

E

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0  50  100  150  200  250

M
S

E

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0.2

 1

 5

 25

 0  50  100  150  200  250

Lo
g(

M
S

E
)

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250

M
S

E

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0.2

 1

 5

 25

 125

 625

 3125

 0  50  100  150  200  250

Lo
g(

M
S

E
)

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0.2

 1

 5

 25

 125

 0  50  100  150  200  250

Lo
g(

M
S

E
)

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

 0.8

 1.6

 2.4

 3.2

 4

 4.8

 5.6

 0  50  100  150  200  250

Lo
g(

M
S

E
)

#Iterations

BBO
GA

PSO
ACO

ES
PBIL

DE
FireFly

Cuckoo
ABC
BAT

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7 MSE Convergence curves with (8 Neurons). Convergence curves for a Blood, b Breast, c Diabetes, d Hepatitis, e Vertebral, f Diagnosis I,
g Diagnosis II, h Parkinson, i Liver, j Sonar, k German, and l Australian datasets, respectively
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Fig. 8 MSE convergence curves with (10 Neurons). Convergence curves for a Blood, b Breast, c Diabetes, d Hepatitis, e Vertebral, f Diagnosis
I, g Diagnosis II, h Parkinson, i Liver, j Sonar, k German, and l Australian datasets, respectively
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tasks like regression and time series prediction. Second,

it is planned to study the efficiency of optimizing the

structure of the RBF network along with its widths,

centers and weights, simultaneously. As it is expected

that the complexity of the search space will increase, the

evaluation will consider complexity and executing time

in addition to the prediction accuracy of the optimized

models.
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