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Abstract In this paper, the existence and the exponential
stability of piecewise differentiable pseudo-almost periodic
solutions for a class of impulsive neutral high-order Hop-
field neural networks with mixed time-varying delays and
leakage delays are established by employing the fixed point
theorem, Lyapunov functional method and differential
inequality. Numerical example with graphical illustration
is given to illuminate our main results.
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1 Introduction

In this paper, we consider piecewise differentiable pseudo-
almost periodic solutions of a class of impulsive neutral
delay generalized high-order Hopfield neural networks
with mixed delays. The mixed delays include leakage
delay, time-varying delays and continuously distributed
delays. To investigate the existence of solutions of the
above-mentioned problem, we consider the following:
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in which n corresponds to the number of units in a neural
network, x;(f) corresponds to the state vector of the ith unit
at the time 7, a;(¢) > 0 represents the rate with which the ith
unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs at
the time #,b;(.),c;i(.) and oy(.), B;(.) are, respectively,
the first-order connection weights and the second-
order connection weights of the neural network,
0<p(.)<p™,0<74(.),0;(.),v;(.) <t correspond to the
transmission delays, J;(¢) denote the external inputs at time
t, and f; is the activation function of signal transmission.
The sequence {f#;} has no finite accumulation point and
I : R" — R.

As an important research field of dynamic systems, it is
well known that high-order neural networks received much
attention and have been applied in a wide range of practical
fields such as signal processing, pattern recognition, asso-
ciative memories, optimization problems, image process-
ing, associative memories, speed detection of moving
objects, optimization problems and many other fields
[1-9, 13, 15, 37, 38]. This is due to the fact that high-order
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neural networks have stronger approximation property,
faster convergence rate, greater storage capacity, and
higher fault tolerance than lower-order neural networks.

In addition, from the real-world application angle, time
delay is inevitably encountered in the implementation of
networks [1, 5, 10-14, 19-25]. According to the way it
occurs, time delay can be classified as two types: discrete
and distributed. Time delays in the neural networks are
often one of the main sources to cause poor performance,
make the dynamic behaviors become more complex, may
destabilize the stable equilibria and admit oscillations,
bifurcation and chaos. Therefore, it is of prime importance
to consider the delay effects on the stability of neural net-
works. In particular, the time delay in the negative feedback
terms which is known as leakage has a tendency to desta-
bilize the system [26-29] and has great impact on the
dynamical behavior of neural networks. This is to say, it is
necessary to consider the effect of leakage delays when
studying the stability of state estimation of neural networks.

Recently, another type of time delays, namely neutral-
type time delays, has drawn much research attention
[18, 27, 41]. Many practical delay systems can be modeled
as differential systems of neutral type, whose differential
expression includes the derivative term of the past state,
such as partial element equivalent circuits and transmission
lines in electrical engineering, population dynamics and
controlled constrained manipulators in mechanical engi-
neering [27]. Moreover, it has been shown that the existing
neural network models in many cases cannot characterize
the properties of a neural reaction process precisely due to
the complicated dynamic properties of the neural cells in
the real world, and it is natural and necessary that systems
will contain some information about the derivative of the
past state to further describe and model the dynamics for
such complex neural reactions [41].

However, it is well known that the dynamics of evolving
processes is usually subjected to suddenly changes such as
shocks, harvesting and natural disasters [16—18, 42]. Often
these short-term perturbations are treated as having acted
instantaneously or in the form of impulses. The theory of
impulsive differential equations represents a more natural
framework for mathematical modeling of many real-world
phenomena, such as population dynamic system and the
neural networks. High-order recurrent neural networks are
often subject to impulsive perturbations that in turn affect
dynamical behaviors of the systems [6].

Also, it is well known that studies on neuron dynamic
systems not only involve a discussion of stability proper-
ties, but also involve many dynamic behaviors such as
periodic oscillatory behavior, almost periodic oscillatory
properties, pseudo-almost periodic oscillatory properties,
chaos and bifurcation [30-36, 44]. In applications, the
assumption of pseudo-almost periodicity, which was
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introduced by Zhang [30, 31], is more realistic and more
important than that of periodicity and is a natural and good
generalization of the classical almost periodic functions in
the sense of Bohr. Liu and Zhang [35] introduced the
concept of piecewise pseudo-almost periodic functions and
gave some properties including the composition theorem.

To the best of our knowledge, there are no published
papers considering the piecewise differentiable pseudo-al-
most periodic solutions for impulsive neutral high-order
Hopfield neural networks with time-varying delays in the
leakage terms. In other words, we have never studied the
existence and the exponential stability of piecewise dif-
ferentiable pseudo-almost periodic solutions for impulsive
neutral high-order Hopfield neural networks with time-
varying delays in the leakage terms.

The main aim of this article is to establish some suffi-
cient conditions for the existence, the uniqueness and the
exponential stability of piecewise differentiable pseudo-
almost periodic solutions of Eq. (1).

Throughout this paper, for i,j,/ =1,2,...,n, it will be
assumed that p(.),7;(.),04(.),v;(.) are almost periodic
functions, such that 1—p(r) >0, 1—1;(t) >0, 1—
d,’j([) >0, 1— VU([) >0 for all t € R,b,‘j,Cij, %ijl, ﬁ Ji:
R — R are pseudo-almost periodic functions, and let the

ijl»

positive constant a;., a;", bjj, ¢ij, %, B and J; such that

a;, = inf ai(1), a = fg[g“i(l%
by = sup | by(t) |,c; = sup | c(1) |
teR teR

%y =sup | (1) |, By = sup | By (1) |, Ji = sup [ Ji(r) | .
teR teR

teR

We also assume that the following conditions (H1)—(HS5)
hold.

(H1)  For each j = {1,2,...,n}, there exist nonnegative

constants Lf and M{ such that

£0) =0, | fi(w) —fi) | <L lu—v],
and | fi(u) | ng, forallu,v € R.

(H2) For i,j,le{l,2,...,n}, the delay kernels,
dij, hiji, kyjp < [0, 00) — R are continuous, and there
exist nonnegative constants d;,h%k;l,nd,nh,nk

such that
| dy(u) | <dge™™", | hy(u) | <hge ™",
| k,ﬂ(u) | Skij‘fle*nku.

(H3) For all 1 <i<n the functions #—a;(t) are almost

periodic with 0 <a;, = in[g(ai(t))
te
(H4) I € PAP(Z,R") and there exists a constant L; such

that



Neural Comput & Applic (2018) 29:477-495

479
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and ¢ such that
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n_ n d+
G = max maxq qai'lalp" 3 byli+ 3 ey ML
Sis J=1 =1 Na
J=1 =1
@\ v v N~
ul ki, s g aTLI
+zzﬂ,ﬂ K ML <
j=1 I=1

Y a (M) + ML)
J=1 1=1
L
l—ea [’
Jj=1
Zc,j—Lf-i—ZZocU/ (LiM] + ML)
Throughout this paper, we will first recall some basic
definitions and lemmas which are used in what follows.

n
ai+p+ + ZEUL;{

J=1

11 ll
+ZZ/3171 yt —yt L/M/JerLfﬂ
j=1 I=1

e N, Z and R stand for the set of natural numbers, integer
numbers and real numbers, respectively.

e C(R,R"): the set of continuous functions from R to R".

e BC(R,R"): the set of bounded continued functions
from R to R". Note that (BC(R,R"),| . |lw) is a
Banach space where || . || denotes the sup norm

1/ o= max sup [ £i(r) |

e Let T be the set consisting of all real sequences {#;},.,
such that o = inf;cz(¢;11 — #;) > 0. It is immediate that

Assume that there exist nonnegative constants L, p

this condition implies that lim; .., # = +oo and
lim;_,_, t; = —oc.

e PC(R,R"): the space formed by all piecewise contin-
uous functions f : R — R” such that f{.) is continuous
at 1 for any ¢t & {t;},c5.f(t),f(t;7) exists and f(t;) =
f(t) for all i € Z.

° PC([_T7O]7RH) = {f [_T7O} - Rn/f(t_) = f(t), for
t€[—1,0],f(r") existson Rand f(+7) = f(¢) for allbut
at most afinite number of points on [—7,0].},

o PCY([-7,0],R") = {f:[-7,0] — R"/f'(") and f'("))
exist,f'(t) =f"(+7) fort € [—7,0],f'(+7) =f"(r) for all
but at most a finite number of points on [—7,0].},

o PZRY={x:Z—

R" ) x | = sup,ez || x(n) || <oo}.

Definition 1 [36]. A function f € C(R,R") is called
(Bohr) almost periodic if for each ¢ > 0 there exists
L(g) > 0 such that every interval of length L(¢) > 0 con-
tains a number t with the property that || f(z + ) — f(¢) ||oo
<g, for each t € R.

The number 7 above is called an e-translation number of
f, and the collection of all such functions will be denoted as
AP(R,R").

Definition 2 [36]. A sequence {x,} is called almost
periodic if for any ¢ > 0, there exists a relatively dense set
of its e-periods, i.e., there exists a natural number [ = [(¢),
such that for k € Z, there is at least one number p in
[k, k + 1], for which inequality || x,;+, — X, || <¢ holds for
all n € N. Denote by AP(Z, R"), the set of such sequences.

k) [|=0 }

1. A sequence vanishing at infinity is a PAPy(Z,R)

Define

hm —Z [ x(

PAPY(Z,R"):= {xe I°(Z,R"):
kffn

Remark 1 Notice that

sequence.
2. The sequence (x(n)),., defined by
1, n=2k
s = { k
0, n#2

is an example of a PAPy(Z,R) sequence which not
vanishing at infinity.
3. For k € N the sequence (x(n)),., defined by

o= {o 1

is an example of an unbounded PAPy(Z,R) sequence.

Definition 3 [36]. A sequence {x,},., € I*(Z,R") is

called pseudo-almost periodic if x, :x}l +xﬁ, where
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x! € AP(Z,R"),x2 € PAPy(Z,R"). Denote by PAP(Z,R")
the set of such sequences.

For {t;},., € T, {t/} is defined by

ne

{t[j = liyj — ti}a i,j € Z.

It is easy to verify that the numbers t,-j satisfy

J J _ 4k k ,J k _ -k
Hyp—tl=t,—t.0 -t =13,

Definition 4 [34]. A function f € PC(R, R") is said to be
piecewise almost periodic if the following conditions are
fulfilled:

fori,j k € Z.

1. {d= tiyj — ti},1,j € Z are equipotentially almost peri-
odic, that is, for any ¢ > 0, there exists a relatively
dense set in R of ¢-almost periods common for all of
the sequences {t/}.

2. For any ¢ > 0, there exists a positive number é = J(¢)
such that if the points ¢ and ¢’ belong to the same
interval of continuity of f and |# —¢" | <9, then
1) — £y | <e.

3. For any ¢ > 0, there exists a relatively dense set Q, in
R such that if 7 € Q,, then

[f(t+7) =f(0) || <e

for all teR
|t—1t| >¢,i€Z.

which  satisfy  condition

We denote by APr(R,R") the space of all piecewise
almost periodic functions. Obviously, AP7r(R,R")
endowed with the supremum norm is a Banach space.
Throughout the rest of this paper, we always assume that
{t/} are equipotentially almost periodic. Let UPC(R, R")
be the space of all functions f € PC(R,R") such that
f satisfies the condition (2) in Definition 4.

Define

1 r
Pap(m. ) ~{ r e P m), tim 2 [ 100 1-0}:

Definition 5 [36]. A function f € PC(R, R") is said to be
piecewise pseudo-almost periodic if it can be decomposed
f=g+h, where g € AP7(R,R") and h € PAP}(R,R").
Denote by PAP7(R,R") the set of all such functions.
PAPr(R,R") is a Banach space when endowed with the
supremum norm.

Remark 2 The functions g and A in Definition 5 are,
respectively, called the almost periodic component and the
ergodic perturbation of the pseudo-almost periodic func-
tion f. The decomposition given in Definition 5 is unique.
Further, (PAP7(R,R"),|| . |l~) is a Banach space which
contains strictly the set of almost periodic functions. For
instance, the function

@ Springer

1
sin®(v/31) + cos?(nt) T t# t,kez,
ft) = 1 /i 1
i S =t,ke”Z
4sm( 3n) + T+ t=t,kelL,

is a piecewise pseudo-almost periodic function, where
1
e=k+| sink — sin v2k | .

Hence, it is easy to see that f{f) is more general than our
traditional piecewise almost periodic functions since the
ergodic perturbations are introduced.

Definition 6 [40]. Suppose that both functions f and its
derivative f’' are in PAP(R,R). That is, f=g+nh
and f'=g +#K, where g g €AP(R,R) and
h,h € PAPy(R,R). Then the functions g and % are con-
tinuous differentiable.

Remark 3 Let E={f|f,f € PAP(R,R")} equipped
with the induced norm defined by

1 lle= max{[[ f lloc, [l f" lloc}}-

Follows from [40] that (PAP(R,R"),| . ||g) is a Banach
space.

The initial conditions associated with (1) are of the form
xi(s) = @;(s), s € (—0,0], i =1,2,...,n,

where ¢(.) are real-valued piecewise continuous functions
defined on (—o0,0].

Lemma 1 [32]. Let ¢;(t) be an almost periodic function
on R and
+T
Mlc;) = lim ci(s)ds>0,i=1,....n.
T—+o00 J,

Then the linear system
(1) = diag(—e1(1), —ex(1), ., —ea(1))x(1 2)
admits an exponential dichotomy on R.

Lemma 2 [39]. The inhomogeneous linear system

X(1) = —c(t)x(t) +£(1)

has a unique bounded solution for a vector f € C(R, R) if
and only if the inhomogeneous linear system (2) has
exponential dichotomy.

The rest of this paper is organized as follows. The
existence and the uniqueness of piecewise differentiable
pseudo-almost periodic solutions of Eq. (1) in the suit-
able convex set are discussed in Sect. 2. Some sufficient
conditions on the global exponential stability of piecewise
differentiable pseudo-almost periodic solutions of Eq. (1)
are established in Sect. 3. A numerical example is given in
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Sect. 4 to illustrate the effectiveness of our results. Finally,
we draw conclusion in Sect. 5.

2 Existence of piecewise differentiable
pseudo-almost periodic solution

In this section, we establish some results for the existence
of the piecewise differentiable pseudo-almost periodic
solution of (1). To obtain the existence of piecewise dif-
ferentiable pseudo-almost periodic solution of system (1),
we shall introduce the following lemmas:

Lemma 3 [34]. If ¢(.) € PAPr(R,R") and for any
h € R, then ¢(. — h) € PAP7(R,R").

Lemma 4 [34]. If ¢, € PAPr(R,R), then ¢ x y €

PAP;(R,R).

Lemma 5 If f;(.) € C(R,R) satisfies the Lipschitz con-
dition, (.) € PAPr(R,R), ¢'(.) € PAP7(R,R) and B(.) €
AP7(R,R) such that 1 — (1) >0 forall t € R then
filo(. = B(.))) € PAP7(R, R)

Proof We have ¢ = @, + ¢,, where ¢, € AP7(R,R)
and ¢, € PAPY(R,R). Let

M(t) = fi(p(r — B(1)) = £i(d1(t = B(1))

+ (91 (1 = B(2)) + o (1 — B(1)))

—fi(¢1(t = B(1)))]

=M, (t) + Ma(t).
Firstly, it follows from (Theorem 2.11, [33]) that
M,(.) € APr(R,R). Then, we show that M(.)€

PAP) (R, R) because

1 T
i — M>(t) | dt
Tglsz[TI A1) |

= Jim o [ 11— B0) + 90— 1)
—fi(d1(t = B(1))) | dt
LT
< Jim 2 [ 1t — ) =0
Thus  M,(.) € PAP)(R,R).  So, fi(¢(.—B(.))) €
PAP7(R,R) and f;(¢'(. — B(.))) € PAPr(R, R). The proof
is complete. O

Theorem 1 Under the conditions (HI)—(H2), and for all
1<j<n , x(.) € PAPr(R,R),x/(.) € PAPr(R,R), then
for all 1<i<n, the function ¢;:tr— [*_ dy(t
s)fi(x;(s))ds belongs to PAPr(R, R).

Proof For x;(.) € PAP7(R, R),it is not difficult to see that
fi(xi(.)) € PAPr(R,R) by Lemma 5. Let fi(xi(.))=
u;(.) + v;(.), where u; € APr(R,R) and v; € PAPY.(R, R),
then

6.0 = [ dyte—sists(nas= [
+ /t dij(t — s)v;(s)ds
=} (1) + ¢; (1)

First, it is not difficult to see that ¢} € UPC(R,R). Let
<t <ftpy1.

For ¢ > 0, let Q. be a relatively dense set of R formed
by e-periods of u;. For 7 € Q; and 0 <h < min{e, 3},

[Pl 1) — ol |
s[ | dy(t — 5) || (s + 1) — 5(s) | ds

dij(t — s)u;(s)ds

k=1 ptyoi—h
< Z/ | di(t = 5) || (s + ) — 1i(s) | ds
w=—o0 J tw+h
k=1 ptith
D / | di( = 5) || (s + ) — ti(s) | ds

by

dij(t = s) || uj(s +7) — ui(s) | ds

+Z/

WwW=—00 [

/\du

Since u; € APr(R, R), one has

| uj(t+1) —u(t) | <e forallt e [t, +h,t, —h]and
weZ,w<k,

then

$) | wi(s +7) — wi(s) | ds.

k-1 tor1—h
S [ a5 s o) - (o) | as
w=—00 Y tw+h

k=1 pry—h
SSZ/ | dij(t —s) | ds
2

w=—o00 / twth

tyr1—h
<.sdJr E / e tal=9) g
Iy

W=—00

8d+ k—1

< Yy § e—ﬂd(f—fwﬂ +h)

Ha ==
+ k=1
Sdi/ —pgo(k—w—1)
< E e
Ha ==
+
ed;;

< —
= (1 = i)
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On the other hand,

k—1

tuth
Z /t | dij(t —s) || wi(s + 1) —u;(s) | ds

W=—00
-1 twt+h
/ o Hali9) g g
Iy

<2dy | Uj loo Z

w=—00

-1
<2d | uj | e z e~hali=t)
W=—00
k=1
§2d; | uj | setah g—he(i—t) Z e Hai=)) 4
w=—00
Lo,
2d; | uj oo gt
- 1 — e Ha®

Similarly, one has

k—1 Lyt
> [t
w=—00 ¥ tw+1—h

/ | dy(r

where E,E, are
b} (1) € APr(R, R).
In fact, for r > 0, one has

B MECIES
1 r t

= ,“J“w;/ L] dslr=
= l — i

im e/ / .
lim Z/ </ die” "(’flv(t—s)|ds>dt
r—00 _ 0

o0 1 r

< /0 d;-re*uds <r1£205/r | vi(t—s) | dt)ds.

Since v;(r) € PAPY.(R,R), it follows that v;(.—s) €
PAP)(R,R) for each s € R by Lemma 3. Using the
Lebesgue dominated convergence theorem, we have
$7(t) € PAPY(R, R). This completes the proof. d

s) |1 uj(s + 1) —ui(s) | ds <Eqe,
s) |1 ui(s + 1) —ui(s) | ds < Eze,

some positive constants. Hence,

s)vj(s)ds | dz

s)vi(t — s)ds | dt

IN

Similarly, we can obtain:

Corollary 1 Under the conditions (HI)—(H2), and for all

1<j<n, xi(.) € PAP(R,R), then for all 1 <i<n, the
function ¢; : t— fioo hij(t — s)fi(x;(s))ds  belongs to
PAP7(R, R).

Corollary 2 Under the conditions (HI)—(H2), and for all

1<I<n, xi(.) € PAP7(R,R), then for all 1<i<n, the
function ¢, : t+— fioo kii(t — s)fi(xi(s))ds  belongs to
PAP(R, R).

@ Springer

Lemma 6 Suppose that assumptions (HI)-(H3) hold.
Define the nonlinear operator X,(.) as follows, for each

¢ = (@1, 0,) € PAPr(R,R") and ¢' = (¢},...,9)) €
PAP7(R,R"):
fioc e f:al(u)duFl (S)dS
Xo(1) = :
fioo e S anlwdu (s)ds
and
RO =als) [ ot Y bs0)G - w6))
s=p(s) =1
" Zcu ) [ dss(aits - wan
— ;i ()))fi(@i(s — vi(s)))

33w
j=1 =1
+iiﬂlﬂ(s)/ i (W)fi(@;(s — u))du
=1 =1 0
/0 ki (w)fi(@i(s — w))du + Ji(s),

then X, maps PAPr(R, R") into itself.

Proof First, note that, for all 1 <i<n, the function

ORCY T du+zbu U (s = 73(5)
+Zbu /
+Zzaijl(s)fj‘(q)j(s

+Zzﬁzﬂ / ul )J;(%( u))du
< [ kit - w)au-+6),

(w)fi(@j(s — u))du

— ()il @i(s —vii(s)))

is in PAP7(R, R), by using Lemmas 3, 4, 5, Theorem 1,
Corollaries 1, 2. Consequently, for all 1 <i<n,F; can be
expressed as

F;=F! +F},

where F} € APr(R,R) and F? € PAPY(R,R). So
t
(Xip)(1) / o Jatoap ds+/

=H; (1) + H (1).
(i) H' () € UPC(R,R). Let 7,1 € (tx,tx11),k € Z,1 <t
then

e ). ald g2 (6)ds
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|H1( () —H\({) |
l” t//

_|/ 7f a;(u du dS—/ eij: al(u)du ()dS|

<| / o s ot g

+ | / f a, du dS |

<|€ ,,a, u)du 1|/ Aa‘udu|Fil(S)|dS

/ f a;(u du \ds
t "
< =fan) [ e E ) o

Fil (S) | dS,

t !
+ / e—(l —5)ajx
t”

it is easy to see that for any ¢ > 0, there exists

a;€ I
0<5<min{ '* }
2”? |Fil |OO,2|Fil |oo

and for a suitable 7,7 satisfying 0<7 — ' <& one has

| H} ()~ H] () |

1
" /

t , t ’
(f — t//)afr/ et —9)aiegg —l—/ e~ =9 gg
oo t//

<

<

which implies that H(.) € UPC(R, R).

(i) H!'(.) € APr(R,R). Since F} € APr(R,R), for
¢ > 0, there exists a relatively dense set . such that for
T€Q R, |t —1 | >e¢k€Z, then

HY 1+ 7) — H (1)

=+t 1+1 t t
= / e adepl(5)ds —/ e_J:a"(")d"Fi1 (s)ds

+1 4 ! '
_ / = fﬁ u,»(p+‘t)dpFil (s)ds — / e j; ai(u)duFil (s)ds

t

t t t
:/ effz- af(erf)deil (S + ‘L')ds _ / ei‘[:' af(erf)de; (s)ds

1

t r t t
+ / e J: ai(mﬂ)de; (s)ds — / e J ailu)du 1 (s)ds

o0 o0

t 1 d

:/ e—j;a;(u+‘c) u(F (Y+‘L’)
—00
+ /t (67 j:m(uﬁ»r)du _

o0

F;(s))ds

e J. a'(")d”)F} (s)ds

| F |

So there exists 0 €]0, 1] such that

|H] (1 +©) — H] (1)]

~(aiode  — [awda
<IFl. / <e / ) )d.v

-0

P
— | ai(u+t)du
+/e\f |Fl(s+ 1) — F}(s)|ds
o0

’ 7{[11,/(u+r)du+0(f1h(14)du7./la,(u+r)du):| '
< [let A [ o) - atu+ ol | et

—00

/ - Jatwra -
[ - {/la,(u%»r)dqu()(./.a,(u)duf'/la,(uﬁ»r)du)] '

< / e b s ; / ai(u) — a;(u+7)|du | ds|F}|,
o Js

(s+1)—F/(s)|ds

—00

t
+ / eI FH (s + 1) — Fl(s)|ds

—o0

f 7()(] ai()—ai(uto)ldu)  pt
S/ gm0, \J /|a[(u)—a,-(u+r)|du ds|F!.

—o0

1
+ / e""'("s)|F’.1 (s+71)— F,.l (S)‘dS

—00

t
t
<l [ feot [lato - atu+ olabas

—00
1

+ / e_”"*<’_°')|F}(s+r)—F,-l(s)|ds

t t
= / &;(t,s)ds + / Vi(t,5)ds

where
t
Bi(t,s) = e || / i (1) — as(u + 7)[du
and
'Pi(t, S) _ efai*(t*S)|Fil (S + ‘C) — Fil (s)|7

we obtain immediately that, H(.) € APr(R, R).
Now, we turn our attention to H?(.), so

1
limz/ | H(¢) | dt

e~ (1=5)aix

F?(s) | dsdt

) 1 r t =S
I :rlgnooa/r</re (t=s)aie | F2(s) | ds>dt
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and

1 r —r
L = 1 _ —(t=5)ais
? rgnoo 2r /—r </oo ¢
Pose m =t — s, then by Fubini’s theorem one has
1 r t+r
I = lim —/ (/ e M
r—00 21 . 0
1 r “+o00 )
i i | Bt — dm |dt
- r—>002r\/;r(\/(; ¢ | ! ( m) | m)
1 r
3 / | F7(t —m) | dt)dm

since the function F?(.) € PAPY(R,R), and by the
Lebesgue dominated convergence theorem, we obtain

F(s) | ds) dr.

F(t—m) | dm) dr

A
=
|

AN
S—
+
3
)
3
T
=
g8
Q|

I, =0.

On the other hand, notice that| F? |,= sup,cg | F7(1) |
< oo then

1 r —r
L= rli—{noog/_r </—oc ei(tis}ai* | FIZ(S) | ds) &

1 —r r
< lim —/ e | Fi(s) | ds/ e M=dt

r—»ooZr 0 —r

F? ’
lim ‘ i |OO/ e_(H_t)ai*dl

r—o0 2rdj,

r

:07
then
1 r t t 4
lim —/ | / o Joatw “F?(s)ds | dt = 0.
r—oo2r J_. o

Consequently, the function H? belongs to PAPY.(R, R). So
X, belongs to PAP(R, R"). O

Lemma 7 Suppose that assumptions (H4) hold, Define
the nonlinear operator, for each @ = (¢,,...,¢,) €
PAPr (R, R"), we have

S e Rty (g 0)) € PAPL (R ).

<t

Proof We will show that Zfﬂ}{f,{ ai(u)dulk((pi(tk)) €

PAP7(R, R). Tt is not difficult to see that 3~ ¢ Ja %",

<t
(¢;(1x)) € UPC(R,R). After by Corollary 2.1 (see [34]),
Li(xi(tx)) € PAP(Z,R), then let Ii(x;(t)) = I} + I} where
Il € AP(Z,R) and I € PAPy(Z,R), so

Z e— j;k a;(u)dulk(Xi(tk))

n<t
- Ia,-udu - Ia,udu
= SR b 0+ a0,
f <t <t

@ Springer

Since {t]k },k,j € Z are equipotentially almost periodic,
then by Lemma 3.2 (see [34]), for any & > 0, there exists
relative dense sets of real numbers €, and integers Q., such
that for #<t<ty;1,T1€Q,, g€ Qu|t—1tr] >¢]
t—ty1 | > &,k € Z, one has
t+1>8%+e+7T> lyy,

lergtl > eyl — €+ T> 1471,

that is fy 1, >t + T > t;1441; then
| @1(1+7) = D1(2) ||

" a;(u)du - a;(u)du
=Y e by

= | Z eiﬁk

1 <t+7t <t

— /a,v(u)du
S hem gy

<t

<eg Z e~ (1t

<t
<o
Tl -
so, @1(r) € APr(R, R).

Next, we show that ®,(r) € PAPS(R, R). For a given
k € Z, define the function y(z) by

IN

_[ (u)d
X(t) =e “/;ka<u) MII%, tk<t§tk+1;

then
. . _ [ a;(u)du
tim | 7(0) = fim [} e 52 |

t—00

< Tim e~ sup || 12 || = 0,
keZ

then y € PAP}(R,R). Define 7, : R — R by
_y a;i(u)du

It =e TR <t <tiiq,n €N

So y, € PAPY(R, R). Moreover,

[ a;(u)du
| 2a0) 1= [l i@y

el sup | 2 |
keZ

< el g g || 2
kezZ

therefore, the series ) . | 7, is uniformly convergent on R.
By Lemma 2.2 (see [34]), one has

o)=Y e Jyatisep S 2 € PAP)(R, R).

<t n=0

So, 3 ¢ by (1)) € PAPL(R, R). 0
1<t

Theorem 2 Suppose that assumptions (H1)-(H4) hold.
Define the nonlinear operator I' as follows, for each ¢ =
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(9011 BT gon) € PAPT(Ra Rn)a
PAPr(R,R"),

(I'p)i(1) :=

and ¢ = (¢},...,0)) €

n<t

L(9i(t)),
then I maps PAP7(R, R") into itself and if

(0= R0 —a) [ e L s

then I maps PAP7(R, R") into itself.

Theorem 3 Let conditions (HI)—(HS) hold. Then, there
exists a unique piecewise differentiable pseudo-almost
periodic solution of system (1) in the region

~

, rL
B={0/0,¢" € PAPI(R,R"), [l @ — o [l < ;= }
where
ot ot . T
Qo(t) = (/ eif a(u)du Ji(s)ds, . ..,/ eifv ""(")d"J,,(s)ds) .
Proof Tt is easy to see that B={¢/¢p,¢ €

PAPr(R,R"), || @ — @ ||l < l”—LA} is a closed convex
-p

subset of PAPr(R, R"). According to the definition of the

norm of Banach space PAP7(R, R"), we get

| @ [|e= max maxsup{| / e L s || 1i(r)
1<i<n eR o
t
~al) [ e L)

oo

n
< llglai(nmax{a—w ,(1 +Z—;)J[} =L
(3)
Therefore, for Vo € B, we have
Lol < oo lle + 1 o lle < o5+ L= 1=
(4)
In view of (H1), we have
| fi(u) | <I[|u| forallu € R,j=1,2,...n (5)

Now, we prove that the mapping I is a self-mapping from
B to B. In fact, for all ¢ € B by using the estimate just
obtained together with (4), (5), Lemma 1, Lemma 2,
Lemma 6 and Lemma 7 we obtain

Il F'yp— @0l
t ' N ,
= max sup{ | / o J et [a,-(s)/ @;(m)dm
l<z<n teR S s—p(s)
+ Z bllj(s)f}(go}(s - th + Z Clj /
=

£35S a5l s — o) Vilou(s — vis))

,111

+Zzﬁul / hyjp(w)fi(@;(s — u))du
" /om Kaii(s = 0)aulds + 3 ¢ k000 }

<t
t
< max sup e~ =) g
1<i<n,cp —o

n__ n d+ _
B 0 oo + > 2L ¢ e
= = M
n n

NG M | o |

=1 =1

n
+ZZﬁ,,zi’ilLfo I lloclds + > e 0L, | |oo}

j=1 I=1 <t

n_ n d+ n n
< o {r! { S+ St S i
== j =1 =1 =1

Lo
l—e*“t* ? e

()f(@;(s — u))du

P10 Ml

n

+Zzﬁ’/1 Ul t/l f f

=1 =1

On the other hand

Il (F(p - QD())/ [loo

= max eup{| a0 [ wiman+ by a(e)(e =)
t—p(t j:1

1<1<n 1eR

+ ZCU /
+ Z Z o (0)f (ot

=1 =1

(w)f(j(t — u))du

= 0ii(0))Vfil@i(t = vi(1)))

n

S0 [ i e - w)a

=1 =1

« / " k(i n(s — u))d
—alt) / e Sty ) / |, @iman
—oo s—p(s
+§n:b[,~(s)ﬁ(<p}(s—ru +Za, /

£33 o) y(s — o) Vilon(s —

j=1 I=1

+ Z Zﬁl/l / i (w)fi(@;(s — u))du

x / " ks — w)dulds — ai() 3 e Iy (10) |}

<t

(w)fi(@j(s — u))du

vii(5)))

@ Springer



486

Neural Comput & Applic (2018) 29:477-495

n__ n d+
< max s gup{[ﬂ?ﬂ* 1o llso + > BiLf 1l ¢l +Zfijn—"’1Lf 0" lloo

<i<
= =1 =1

n n

+3 D M || o +ZZﬁ,ﬂ fo ¢ ll]

j=1 I=1 j=1 I=1

ot
el [ eI o +Zb,;,~L_,f 19l
J—o00

+ Zc,, 4 Lf I lls +ZZaU,Lfo I lloe

j=1 I=1

l] I
+ZZ/M w i Lfo ¢ llclds

j=1 I=1

tayy e L gl
<t
+ 7t - E Lf - = dij

j=1 j=1
a’L,
e }|<p|f

+inU,LMf+ZZﬂU,i’i’Lfo

j=1 I=1 j=1 I=1

at
< max ¢ (1+-2)
ain

1<i<n

where i = 1,2,...,n. So we can write

Ty = ¢o) I
=max{|| I'y = ¢o llc, | (Fp = o) [l }

< lrglai(nmax{{al* [a +Zbl,L +ZCU d;j Lf
n
DTS e
L a | oo boIf
+m , (l+a_,~*) a'p +ZI: ,'ij
=
n d+ ; n n fog
p— 1 —_
DTS WY

+
1l zl aiLl
S | < —g}wnE

e di
=p || @ |,

where p <1, it implies that I',,(.) € B. So, the mapping I is
a self-mapping from B to B. Next, we prove that the
mapping I' is a contraction mapping of the B. In fact, in
view of (H1), V¢, € B, we have

@ Springer

wmﬂ
-y / ~J et ) / (glm)
+Zbg<s>o;<¢]<s 23(5))) — £ (s — 75(5))))

+ch, / W) (s — ) —
+ZZ%/ )(fi(9

Jj=1 I=1
—1i(W;(s — ()i (Wi (s — v (5))))

+ zn: Z Bii(s) / i (u)fi(;(s — u))du
/w i (u )ﬁ(rb,(s—u))du—/wh,ﬂ( W)fi (W (s — u))du
0 0

61] ) )fl(¢1( v,]( )))

/ " k)i s — u))du)lds
+Ze w0

<t

t
</ e(t\a[
_-f:X)

+Zcud*v’ ¢~ |l

+szxul |fj‘ ¢j

" (i) = T(Wi(n) |

Pt~y ||X+Zb,,Lf ¢V |l

= 0;i())fi(Pi(s — vii(5)))

— () |
£ 1/31,1|/ i ()f (5 — )l

/0 ()i (s — )

00
/ hl]]
0
00
/ ht/l
0

f/mh,,m Wi (s — ) /mk (Wi (s — w))du [1ds
0 0
£ 3 e e | 1) — (W (80) |

<t

(s—u du/ ki (u)fi(¢y(s — u))du
0

+

T_M A kljl ﬁ¢1Y—M))
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< / e[t ot | ¢ =y [l +Zbu s — 5(5))) — LWL — 7(s))

ar / / - _ di' , ,
+;szl§ ¢ =¥ +;Cijn—;£]f ¢ =¥ |l +jzl:cij(s)/0 dij(u) (f;(pj(s — u)) — (i (s — u)))du

22 Tl M) 16— b 223 a6) (s = ouls)N(e(s = vyls)
+ZZﬁ,ﬂilil Lfo+Mfo) = ] J?(l//( = i ($)Nfi(¥(s — vi(s))))
== +ZZﬁu, / hi(W)f;(¢;(s — u))du
£ L =y D .
[ bt~ = [ s = )
*+ZbuL +Za, G [ (s = )
3OS M+ ML) a3 e L% 1) = i) |
j=1 I=1 n
ijl kljl faqf el < [(ljp+ || ¢, - W ”00 +ZEUL{ H (]5, - l// ”0@
+Z§jﬁ,ﬂm—<LM + ML)
j=1 =1
_ lj j (N
e bl *Z AL A
On the other hand £33 0 - oo — vy(0)
, j=1 I=1
[ (Tt =y 0)] — (s — o)t — (1)
=) [ m(qzs;(m) — /() (1 = oy ()il — (1))
’ — Wt = o)t — v () |
3 by e — T (0)) — 0 — T(0)) "
Z SN Bl [ (6t - wya
j=1 I=1
+Zcu ) [ @650~ )~ 5005 ) [ e /whw o
0 0
£ 30 a0 - O~ wy(0) <[ — e+ [ - wha
J=1 =1 0 0
— (8 = oW = v (1)) [ a0 ) /“hm o
n n 0
ij i du o0
DD ([ hutws (e - ) =
00 o0 0
<[ ratntate— s [ natage-wa [ a1 v .
X ocku (t — u))du)] — a;( _f i _OO
/OS it = )] at) [ O S w||oo+Z‘ -
<[ = omam B
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n n

+ Zzaiﬂ ‘ﬁ(¢j

J=1 =1

= aii()))fi(¢i(s = vi(s)))

—i(W;(s = a3(s))fi(pi(s — vii(s)))
i W(s = ai()))fi((s — vi(s))
—fi(Wi(s = a3() i (s = vii(s))) |

YN | a5 =y

=1 =1

/ " k()5 — w))du — / " () (s — w))du
0 0

/ Kt (w)fi(bu(s — u))du + / B (0)f (s — ) du
0 0

| Raabiconts — - / i) (s — )

/0 " kWi (s — w)du [Jds
+ai+2e’(”">""* I(@i(t)) — L(Wi(n)) |

<t

<lafpt 11" = v lloo + DBl |1 ¢ =¥ Il
j=1

n d+ f
—_ 1 i !
+) Cz:/n—JLj ¢ =V |l
j=1 d
+ ZZ&UI@M{ +MI) | ¢
==

kh -
+ZZB,,1 i ae GM ML) (6= ]

t
+a,-+/ g o || ¢~ o

o0

n__ n dl+
+ > bl || ¢ = |l +ZEU¢L§ (R
j=1 j=1

n n
+Zzay,<L§M{+M§L’,> [

j=1 =1
+ZZﬁlﬂ Lfo+Mfo> I §— v ll)ds
+a,-*2e L =

<t

{(1+ a*p*—i—Zb,jL +Zc,, ULf

+ Z Za,-,,(Lf.Mf + ML)

j=1

ki
+ZZﬂuz s e (M1 + ML)

aL.

e =y e,
n. It follows that
I Ty —Tylle <qllé—le

where

where i = 1,2,...,

@ Springer

n_ n d+
g = lgl?gnmax{{ai*l [afpt + Zb,-ij + ZEU”—ZL’;
= =1 =1

n n _ 3 f . 3
D KIS

Jj=1

hy 11 ' L F L,
+ZZﬁuz — LfM5+MfL§)]+1_}’
aA —
{(1 et Yl
ix =1
n d+ ) n n ‘ » ‘
# 3+ Y S e+l
+§n:Zﬁ, o ’f’ Lfo+Mfo)}+4ai+Ll <1
Y 1 —eds

It is clear that the mapping I is a contraction. Therefore the
mapping I’ possesses a unique fixed point z* € B,
I'(z*) = 7*. By (7), * satisfies (1). So z* is a piecewise
differentiable pseudo-almost periodic solution of system
(1) in the region B. The proof is now complete. O

3 Exponential stability of piecewise differentiable
pseudo-almost periodic solution

To study the exponential stability of (1), we need the fol-
lowing lemma and notations. So, for a continuous function

g(1), we denote g(t) = SUP; 1+ <5<t | g(s) ‘ .
(H6) Assume that there exist positive constants p; and g;,
such that
: %
piai(t) — qiai p* Zq, | by(1) | I — Zq/ () 155
=
- ZZ | (1) | L7 M} + pu] L]

ket
_Zz|ﬁul

Ijl Iﬂh)ijMf +lefo]>0

qu et U Lf
n
- ZZ [ o (t) | h’JLfM/ +PIIMIL/}

—ZZIﬁ,ﬂ

fort € [0,00),i=1,2,...,n

qi Plal _‘Ila P _qu |b']

+k+
Ul l]lbijfo -|—p1Mfo]>0

Lemma 8 Let 1> 0 be a given real constant. Assume that
p(t) and q;(t)(i=1,2) be continuous functions on
[0,400),k(s) be nonnegative function on [0,4o00) and
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. +oc
satisfies that fo
positive constant .

Moreover, assume that there exist positive constants 1
and M such that

)ds<kandf e ds < + oo for

p(t) —qi(t) —kqa(1) > >0,0<q (1) <M, 0< g2 (1) <M,
V>0,
then

* ok 1 _ Z
= tlg%{/u >0,2—p(t)+qi(r)e

+00
+ g2 (1) / k(s)e™ds = 0} > 0.
0
Proof Consider the following equation:
+0o0 .
G(1) = 2=p) + a0 +aalt) [ ko)ePas. (6)
0

Because

G(0) = —p(t) + q1(1) + kqa(1) <0

dG X +00 R
= 1+ g1 (t)te™ + g2(2) / k(s)se*ds > 0
0

and G(+o00) > 0, we follow that G(4) is a strictly mono-
tone increasing function.

Therefore, for any ¢ > 0, there is a unique positive A(f)
such that

A1) = p(t) + @1 ()" + ga(1) / T k() Dsds = 0

Moreover, A" exists and A* > 0.
Now, we will prove A* > 0. Suppose this is not true.

Pick &€ (0,u) such that e<{,lIn(1+3%)} and
" k(s)e™ds <k + 5L . Then there exist " > 0 such that

A () <e and

* ok oo * [k
() = ple) + @1 ()" O + ga() / k(s)e" )3ds = 0.
0
Now we have

. +o0 s
O:/l*(t*) —p(t*) +q1<t*)e/L (¢ )r+q2<t*)/ k(s>eA (")sds
0
e +00
</l*([*) —p(t*)—i—ql(t*)eA (¢ )T+q2(t*)/ k(s)e“ds
0

<87p(t*)+‘11(t*)< 3’7M) +aolt )(k+3iM)

)~k () + (@) + ) 55

which is a contradiction. Hence, A* > 0. The proof of this
lemma is completed. O

Then we have

Lemma 9 Assume that (HI)—-(H6) hold and there exist
nonnegative vector functions (Vi(1),...,Vu(1))" and
(Wi (2),...,W,(0))" € PC([—p*,0],R"), where V(1) is
continuous at t # t (k € N*), such that

D V(") < —a(t)Vi(t7) + a;

()< — Vi) +a) / o
+Z|bu ) | EWy(t)

+ Z st | / | dya) | EWi(r™ — )
£33t | 7+

S B 1 / | )
j=1 i=1 0

i
LLvi(r — uydu-"m]

W;(s)ds

M{LVi(17)]

Nk
e
+iMf/ | k(1) | L Vi(t™ — u)dul,
M 0
(7)
t+

+Z les(0) | / () | Wy (= u)du

| L[V )M + MLV (1)

rm/o | ()|

+
My

W
*:TZM-{/O | () | Vi — w)dd,

Lij(tJr —u)du

(8)
Vi(th) <L vi(1) )

fort>0,i=1,2,...
i=1,2,...

,nand k € N*. Then for all t >0 and
n, there exists a positive constant L such that

<L Zn: max{V;(0), W;(0)}e *", (10)
=1
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where A" is defined, respectively, as

Z=min{i5, A5 |i=1,2,...,n}, (11)
_ W0 — ai() + L gt pretont
_tlg%{i(t) >0, A(r) —a;(t) + pla pre

n
L by | e
j=1 Di
n q o0 A
5% ey | / | dy(u) | e Odu
j:l pl 0
n n
+D > o)
=1 =
n n p o0
+ZZ|ﬁ,ﬂ<r>H—{/
n PiJo
plhzﬂ

o0
+;EMA | k() | e D"du] = 0} > 0,
1

| %LIM{ +%Af1ij]eW>f*

) | e g
Nk

(12)

y —dqi +a; ( )pl + 61161+P+€;()

+2:‘11 | by (1)
+Zq,-\ci,~<r>| | st e vau
+ZZ |l

£ i ki S
+z:z:|ﬁz;l |@j ‘ Ul()‘L du an

h v [ £ iOug ] —
+171771‘/[]' | kiji(u) ‘L d“]_0}>07
h 0

= inf {A(r) > 0

|Lf () tan™

| [ijfo +lefo] Alt)T™

(13)
Proof By the similar analysis in Lemma 8, we can deduce

that 4] > 0 and jl* > 0 exist uniquely.
Choose a positive constant 6 such that

min{pi,qi|i = 1,2, .. 7]’1}0 > 1.

Let

Then for all € (—o00,0] and y > 1, we have

YW (1) = y@imaX{VI(O),WI(O)}[)'*’ > @,(1). (15)

=1

Then
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Q;(1)<y¥P(t), t€[0,00),i=1,2,...,n. (16)

For the sake of contradiction, assume that there exist i €
{1,2,...,n} and 7 > 0 such that

Gi(17) =P (1), Bi(1) <yP(1), for 1 €[0,7),j € {1,2,...n
(17)
Then we have the following
@ (1/p))Vi(f")>7¥(7) then we have the following
subcases.

(i) 7 # t, 1 €€ N*. So V() is continuous at 7. By 17,
we have
Lyi@) = ¥ (@), ~D V(D)
- =7 - i
Pi Di

From (H6), (17) and the definition of 1*, we have

> p?'(7) (18)

Lpvi) - v
Di
< — ()
qi !
+JM3/ m+§:ﬂ%
pPi 1—p(1)
n q B B
#3210 | / | dyu) | L3 (7 — w)du
+ Z Z | o (7

+ ; ; | Biu(7)

Pl
Pi Ny

SPPOU —ald) +tapt e 3N byl | e
i j=1F

- 4i 7 = Ju
#3210 | / | dy) | Kl i
+ZZI%I

7 Dj - u 11
+ZZlﬁm<r>l[p—%/o ) | £

=1 =1 i

iy
PiNp

) | Eyw(E—<")

ML%ﬂ+pﬁﬂUhTOfr)
pi
P ki
[ ) | 59— w2
DiJo Mk

N M;/o k() | Ly (F — w)du] + 279 ® (7)

LfM/-‘r Mfo]Ar

2] [ k) | e ) <0

(19)

which is a contradiction with (18).
(i1) There exists kg € N* such that 7 = #. By (17), we
have

V<O V). (20)
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Noting V(i) # I}V,-(?), we have V(i
PP(7) < ]%Vi(#). Without loss of generality, we assume
that y¥(7) < I}/V,-(#). from (9) and (20) we get that

1 -
YP(E) < —Vi(d") <yL (7). (21)
Pi
Simplifying (21), we obtain L; > 1, which contradict that

L <1.
If (I) does not hold, then

D
qiw< ) >, ;W,-(r><w<zx
! ’ (22)

I;W.i(t) 2y¥(1), fort € [0,7), j € N.
J

Then from (8) and (H6) we have
t+

0< — Wi(F) + ai()) V(i) +a,-(t+)/
P oplr)

+Z|bu ) | W)

+Z|czy(t*)\/ | dyj(u) | LW (" — u)du
= 0

+Y > Lot |
J=1 =1

EST U [t |V — s
=1 =1 v 0 o !

RS o
o / | () | V(" — u)du

Wi(s)ds

L[V, )M + ML V(i)

n
<YW (~gi + ailOpi + qiaf pTe T+ gy | by(r) | et
=
n 50 .
#Da o) [ 1 dyw | e han
j=1 JO

n n
0N o) | [ M] + piM] L)
J=1 =1

+ZZ|ﬁW w»,/ | () | L ;’Mf

s N
+p,i1M{./ | kio(u) | L e* *du]) <0
M 7 Jo
(23)

which is a contradiction. From (I) and (II), (16) holds.
Letting y — 17 in (16), we have

@;(1) <yP(t), t€10,00),i=1,2,...,n. (24)
So l} (1) < W(r) for all t€[0,00),i=1,2,...,n. Let
M = max; <;<,{p;0} then forr>0and i = 1,2,...,n, we

have

)<y¥(7) or

491
1) <MY max{V,(0), W,(0)}e ", (25)
=1
The proof is complete. O

Theorem 4 Assume that (HI)-(H6) hold, then the unique
piecewise differentiable pseudo-almost periodic solution of
system (1) is globally exponentially stable.

Proof 1t follows from Theorem 3 that system (1) has at
least one piecewise differentiable pseudo-almost periodic
solution x*(¢) = (xi(z),...,x%(r))" € B with initial value
¢*(1). Let x(t) = (x1(2), ..., x,(¢))" be an arbitrary solution
of system (1) with initial value ¢(z).

Let  Vi(r) =[ xi(1) = z(t) |, Wi(r) =[ xi(2)
i=1,...,n, Then,

—Z(t)| for

D V(1)< —ai(t)Vi(t") +ai(t )/ Wi(s)ds
= —p(t7)
+Z|bu 0| W)
Cij ij\u Wit~ — u)du
+j:21| 01 [ T | G - g
YD L) | V()M +
= =
33 Bl [/m )
j=1 I=1 0

u)du— klﬂ
’1k

W
10 gt / | Kn(w) | LV — w)du,
Mh Jo

MLV (1))
vy -

t+

W) SVl alo) [ )
3 ) )

- o * ) | Ew (= w)du
+Z|u<r>|/0 i) | LWt = u)a
+ZZ‘%Z
+;;ﬁ,ﬂ<r>|[/o [ ) |

L;Vj(fr —u)du

| L[V ()M + MLV (1)

koo
Nk

W
+iM/f/ | Kijn(ue )|L Vi(t" — u)du],
M 0
27)
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By (9) and (HS) we have
Vi(t]h) <L Vi(th), with Ly <1. (28)

By (26)-(28), (H1)-(H6) and Lemma 9, there exists a
positive constant M such that

<M Z max{V,(0), W;(0)}e™*", (29)
=1
where A" is defined in (11). O

Remark 4 To the best of our knowledge, there have been
no results of piecewise pseudo-almost periodic solutions
for impulsive neutral high-order Hopfield neural networks
with time-varying coefficients, mixed delays and leakage
until now. Hence, the obtained results are essentially new
and the investigation methods used in this paper can also be
applied to study the piecewise pseudo-almost periodic
solutions for some other types of neural networks.

Remark 5 If throughout this paper, for i,j,[ =1,2,...,n,
it will be assumed that a; : R — R* is almost periodic
functions, by, c;j, oy, ﬁl],,J R — R are almost periodic
functions, then the investigation methods used here can
also be applied to study the piecewise almost periodic
solutions for some other types of impulsive neural

networks.
4 Application
Consider the following impulsive neutral high-order Hop-

field neural networks with time-varying coefficients, mixed
delays and leakage:

x() = —ai(t)x(t - ())+Zby()1( (1 —75(1)))

+ 22:1 ci(t) fo di( (t — u))du
+ i 1i1 o0 (1) (x5 (£ = 03 (1)) )fi (a8 = v5(2)))
Zi:f: ﬁlﬂ fo i1(w)fi(x(r — u))du

~

/—\H

—_

L5t

ki (w)fi(xi(t — u))du
() teR, t#2k, ke”
Axi(t)) = xi(t7) — xi(ty) = Ie(xi(t))

4 2(t
a(t)_( +C?SZ()>:>al*a2*47
4 + sin“(1)

@ Springer

forallt e R
fi(t)

‘E,‘j([) = G,’j(l‘) = V,'j(l)

dij(t) = hyp(t) = k(1) = e =

for i,j,1 € {1,2}

1
(Axl (2k)> | g+
A, (2k) ) 1
— —x(2k) +
502 (20 +
=L= !
T80
0.0l cost + &
1+
b(1) = 0.01
0.03sint + ——
1+
_ 0.02  0.03
=b= ,
0.04  0.01
0.01
0.01lsint + ——
_ 147
ofr) = 0.01
0.02sint +——
1422
B 0.03  0.02
== ,
0.02  0.03

(“ljl(t))1§j,1§2 =
0 0

=fo(t) =sint = I =1}

=p(1) =

0 0.04sint +

= =
=M, =M, =1,

1
20 | sint |, fori,j € {1,2}

+ + +
dlj _ @ kl /. -1
Ng Mn Mk

1
— 2
%0 sin(x; (2k)) + 20

1 1
%cos(xz(2k)) 0
0.03sint

0.01 sin v/2¢

0.03 cost
0.01
0.01cost + m

0.01
1+

- 0 005
= (1)1 <ji<n = ;

0 0

0.01
0 0.06cost +——

(“Zﬂ(t))lgﬂgz =
0

1+
0

_ 0 0.07
i(“2jl)1gj,1§2: ;

0 0

0.01
0 0.05cost +——

(ﬁljl(t))lgj,l§2 =

1+ 72

0 0
— 0 0.06
= (ﬁljl)lgj‘lgz =\ 0 )
0.01
0 0.4sint +——~
(Bojt())1 <ju<2 = 1+
0 0

_ 0 0.05
= (:BZjl)lngSZ = )

0 0
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0.
O.SCOSt—Fﬁ
J(I) _ 0+l

0.7sint + ——
sin +1+t2
Then

7 af
max max{ ,(1 +4 -7 } =2.0250=L
Qjx

1<i<n %

2 2 dt
=~ 1|+ + i = 0 rf
p = ma zzmax{{ai* [ai pr+ E byL; + JEZI Cij Py L;

=
L
o e“r‘*}’

+iia[Lfo+ZZﬁljl il lﬂ f f

=1 =

2
VAR
=

+
MM
§
zm~
M
\QI
T
<

2
a: —
et laror+ >
% ]:]
2 g 2 2
# Y + 3w + M)
=1 M j=1 =1
2 . h+ k+ G%Ll
+ ﬁ Ul Ul (Lfo +Mfo) + i
,:21; M M T e
=0.9412<1.
Let py =p>=1 and g; = g, = 70, and from the above

assumption, the (H6) is satisfied. Therefore, all conditions
from Theorems 3 and 4 are satisfied; then, the impulsive
neutral high-order Hopfield neural networks with time-
varying coefficients, mixed delays and leakage have a
unique piecewise differentiable pseudo-almost periodic
solution. Simulation results of Example 30 are depicted in
Figs. 1, 2 and 3.

-04 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
X1

Fig. 1 The orbit of X1-X2 for the system

0
X1 =05 0

Time (t)
Fig. 2 The phase system for the system
15 ¢
X1
X2
1L
0.5
x
0
-0.5
-1 H H i i i
0 10 20 30 40 50

Time (t)

Fig. 3 Transient response of state variables X1 and X2 for the system

Figures 4 and 5 confirm that the proposed condition in
Theorem 4 leads to globally exponentially stable piecewise
differentiable pseudo-almost periodic solution for system
30.

S Conclusion
In this paper we discuss the existence and the exponential

stability of piecewise differentiable pseudo-almost periodic
solutions for a class of impulsive neutral high-order

@ Springer
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25 6. Xu B, Liu X, Teo K L (2009) Global exponential stability of
) impulsive high-order Hopfield type neural networks with delays.

0 2 4 6 8 10 12 14 16 18 20

Time t

Fig. 4 Global exponential stability of state variables x; of system

0 5 10 15 20
Time t

Fig. 5 Global exponential stability of state variables x, of system

Hopfield neural networks with mixed time-varying delays
and leakage delays. We give several sufficient conditions
for the existence and the exponential stability of the solu-
tion. The results of this paper are new, and they supplement
previously known results. An example is given to illustrate
the results.
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