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Abstract Structural reliability analysis under uncertainty

is paid wide attention by engineers and scholars due to

reflecting the structural characteristics and the bearing

actual situation. The direct integration method, started from

the definition of reliability theory, is easy to be understood,

but there are still mathematics difficulties in the calculation

of multiple integrals. Therefore, a dual neural network

method is proposed for calculating multiple integrals in this

paper. Dual neural network consists of two neural net-

works. The neural network A is used to learn the integrand

function, and the neural network B is used to simulate the

original function. According to the derivative relationships

between the network output and the network input, the

neural network B is derived from the neural network A. On

this basis, the performance function of normalization is

employed in the proposed method to overcome the diffi-

culty of multiple integrations and to improve the accuracy

for reliability calculations. The comparisons between the

proposed method and Monte Carlo simulation method,

Hasofer–Lind method, the mean value first-order second

moment method have demonstrated that the proposed

method is an efficient and accurate reliability method for

structural reliability problems.

Keywords Reliability � Dual neural network � Direct
integral method � Rational neural network

1 Introduction

From the middle of the last century, the engineering

problems with random variables have been paid many

attentions. Up to now, many methods for structural relia-

bility problems have been developed. These methods can

be divided into three parts. One is a reliability analysis

method to solve the response of the structure or probability

characteristic of function, such as the first-order second

moment method (FOSM) [1] and high-order moment

method [2, 3]. The estimated probability forms of function

are used to calculate structural reliability based on each

moment. The error will be large under the difference

between actual probability form and ideal probability form.

Although the accuracy can be improved by finding out

higher-order moments, the computational burden is

improved. Furthermore, the accuracy of these methods is

lower for highly nonlinear function problems [4]. Other

widely used methods are direct sampling Monte Carlo

reliability calculation methods. The large number of sam-

ples is generally required for these methods to perform

reliability analysis with high precision. In order to reduce

the computational burden, several improved algorithms

have been developed such as importance sampling method

[5], stratified sampling method [6], Markov chain sampling

method [7]. However, the application for large and com-

plex structures is still time-consuming.

The third widely used method is direct integral method

[8]. The integral equation of reliability is calculated

directly according to the definition of reliability. The reli-

ability can be calculated based on the multiple integrals of

the joint probability density functions on safe domain of

the system. The direct integral method includes three

aspects of technology, that is, the rules of the integral area,

the constitution of the probability density function and the
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multiple integral [9]. The rules of the integral area had been

successfully solved through the introduction of perfor-

mance function. The calculation of multiple integral is

research emphasis on this kind of method. Numerical

integration problems of three and lower dimensions effi-

ciently solved by Gaussian integral formula. The problems

of multiple integral are generally divided into two cate-

gories: certainty and uncertainty algorithm. Uncertainty

algorithm refers to Monte Carlo method and it is improved.

This method is the same as Monte Carlo method in above.

Certainty algorithm has Toeplitz matrix method [10],

Lagrange function method [11], two-sided estimates

method [12], discrete Adomian decomposition method

[13], positive definite function method [14], triangular

functions (TF) method [15] and other quadrature formula

methods. There are also Markov chain splitting (MCS)

method [16], generalized Mellin–Barnes method [17],

log gamma function method [18] and other new methods.

Through the above methods, we can obtain approximate

analytical solution and numerical solution of various mul-

tidimensional integral, but these methods have their limi-

tation. For example, in quadrature formula method, integral

equation can be discretized an algebraic system. However,

solving its massive algebraic system is also a thorny

problem if its accuracy is guaranteed. MCS method has

extensive range to calculate reliability, but there are the

same shortcomings as the quadrature formula method.

Generalized Mellin–Barnes method and log gamma func-

tion method can calculate simple and specific multidi-

mensional integral, but its accuracy cannot be guaranteed

for more complex multidimensional integral. With the

deepening research on certainty algorithm, the direct inte-

gral method can play bigger role in structural reliability

calculation.

In conclusion, three kinds of structural reliability cal-

culation have following problems. (1) Based on solving

structural response or moments of performance function,

several methods are not adapt to the problem of multiple

failure models and its computational accuracy seriously

depends on the form of performance function. (2) Monte

Carlo method has huge computation for structural relia-

bility calculating. (3) In the type of certainty direct integral,

reliability calculation method encounters mathematical

difficulties in the multiple integral and quantitative

description of the computational accuracy.

Artificial neural network is an adaptive nonlinear

dynamic system. It composes a large number of simple

neurons that connect each other. Artificial neural network

acts as a result of biocybernetics. Its tentacles almost has

extended to various engineering fields. Goodacre et al. [19]

used neural network to achieve the multivariate data

analysis. Freitas and Prat [20] studied phase distribution of

the liquid surface tension gradient with network model.

Bayesian hybrid modeling method was proposed with

neural network in Ref. [21]. Kocadagli [22] put forward a

novel hybrid learning algorithm for full Bayesian of arti-

ficial neural network. It has wide application. The main

characteristics of general neural network are as follows. It

has strong self-learning and self-adaptive ability and better

effect in the nonlinear mapping processing. But it has some

shortcomings, such as strong dependence of sample, slow

convergence speed and it easily enters the local minimum

value.

Neural network has the capability of approximating any

functions, so it can be applied to structural reliability

properly. Lopes [23] used neural network instead of finite

element analysis to reliability analysis, and the neural

network had advantages in computational efficiency when

compared to MCS. Cheng [24] used the neural network to

construct the limit-state function of long span bridge,

genetic algorithm (GA) is employed to train the network,

and the failure probability of structure was received. Zou

et al. [25] used neural network to fit the performance

function of structure, the values of performance function

and partial derivatives at the point of mean values are got,

and the moments of performance function are calculated

based on the moments of random variables.

Neural network has problems in the calculation of reli-

ability. The one is that the approximate function con-

structed using neural network by using the same training

sample is uncertain due to the randomness of weights and

threshold value of the neural network. The relationship

between the excitation and response outside the sample

points is difficult to be effectively guaranteed. In order to

improve the accuracy, the number of samples can be

increased. In practical engineering, total samples for

training are limited; therefore, calculating accuracy based

on neural network cannot be guaranteed effectively.

Another is that the training neural network surface could go

through sample points exactly, but the derivative value in

the sample points does not meet the requirements. There-

fore, the higher-order moment method based on the

derivation cannot meet the requirements. According to the

multiple integral problems, Ref. [26] provided a direct

integral method based on the triangle basis neural network.

However, the computational efficiency is low because

many triangle basis functions are required to guarantee the

accuracy. Some scholars used neural network to calculate

multidimensional integral, such as Volterra integral [27],

Choquet integral [28, 29], stochastic integral [30], fuzzy

integral [31]. The main idea is that the integral problem is

equaled to mapping problem between integrand and orig-

inal function. But lacking of sample and low generalization

ability restrict to improve accuracy.

In this paper, an integration method is proposed based

on dual neural network, which can be applied for reliability
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calculation directly. The proposed method constructs two

same neural networks structure, which have multiple

inputs, single output and single hidden. Through designing

function relation between the weights of two neural net-

works, it makes one neural network approximate integrand

and the other neural network approximate original func-

tion. Therefore, the above networks are, respectively,

called integrand neural network and original function

neural network. We only need to train integrand neural

network. Thus, the weights of original function neural

network are given directly by function relation between the

weights of two neural networks. Then we use the original

function neural network to calculate multiple integral. With

proposed method, integrand can easily obtain sample data

that are directly trained; the integral computational accu-

racy will be greatly improved. So the proposed method is

an efficient and accurate reliability method for structural

reliability problems. This paper is organized as follows.

Firstly, it introduces the integral form of the reliability

computation and the normalization method of the integral

area; secondly, this paper gives the key content, which is a

kind of dual integral method based on neural network, and

then is the simulation part, to verify the effectiveness of the

proposed method; Finally, the full-text conclusion and the

prospect for the future are given.

2 The integral form of structural reliability
calculation

Structural reliability can be expressed as a probability of a

function Y[ 0. Y can be expressed as a function of the

basic variables X = [x1, x2, …, xn], that is,

Y = g(x1, x2, …, xn). Let X is a random vector and the

probability density function of the function is F(Y), and

structure reliability can be written as

P ¼
Z
Y[ 0

FðYÞdY ð1Þ

Generally, F(Y) cannot be determined accurately;

therefore, Eq. (1) cannot be used to calculate system reli-

ability directly. To solve the problem, the principle of the

probability conservation is considered. According to the

principle of the probability conservation, probability of any

dx in X equals to probability of corresponding dy in map-

ping Y, and the probability conservation can be expressed

as Eq. (2)

FðYÞdY ¼ Hðx1; x2; . . .; xnÞdx1dx2. . .dxn ð2Þ

where H(x1, x2, …, xn) is the joint probability density

function of the input variables. According to Eqs. (1) and

(2), Eq. (1) can be obtained as

P ¼
Z

� � �
Z
gðx1;x2;...;xnÞ[ 0

Hðx1; x2; . . .; xnÞdx1dx2. . .dxn

ð3Þ

There are two difficulties in solving Eq. (3) directly.

Firstly, it is difficult to get the original function. Secondly,

the boundary condition is very complicated. Solve the

problem of boundary complexity. Introduce a weight

function hðxÞ ¼ 1; x[ 0

0; x� 0

�

Let
R
� � �
R
gðx1;x2;...;xnÞ� 0

hðgðx1; x2; . . .; xnÞÞHðx1; x2; . . .;
xnÞdx1dx2. . .dxn ¼ 0

Then Eq. (3) becomes

P ¼
Z

� � �
Z
gðx1;x2;...;xnÞ[ 0

hðgðx1; x2; . . .; xnÞÞ

Hðx1; x2; . . .; xnÞdx1dx2. . .dxn

þ
Z

� � �
Z
gðx1;x2;...;xnÞ� 0

hðgðx1; x2; . . .; xnÞÞ

Hðx1; x2; . . .; xnÞdx1dx2. . .dxn

¼
Z 1

�1
� � �
Z 1

�1
hðgðx1; x2; . . .; xnÞÞ

Hðx1; x2; . . .; xnÞdx1dx2. . .dxn

ð4Þ

where g(x1, x2, …, xn) is the performance function.

Let

y x1; x2; . . .; xnð Þ ¼ h g x1; x2; . . .; xnð Þð ÞH x1; x2; . . .; xnð Þ
ð5Þ

Equation (4) can be rewritten as

P ¼
Z lnþnrn

ln�nrn

� � �
Z lþnr1

l�nr1

yðx1; x2; . . .; xnÞdx1dx2 � � � dxn

ð6Þ

In Eq. (6), li and ri are, respectively, the mean and

standardized deviation of random variable i. n is a positive

integer, and the value of n usually n C 3 which is deter-

mined by accuracy requirements.

Let the original function of the integrand y(x1, -

x2, …, xn) in Eq. (6) is Y(x1, x2, …, xn), according to

multiple integral theory, and the function Y is the weighted

algebraic sum of each vertex in a hypercube

D = {(x1, x2, …, xn)|x1
1 B x1 B x1

2, x2
1 B x2 B x2

2, …, xn
1

B xn B xn
2}, which can be expressed as

J ¼
X2
m1¼1

X2
m2¼1

� � �
X2
mn¼1

ð�1Þ
Pn
k¼1

mk

Yðxm1

1 ; xm2

2 ; . . .; xmn

n Þ ð7Þ

In this paper, the dual neural network will be used to

solve the original function of Eq. (6).
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3 Multiple integral calculation method based
on the dual neural network

Based on principle of neural network BP, network B is

used to establish the relationship of input variables X to the

original function Y. The network structure is shown in

Fig. 1.

The relationships between the output and input can be

expressed as

Y ¼
Xm
j¼1

f
Xn
i¼1

w1
jixi þ #j

 !
w2
j þ b ð8Þ

The derivation of Eq. (8) can be given by

y ¼ onY

ox1ox2. . .oxn

¼
Xm
j¼1

f ðnÞ
Xn
i¼1

w1
jixi þ #j

 !
w1
j1w

1
j2. . .w

1
jnw

2
j ð9Þ

where Wj = wj1
1 wj2

1…wjn
1 wj1

2 ,

Equation (9) can be rewritten as a function of the rela-

tionship between the output and input variables as below.

y ¼
Xm
j¼1

f ðnÞ
Xn
i¼1

w1
jixi þ #j

 !
Wj ð10Þ

The network, mapping relationship between the input

variable X to the function y, is called neural network A.

The structure of the network A is shown in Fig. 2.

Obviously, the original function of the integrand func-

tion y in the multiple integral Eq. (6) is Y. Accordingly, a

dual neural network is composed of neural network A and

neural network B. The neural networks A and B are,

respectively, called the integrand function network and

original function network.

From Eqs. (8) and (10), two networks with three layers,

namely integrand function network and the original

function of network, have n inputs, single output and m unit

in hidden layer. Let the connection weights and threshold

of input layer to hidden layer unit are, respectively, wji
1 and

#j, the connection weights and threshold of hidden layer to

output layer are Wj and 0, and the activation function of the

hidden layer units is f(n); then, in the integrand network, the

connection weights and threshold of input layer to hidden

layer unit are wji
1 and #j, the connection weights and

threshold of hidden layer to output layer areWj/
Q

i=1
n wji

1 and

b, and the activation function of the hidden layer units is

f. When the network A approximates to the integrand, the

network B approximates the original function.

In problems, set activation function of hidden layer units

is f = ex in network B. At this moment, the activation

function of hidden layer units is f(n) = ex in network A.

These two neural networks have the same activation

function. At the same time, Ref. [32] has verified that the

activation function of hidden layer units is exponential

function that has better accuracy and generalization ability

than the traditional logsig, tansig activation function.

Because learning rate of stability requirement is low, the

gradient descent method makes training slow. Although the

speed of the momentum gradient method is improved, it

still cannot meet the requirements of practical application.

Convergence speed of Newton’s method is quick. But in

each process of iteration, we need to calculate second

derivative of error function—Hessian matrix that makes

computational quantity very large. If the error performance

function in neural network is the form of sum of squares,

we can use Levenberg–Marquardt training algorithm (LM

algorithm). This algorithm does not need to calculate the

Hessian matrix; Hessian matrix can be approximately

substituted by following matrix. H = JTJ. Where the J is

jacobian matrix, it is about the function of weights and

thresholds; the training algorithm can be written as

Eq. (11).

wkþ1 ¼ wk � ½JTJ þ lI��1
JTe ð11Þ

f 

f 

f 

+ 

xn

x2

x1

Y

1
11w

1
mnw

2
1w

2
jw

2
mw

b 

Fig. 1 Structure of original function network B
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Fig. 2 Structure of integrand network A

428 Neural Comput & Applic (2018) 29:425–433

123



where wk is the corresponding weights vector in neural

network when kth training step, e is the error vector of

network, l is dynamic adjustable parameter. When l = 0,

the LM algorithm is equal to approximate Newton’s

method that has Hessian matrix. When l is big, it is equal

to gradient method that have short step. In the training

process of iteration, if success, it will decrease the value of

l; if failure, it will increase the value of l. Thus, the

performance function will decrease more and more. When

network A trains, the proposed method adopts the Leven-

berg–Marquardt training algorithm based on the above

theory.

4 Numerical example

4.1 Example 1

Assume that the performance function of a system is

g(x1, x2) = x1
3 ? x2

3 - 18, where x1 and x2 are independent

normally distributed random variables with the mean value

lx1 = lx2 = 10 and standard deviation rx1 = rx2 = 5,

respectively. Mathematically, the joint probability density

function of the input variables can be written as:

Hðx1; x2Þ ¼
1

2pr1r2
exp � 1

2

ðx1 � l1Þ
2

r21
þ ðx2 � l2Þ

2

r22

" #( )

H(x1, x2) and g(x1, x2) are substituted for Eq. (5) to obtain

the integrand. The range of x1 and x2[lx1 - 4rx1, -
lx1 ? 4rx1] and [lx2 - 4rx2, lx2 ? 4rx2] are, respec-

tively, divided into 100 parts. Two variables cross each

other to form network input samples. The integrand func-

tion is used to calculate output values the corresponding

input sample points. Network A training sample set is

shown in Table 1.

Activation function of hidden layer units is f = ex. This

example use Levenberg–Marquardt training algorithm. Set

neurons number of neural network A, B is s in hidden

layer. After adjustment, the hidden layer neurons s = 15.

Training integrand network A 100 steps, error convergence

curve is shown in Fig. 3.

The relationship of the dual neural network is used to

construct original function network B. Network A training

sample set of each vertex in a hypercube is calculated and

simulated with network B; the sample set is shown in

Table 2. The results are substituted to Eq. (7) to get the

result of reliability.

In order for accuracy comparisons, the results calculated

using the mean value first-order second moment

(MVFOSM) method, Hasofer–Lind (HL) method and

Monte Carlo simulation (MCS) method are also given. The

result calculated using MCS with sampling 1,000,000 is

viewed as accurate solutions. The relative errors compared

with MCS are shown in Table 3.

From Table 3, it can be seen that the accuracy of the

proposed method is higher than MVFOSM and HL when

compared to MCS. The accuracy of the MVFOSM and HL

are very low because the performance function is a highly

Table 1 Training sample set of

network A in example 1
x2 x1

y

-10 -9.6 -9.2 … 29.6 30

-10 0 0 0 … 0.0983e-8 0.0716e-8

-9.6 0 0 0 … 0.1350e-8 0.0983e-8

-9.2 0 0 0 … 0.1841e-8 0.1341e-8

… … … … … … …
29.6 0.0983e-8 0.1350e-8 0.1841e-8 … 0.1350e-8 0.0983e-8

30 0.0716e-8 0.0983e-8 0.1341e-8 … 0.0983e-8 0.0716e-8

Fig. 3 Training error curve of network A in example 1

Table 2 Simulative sample set

of network B in example 1
x1 30 30 -10 -10

x2 30 -10 30 -10
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nonlinear function. The efficiency of the proposed method

is higher than MCS significantly since the only 100 steps

are used for the proposed methods when compared to

1,000,000 trials for MCS.

4.2 Example 2

A plane frame structure is shown in Fig. 4; the perfor-

mance function of displacement is expressed as:

gðP;E; IÞ ¼ 5PL3

48EI
� L

30
, where P is concentrated load; L is

the length of the beam and L ¼ 5 m; E is the modulus of

elasticity; I is the inertia moment of the cross section. P,

E and I are random variables. E and I are normally dis-

tributed; P is extreme value distribution of type I. The

means lP, lE, lI of P, E, I are, respectively, 4 kN,

2.0 9 107 kN/m2, 1 9 10-4 m4.

According to the above example, the joint probability

density function of input variables P, E, I can be given by

HðP;E; IÞ ¼ a expf�ðP� dÞa� exp½�ðP� dÞa�g

� 1

2prErI
exp � 1

2

ðE � lEÞ2

r2E
þ ðI � lIÞ2

r2I

" #( )

where d = 3.5499, a = 1.2825.

H(P, E, I) and g(P, E, I) are substituted into Eq. (5);

then, integrand can be obtained.

Variables P, E, I are, respectively, divided into 10 parts

in the range of [lP - 4rP, lP ? 4rP], [lE - 4rE, -
lE ? 4rE] and [lI - 4rI, lI ? 4rI]. Each of the two

cross-variables is used as input samples for the network,

and the integrand function is employed to the corre-

sponding sample point of the network output value. In

order to avoid g(P, E, I) is zero, the first point of E is -0.2

that instead of a smaller value. Network A training sample

set is shown in Table 4.

Activation function of hidden layer units is f = ex. After

adjustment, the hidden layer neurons s = 45. Use Leven-

berg–Marquardt training algorithm. Training integrand

network A 3000 steps, error convergence curve is shown in

Fig. 5.

Network A training sample set of each vertex in a

hypercube is calculated and simulated with network B, and

the sample set is shown in Table 5. The results are sub-

stituted to Eq. (7) to get the result of reliability.

In order to observe the training sample quantity influ-

ence on computational accuracy, variables P, E, I are,

respectively, divided into 20 parts in the range of

[lP - 4rP, lP ? 4rP], [lE - 4rE, lE ? 4rE] and

[lI - 4rI, lI ? 4rI]. Use the same method to construct

and calculate the input and output sample points. Training

integrand network A after 3000 steps, error convergence

curve is shown in Fig. 6.

Use network B to simulate and calculate sample set in

Table 5; then, we get the structure reliability. In order to

demonstrate the efficiency and accuracy of the proposed

method, reliability calculated using the mean value first-

Table 3 Results calculated

using different method
Methods The proposed method MVFOSM HL MCS

Reliability 0.9966 0.8249 0.9875 0.9945

Relative error (%) 0.21 17.05 0.7 0

Fig. 4 Plane frame structure

Table 4 Training sample set of

network A in example 2
E, I (107kN/m2, 10-4 m4) y

P (kN) 0 0.8 1.6 … 7.2 8.0

-0.2 e-7 0.2 0 0 0 … 0.0021e-6 0.0008e-6

-0.2 e-7 0.36 0 0 0.0003e-6 … 0.0376e-8 0.0135e-6

-0.2 e-7 0.52 0 0 0.0024e-6 … 0.3529e-6 0.1273e-6

… … … … … … … …
-0.2 e-7 1.64 0 0 0.0003e-6 … 0.0376e-6 0.0135e-6

-0.2 e-7 1.8 0 0 0 … 0.0021e-6 0.0008e-6

… … … … … … … …
4 1.64 0 0 0.0003e-6 … 0.0376e-6 0.0135e-6

4 1.8 0 0 0 … 0.0021e-6 0.0008e-6
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order second moment (MVFOSM) method, Hasofer–Lind

(HL) method and Monte Carlo simulation (MCS) method is

also given in Table 6. All methods compared with MCS

with 1,000,000 samples are shown in Table 6. The result

calculated using MCS is viewed as ‘‘true value’’ for the

comparisons.

Figures 5 and 6 show that under the condition of same

training steps, the training sample points in Fig. 6 (divided

into 20 parts) are more than in Fig. 5 (divided into 10

parts). The network error in Fig. 6 is slightly bigger than in

Fig. 5. At the same time, more training sample points are

beneficial to approximate integrand surface, so the training

result of each variable divided into 20 parts is better than

10 parts. That is, the more training sample points of inte-

grand, the accuracy of original function is more improved

and the reliability calculation accuracy is also higher.

From Table 6, compared with the example 1, the

accuracy of example 2 is affected by the number of sample

points decrease, the computational accuracy slightly

decrease. But with the increase in the number of sample

points, computational accuracy improves. When sample

points of each variable doubled, the relative error reduced

from 2.972 % to 1.481 %. It can be seen that the results

calculated using the proposed method are accurate when

compared to MCS. However, the efficiency of the proposed

method is higher than MCS because it requires fewer

samples. The neural networks are trained using 3000 steps

to meet the requirement.

5 Conclusions

This paper presents a reliability analysis method based on

dual neural network. This method has higher accuracy than

traditional first-order second moment method (the mean

value first-order second moment (MVFOSM) method,

Hasofer–Lind (HL) method). When the training sample

points are so few (each variable divided into 10 parts), the

computational accuracy of this method is \3 %. It still

meets the precision requirement in engineering. With the

increase in sample points (each variable divided into 20

parts), computational accuracy also increases accordingly.

The major contribution of this paper is that a dual

neural network is developed which can be used for inte-

gral and multiple integral efficiently. Because of the

training sample set come from the integrand, we do not

need to establish the original function and mapping

relationship of the random variables. Thus, we select

sample set conveniently. It will improve the computa-

tional accuracy of reliability. In addition, this paper

Fig. 5 Training error curve of network A (average divide to 10)

Table 5 Simulative sample set of network B in example 2

P 0 0 0 0 8 8 8 8

E 0 0 4 4 0 0 4 4

I 0.2 1.8 0.2 1.8 0.2 1.8 0.2 1.8

Fig. 6 Training error curve of network A (average divide to 20)

Table 6 Example 2 reliability calculation results

Method The proposed method (divided into 10 parts) The proposed method (divided into 20 parts) MVFOSM HL MCS

Reliability 0.9696 0.9845 0.9956 0.9996 0.9993

Relative error (%) 2.972 1.481 0.37 0.03 0
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adopted uniform sampling method to select the training

sample points set in the variable space, to a certain extent,

which affect the calculation accuracy and efficiency. In

the later work, uniform sampling method will combine

with orthogonal experiment design method [33], super

Latin cube sampling method [34] to select training sample

points set. It is expected to further enhance accuracy and

efficiency of the algorithm in this paper.

Modeled on the structure principle of the dual neural

network, the proposed method in this paper can easily

expand to solve problems of partial differential equation and

fractional-order derivative equation. This will provide a new

thought, which can solve elastic mechanics, structural

dynamics, viscoelastic mechanics analysis in large complex

structure. At the same time, the proposed method is also

expected to reveal how to utilize the existing mathematics

(mechanical) model to determine network structure of the

neural network. At this moment, neural network not only is a

black box system that depends on the input and output data,

but also can make existing knowledge and rule (equations)

effectively integrate into the network. The structure of

neural network is more reasonable and rational; this rational

neural network calculation method plays a bigger role in the

problems of structure analysis.
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