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Abstract In the present study, nature-inspired computing

technique has been designed for the solution of nonlinear

systems by exploiting the strength of particle swarm opti-

mization (PSO) hybrid with Nelder–Mead method (NMM).

Fitness function based on least square approximation the-

ory is developed for the systems, while optimization of the

design variables is performed with PSO, an efficient global

search method, refined with NMM for rapid local conver-

gence. Sixteen variants of the proposed hybrid

scheme PSO-NMM have been evaluated on five bench-

mark nonlinear systems, namely interval arithmetic

benchmark model, kinematic application model, neuro-

physiology problem, combustion model and chemical

equilibrium system. Reliability and effectiveness of the

proposed solver have been validated after comparison with

the results of statistical analysis based on massive data

generated for sufficiently large number of independent

executions.

Keywords Nonlinear system of equations � Hybrid

computing � Particle swarm optimization � Nelder–Mead

method � Nature-inspired computing � Benchmark models

Mathematics Subject Classification 65H10 � 65H20 �
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1 Introduction

Strength of artificial intelligence algorithms (AIAs) has

extensively been exploited to optimize the difficult non-

linear problems arising in a variety of fields [1–3]. Espe-

cially in computational and applied mathematics, AIAs

based on unsupervised feed-forward artificial neural net-

works (ANNs) trained with global and local search

methodologies have been applied to solve many linear and

nonlinear systems. Few potential applications of AIA using

ANNs, evolutionary and swarming intelligence, are highly

stiff oscillatory systems based on Van der Pol-type non-

linear differential equations [4], mathematical model for

fuel ignition model in combustion theory through one-di-

mensional Bratu-type equations [5], transformed third-

order BVP of nonlinear two-dimensional Bratu-type

equations [6], the maximum flow problem [7], similarity

transformed system for thin film flow of third-grade fluids

[8], nonlinear Lane–Emden-type equations [9], mathemat-

ical model for confinement of plasma represented with

Troesch-type problems [10], magnetohydrodynamics
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(MHD) problem of fluid flow governed with Jeffery–

Hamel-type equations [11], nonlinear Emden–Fowler type

singular system [12], nonlinear first Painlevé-type equa-

tions [13, 14], nonlinear systems based on initial value

problems [15], functional ordinary differential equations of

pantograph types [16], fractional differential equations of

nonlinear Riccati types [17], nanotechnology problems

based on multi-wall carbon nanotubes [18] and fluid

mechanic problem based on steady thin film flow of

Johnson–Segalman fluid on vertical cylinder [19].

A number of numerical solvers have been proposed by

the research community for solving problems based on

nonlinear system of equations [20–22], but one of the

simplest, oldest and, most commonly used numerical pro-

cedures is Newton–Raphson method (NRM) [23, 24], but

its performance is sensitive to the initial weights as it is

highly prone to getting stuck in the local minimum.

Therefore, in order to utilize NRM algorithm effectively

for the solution of system of nonlinear equations, it is

supplied with biased initial guess by another global search

solver. Besides NRM, many other iterative and recursive

solvers have been introduced and used in applied mathe-

matics, literature due to their unique advantages, limita-

tions and applicability. For instance, Kelley, Campbell and

Broyden’s provided numerical schemes for the solution of

nonlinear equations and their systems [25–27]. Jacobian-

free Newton–Krylov method has been used for deriving the

lower triangular half of the sparse Jacobian matrix through

automatic differentiation [28, 29]. Recently, Jafari and

Gejji, Abbasbandy, Sharma and Vahidi have provided new

solver [30–36] to effectively determine the solution of

problems based on nonlinear equations. Most of the solu-

tions available in the existing literature are based on

deterministic procedure using iterative and recursive sol-

vers [37–39], but well-established strength of the stochastic

solvers, based on AIAs, has not been extensively explored

for the solution of nonlinear equations. The aim of this

study is to investigate the potential of AIA algorithms

based on NIC technique for providing an alternate, accu-

rate, convergent and efficient system for solving system of

nonlinear equations.

In this study, NIC technique based on swarm intelligence

aided with NMM is applied for solving nonlinear systems.

Sixteen variants of particle swarm optimization (PSO)

algorithm have been developed and applied to optimize the

variables for five well-known nonlinear systems. The design

parameters of these systems are further tuned with NMM for

rapid local convergence. The salient features of the proposed

methodologies are given briefly as:

• Novel design of nature-inspired heuristic algorithms

based on exploration and exploitation in standard PSO

method hybrid with NMM to solve nonlinear systems.

• Performance of the proposed schemes is evaluated on

five benchmark models based on interval arithmetic

benchmark, kinematic application, neurophysiology,

combustion and chemical equilibrium models.

• Reliability and effectiveness of the schemes are

analyzed through the results of statistical analyses

based on sufficiently large number of independent runs.

• Computational complexity indices are used to measure

the comparative efficiency.

• Simple concept, effortlessness in implementations,

consistent accuracy, steady convergence and wider

applicability domain are the significant illustrative

perks of the schemes.

The rest of the paper is organized as follows: In section

two, design methodology for solving nonlinear equations

and their systems is presented, i.e., formulation of the

objective function and learning methodologies used for

training. In section three, results of simulation are pre-

sented and compared with the studies based on statistical

performance indices for accuracy and complexity. Con-

clusions and potential future research directions are sub-

mitted in the last section.

2 Methodology

Design scheme presented here for finding the solution of

systems of nonlinear equations consists of two parts: In the

first part, formulation of objective function based on the

residual error in absolute or the mean square sense is for-

mulated, while in the second part, details of PSO and its

variants are outlined. The graphical abstract of the pro-

posed methodology is shown in Fig. 1.

2.1 Fitness function for systems nonlinear

of equations

General form of system of nonlinear equations is written

as:

XðyÞ ¼ 0: ð1Þ

Equation (1) can be written in the expanded form as:

XðyÞ ¼ 0;)

x1ðyÞ
x2ðyÞ
..
.

xnðyÞ

2
6664

3
7775 ¼ 0;

)

x1ðy1; y2; y3; . . .; ynÞ ¼ 0;
x2ðy1; y2; y3; . . .; ynÞ ¼ 0;

..

.

xnðy1; y2; y3; . . .; ynÞ ¼ 0:

8>>><
>>>:

ð2Þ
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To determine the solution for a system (1) with n

number of unknowns and n number of equations, objective

function based on the residual error in mean absolute or

square sense can be written as [37, 38]:

Oir ¼

1

n

Xn
i¼1

rij j; or

1

n

Xn
i¼1

r2
i :

8>>>><
>>>>:

ð3Þ

Problem
Nonlinear Equations Systems

Fitness
Calculations

Termination
Criterion
Achieved? Yes

No

PSO Initialization: Create Initial Swarm of
Particles, Random Assignment and Declarations

Update
for each flight

Global best

Economics ModelingNeurophysiology Model

Combustion Theory ModelChemical Equilibrium
Model

Interval Arithmetic
Benchmark Model

Mathematical Modeling Fitness function formulation
Absolute or Square Residual Error Function

Optimization Nature Inspired Computing
Particle Swarm Optimization (PSO)

Refinement
Nelder Meads Method(NMM)

Final Weights for
PSO-NMM

Position

Velocity

Local best

NMM Initialization: Best Particle as a Initial
weights, Random Assignment and Declarations

Fitness
Calculations

Termination
Criterion
Achieved?

Update
for each cycle

Weights
optimization using
NMM for step

Increment in the
algorithm

No

Yes

Proposed
Results

Store: Optimized variable, Fitness and
execution time

Approximate solution for
nonlinear systems X(t) = 0

Fig. 1 Graphical view of proposed design methodology
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where (r1, r2, …, rn) are the residual error functions asso-

ciated with (x1, x1, …, xn) equations, respectively, and can

be written as:

r ¼

r1

r2

..

.

rn

2
6664

3
7775 ¼

x1ðy1; y2; y3; . . .; ynÞ
x2ðy1; y2; y3; . . .; ynÞ

..

.

xnðy1; y2; y3; . . .; ynÞ

2
6664

3
7775: ð4Þ

Now objective is to determine the variables of system

(1), such that the residual error function (3) Oir ! 0, which

is only possible when each of r = [r1, r2,…,rn] ? 0,

consequently XðyÞ ! 0, i.e., values of the vector y ¼
½y1; y2; y3; . . .; yn� will be the approximate solution for the

system.

2.2 Optimization of variables

The procedure to use NIC technique based on variants of

PSO for the optimization of residual error is elaborated in

this section. PSO algorithms, introduced by Kennedy and

Eberhart [40], belong to the class of NIC and have been

developed using mathematical model of bird flocking and

fish schooling. Reliable and efficient exploration and

exploitation of candidate solutions is a well-established

strength of PSO algorithm, and its convergence and sta-

bility are well-proven facts on number of benchmark

problems; please see [41–45] and references therein.

Numerous discrete and continuous types of the PSO

algorithms have been used for optimization in many

applications such as adaptive IIR system identification

[46], text feature selection [47], product quality estimation

[48], nonlinear parameter estimation [49] and optimization

of fractional order PID controller [50].

Following the standard procedure of PSO algorithm, a

candidate solution of the problem-specific objective func-

tion, known as a particle, is globally searched in the entire

space. The population of these candidate solutions or par-

ticles is named as a ‘swarm’. All particles of the swarm

have their own role to find a better solution of the problem-

specific objective function. The particles are initialized

randomly, and then, they participate in the process of

optimization as a set of particle, i.e., population or swarm.

Update in the position and velocity of every particle is

made during each flight or iteration taking into account of

their previous local PLbest
t-1 and global PGbest

t-1 best positions.

The mathematical structure of standard PSO in terms of

velocity and updated positions’ equations is written as:

vt
i ¼ wvt�1

i þ a1rand1 Pt�1
Lbest � zt�1

i

� �
þ a2rand2 Pt�1

Gbest � zt�1
i

� �
; ð5Þ

zti ¼ zt�1
i þ vt

i; ð6Þ

where the vector zi is the ith particle of the swarm Z, i.e.,

Z = [z1, z2,…,zm], and m integer denotes the total number

of particles. Velocity vector (vi) is associated with

respective ith zi particle, w is the inertia weight, a1 is a

local acceleration factor, a2 is the global acceleration

constant, while rand1 and rand2 are random vectors with

elements bounded between 0 and 1. The values of constants

w, a1 and a2 are linearly increasing or decreasing over the

course of the search between 0 and 1. The elements of

velocity are limited to its minimum (MIN) and maximum

(MAX) values, i.e., vi [ [-vmax, vmax].

Power of updating weights with PSO decreases con-

siderably with the increase in the number of flights of the

swarm; therefore, the real strength of this global optimizer

can be seen by the process of hybridization with the local

search algorithm. Nelder–Mead method (NMM) is an

efficient local search algorithm incorporated for further

refinement of the results by taking the global best particles

of PSO as the starting point of the NMM algorithm. The

flow diagram of the proposed mechanism based on PSO-

NMM for optimization of residual error function is shown

in Fig. 1, while the details about the intermediate steps are

as follows:

Step 1: Initialization of PSO Initialize the particle with

randomly assigned bounded real entries equal to the

number of unknown variables of nonlinear systems.

Mathematical notation of the particle is given as:

z ¼ ½y1; y2; y3; . . .; yn�

where member of the particle represents the solution for

the system. The set of particles m, i.e., swarm Z, is

written as:

Z ¼

z1

z2

..

.

zm

2
6664

3
7775 ¼

y1; y2; y3; . . .; yn
y1; y2; y3; . . .; yn

..

.

y1; y2; y3; . . .; yn

2
6664

3
7775:

Sixteen variants of PSO algorithm are formulated for

different values assigned to m, i.e., number of particles

in the swarm and the number of flights a swarm exe-

cuted. The variants of PSO algorithms are listed in

Table 1. The fixed parameters initialized to each variant

of PSO algorithm are listed in Table 2. These parameters

are set carefully after extensive numerical experimen-

tation to avoid premature convergence.

Step 2: Fitness evaluation Calculate the value of residual

error for each particle by using the relationship given in

Eq. (3).

1172 Neural Comput & Applic (2018) 29:1169–1193

123



Step 3: Ranking Rank each particle through the MIN

values of the residual error function, and the particle

with smaller values is ranked higher and vice versa.

Step 4: Termination Terminate the executions of PSO

variants for the following conditions:

• Predefined fitness value is achieved, e.g.,

Oir B 10-15

• A MAX number of cycles or flights are executed. If

above mentioned criteria are fulfilled, then proceed

to step 6; otherwise, continue.

Step 5: Renewal Renew the velocity and position of the

particles using Eqs. (5) and (6), respectively. Proceed to

step 2 for the next flight of the swarm Z.

Step 6: Fine tuning: MATLAB built-in routine for

optimization through ‘fminsearch’ function is utilized for

simplex approach based on Nelder–Meads method. The

refinement of the parameters is attained by taking best

particle of PSO variants as initial weights, while other

values of parameters are set as per values given in Table 2.

The theory, underlying concepts, mathematical description

and applications of NMM can be seen in [51, 52].

Step 7: Storage Values of the best global of PSO and

PSO-NMM along with their corresponding residual error

functions and time consumed are stored for the execu-

tion of the algorithm.

Step 8: Statistical analysis To generate a large set of data

for reliable statistical analysis, repeat the steps 1–7 of the

PSO-NMM procedure to form a sufficiently large

number of independent executions.

3 Numerical experimentation

Results of sixteen variants of PSO and PSO-NMMs to find

the solution of systems of nonlinear equations for five

different problems are presented here. Comprehensive

numerical experimentation for each case study is carried

out to check the effectiveness of the proposed schemes in

comparison with the results of statistical analysis.

Table 1 List of PSO variants

hybrid with NMMs
Method Parameters values Method Parameters values

Flights Particles Flights Particles

PSO-NMM-1 50 25 PSO-NMM-9 250 25

PSO-NMM-2 50 50 PSO-NMM-10 250 50

PSO-NMM-3 50 100 PSO-NMM-11 250 100

PSO-NMM-4 50 200 PSO-NMM-12 250 200

PSO-NMM-5 100 25 PSO-NMM-13 500 25

PSO-NMM-6 100 50 PSO-NMM-14 500 50

PSO-NMM-7 100 100 PSO-NMM-15 500 100

PSO-NMM-8 100 200 PSO-NMM-16 500 200

Table 2 Parameters’ settings for the optimization algorithms

Method Parameters Settings Parameters Settings

PSO Particle size: optimization

variables

10, 5, 6, 10 and 5 for P-1 to P-5,

respectively

Local acceleration c1 Linear decreasing (2.5–0.5)

Vmax 02 Global acceleration

c2

Linear increasing (0.5–2.5)

Function tolerance ‘Tolfun’ 0 Inertia x Linearly decreasing

(0.9–0.4)

NMM Initial weights Best particles of PSO X-tolerance ‘TolX’ 0

‘MaxIter’ 10,000 Velocity Span (-2, 2)

‘MaxFunEvals’ 200,000 Other Defaults

Neural Comput & Applic (2018) 29:1169–1193 1173
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3.1 Problem 1: interval arithmetic benchmark

model

In this study, the performance of the design solver is

examined for nonlinear system of equations of interval

arithmetic benchmark (IAB) model. Mathematical expres-

sions of nonlinear equations of the IAB model [53–56] can

be written as:

Fig. 2 Proposed results of PSO and PSO-NMMs for interval

arithmetic benchmark model presented in problem 1. a Approximate

solution for PSO-1. b Absolute errors (AEs) for constituents equations

of the system. c AEs for PSO-5 to PSO-8. d AEs for PSO-9 to PSO-

12. e AEs for PSO-13 to PSO-16. f Approximate solution for PSO-

NMM-1. g Absolute errors (AEs) for constituents equations of the

system. h AEs for PSO-NMM-5 to PSO-NMM-8. i AEs for PSO-

NMM-9 to PSO-NMM-12. j AEs for PSO-NMM-13 to PSO-NMM-

16

1174 Neural Comput & Applic (2018) 29:1169–1193
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x1ðyÞ
x2ðyÞ
x3ðyÞ
x4ðyÞ
x5ðyÞ
x6ðyÞ
x7ðyÞ
x8ðyÞ
x9ðyÞ
x10ðyÞ

2
6666666666666666664

3
7777777777777777775

¼ 0 )

y1 � 0:25428722 � 0:18324757y4y3y9 ¼ 0;

y2 � 0:37842197 � 0:16275449y1y10y6 ¼ 0;

y3 � 0:27162577 � 0:16955071y1y2y10 ¼ 0;

y4 � 0:19807914 � 0:15585316y7y1y6 ¼ 0;

y5 � 0:44166728 � 0:19950920y7y6y3 ¼ 0;

y6 � 0:14654113 � 0:18922793y8y5y10 ¼ 0;

y7 � 0:42937161 � 0:21180486y2y5y8 ¼ 0;

y8 � 0:07056438 � 0:17081208y1y7y6 ¼ 0;

y9 � 0:34504906 � 0:19612740y10y6y8 ¼ 0;

y10 � 0:42651102 � 0:21466544y4y8y1 ¼ 0:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð7Þ

Here the system model (7) consists of 10 equations and

the unknown vector y ¼ ½y1; y2; y3; . . .; yn� comprises of

n = 10 elements. The proposed hybrid schemes are applied

to solve a nonlinear equation as per the procedure outlined

in the last section, while the residual error as fitness

function for the system is constructed as:

Optimization of residual error function (8) is conducted

with sixteen variants of PSO and PSO-NMMs for 100

independent executions. The approximate solutions and

their absolute errors (AEs) calculated for each equation of

nonlinear system (7) are shown graphically in Fig. 2 for

both algorithms. Results are also calculated for statistical

performance indices in terms of mean and standard

deviation (STD) values and are listed in Table 3 for both

PSO and PSO-NMMs. It can be seen that average residual

error for PSO-1 to PSO-4, PSO-5 to PSO-8, PSO-9 to PSO-

12 and PSO-13 to PSO-16 lies in the range 10-05–10-07,

10-07–10-10, 10-15–10-22, and 10-12–10-34, respectively,

while for PSO-NMMs, these results are around 10-31–

10-34. It is observed that the increase in number of flights

from 50 to 500 or swarm size from 25 to 200 particles

contributes toward the improvement of results, which is

more conspicuous for PSO-1 to PSO-12. Generally, the

results obtained by hybrid approaches PSO-NMM have

higher precision than that of PSO variants, while compar-

ing the hybrid approaches, no significant difference is seen

in the results.

3.2 Problem 2: chemical equilibrium application

model (CEAM)

To observe the performance of proposed solver, a second

case of nonlinear equation systems has been taken from

CEAM [53, 54, 57]. Mathematical relations for CEAM can

be written as follows:

here the values of the constants are c ¼ 10; c5 ¼
0:193; c6 ¼ 0:000410; c7 ¼ 0:000545; c8 ¼ 0:000000449;

c9 ¼ 0:0000340; and c10 ¼ 0:000000961. The unknown

vector, y ¼ ½y1; y2; y3; y4; y5�, comprises of n = 5 elements.

Oir ¼ 1

10

X10

i¼1

r2
i

¼ 1

10

X10

i¼1

y1 � 0:25428722 � 0:18324757y4y3y9ð Þ2þ y2 � 0:37842197 � 0:16275449y1y10y6ð Þ2þ
y3 � 0:27162577 � 0:16955071y1y2y10ð Þ2þ y4 � 0:19807914 � 0:15585316y7y1y6ð Þ2þ
y5 � 0:44166728 � 0:19950920y7y6y3ð Þ2þ y6 � 0:14654113 � 0:18922793y8y5y10ð Þ2þ
y7 � 0:42937161 � 0:21180486y2y5y8ð Þ2þ y8 � 0:07056438 � 0:17081208y1y7y6ð Þ2þ
y9 � 0:34504906 � 0:19612740y10y6y8ð Þ2þ y10 � 0:42651102 � 0:21466544y4y8y1ð Þ2

0
BBBBBB@

1
CCCCCCA
:

ð8Þ

x1ðyÞ
x1ðyÞ
x1ðyÞ
x1ðyÞ
x1ðyÞ

2
6666664

3
7777775
¼ 0;)

y1y2 þ y1 � 3y5 ¼ 0;

2y1y2 þ y1 þ y2y
2
3 þ c8y2 � cy5 þ 2c10y

2
2 þ c7y2y3 þ c9t2t4 ¼ 0;

2y2y
2
3 þ 2c5y

2
3 � 8y5 þ c6y3 þ c7y2y3 ¼ 0;

c9y2y4 þ 2y2
4 � 4cy5 ¼ 0;

y1ðy2 þ 1Þ þ c10y
2
2 þ y2y

2
3 þ c8y2 þ c5y

2
3 þ y2

4 � 1 þ c6y3 þ c7t2t3 þ c9t2t4 ¼ 0:

8>>>>>><
>>>>>>:

ð9Þ
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Similar approach, adopted in the last problem, is followed

to solve the equations of the system (9), but the residual

error function for this case is developed as given below:

Approximate solutions and their AEs calculated for each

equation of the system (9) are given in Fig. 2 for both

variants of PSO and PSO-NMMs, while the results for a

statistical indicator of mean and STD values are listed in

Table 4. It is observed that MIN values of residual error for

PSO-1 to PSO-16 range from 10-04 to 10-07, while these

values for PSO-NMMs range from 10-31 to 10-34. The

residual error on the basis of mean values of both the

algorithm is around 10-03; this is due to the fact that a

single bad run can drastically affect the mean values. It is

also observed that the increase in number of flights or

particles in PSO does not contribute toward a decrease in

the residual error for this problem (Fig. 3).

3.3 Problem 3: neurophysiology application model

The performance of the proposed scheme is examined for

nonlinear systems representing the neurophysiology

application model (NPAM). The NPAM is written in terms

of simultaneous equations as follows: [53, 58]

x1ðyÞ
x2ðyÞ
x3ðyÞ
x4ðyÞ
x5ðyÞ
x6ðyÞ

2
666666664

3
777777775
¼ 0;)

y2
1 þ y2

3 � 1 ¼ 0;

y2
2 þ y2

4 � 1 ¼ 0;

y5y
2
3 þ y6y

2
4 � c1 ¼ 0;

y5y
3
1 þ y6y

3
2 � c2 ¼ 0;

y5y1y
2
3 þ y6y

2
4y2 � c3 ¼ 0;

y5y
2
1y3 þ y6y

2
2y4 � c4 ¼ 0:

8>>>>>>>><
>>>>>>>>:

ð11Þ

Here the values of constant c1, c2, c3 and c4 are zeros. System

(10) consists of six unknown and six numbers of equations;

therefore, the residual error function is formulated as:

Table 3 Results of statistical

performance indices for 100

independent runs of PSO and

PSO-NMMs in case of problem

1

Methods Fitness ‘OIR values’ Methods Fitness ‘OIR values’

MIN Mean STD MIN Mean STD

PSO-1 1.05E-05 1.26E-04 2.71E-04 PSO-NMM-1 3.46E-33 6.20E-32 9.22E-32

PSO-2 2.10E-06 2.62E-05 2.22E-05 PSO-NMM-2 1.87E-33 8.87E-32 1.94E-31

PSO-3 7.81E-07 7.81E-06 5.83E-06 PSO-NMM-3 2.01E-33 1.29E-31 4.95E-31

PSO-4 3.93E-07 2.91E-06 1.79E-06 PSO-NMM-4 8.62E-34 8.33E-32 1.63E-31

PSO-5 2.28E-09 1.58E-07 5.46E-07 PSO-NMM-5 2.20E-33 8.20E-32 2.13E-31

PSO-6 4.46E-10 7.82E-09 9.67E-09 PSO-NMM-6 2.13E-33 7.00E-32 9.58E-32

PSO-7 6.68E-11 1.12E-09 1.10E-09 PSO-NMM-7 1.57E-33 1.09E-31 2.28E-31

PSO-8 1.26E-11 2.00E-10 2.33E-10 PSO-NMM-8 1.70E-33 5.95E-32 1.47E-31

PSO-9 3.36E-19 3.82E-15 1.68E-14 PSO-NMM-9 1.69E-33 9.41E-32 3.18E-31

PSO-10 1.18E-21 5.57E-19 9.83E-19 PSO-NMM-10 3.09E-33 1.39E-31 6.11E-31

PSO-11 3.54E-23 1.04E-20 2.79E-20 PSO-NMM-11 1.07E-33 6.93E-32 1.10E-31

PSO-12 1.47E-24 1.11E-22 1.53E-22 PSO-NMM-12 1.99E-33 8.50E-32 2.51E-31

PSO-13 3.53E-34 1.31E-12 1.31E-11 PSO-NMM-13 3.53E-34 1.99E-32 4.07E-32

PSO-14 2.72E-34 4.26E-34 8.89E-34 PSO-NMM-14 2.72E-34 3.57E-34 2.44E-34

PSO-15 2.72E-34 2.72E-34 0.00E?00 PSO-NMM-15 2.72E-34 2.72E-34 0.00E?00

PSO-16 2.72E-34 2.72E-34 0.00E?00 PSO-NMM-16 2.72E-34 2.72E-34 0.00E?00

Oir ¼ 1

5

X5

i¼1

r2
i

¼ 1

5

X5

i¼1

y1y2 þ y1 � 3y5ð Þ2þ 2y1y2 þ y1 þ y2y
2
3 þ c8y2 � cy5 þ 2c10y

2
2 þ c7y2y3 þ c9t2t4

� �2

þ 2y2y
2
3 þ 2c5y

2
3 � 8y5 þ c6y3 þ c7y2y3

� �2þ c9y2y4 þ 2y2
4 � 4cy5

� �2

þ y1ðy2 þ 1Þ þ c10y
2
2 þ y2y

2
3 þ c8y2 þ c5y

2
3 þ y2

4 � 1 þ c6y3 þ c7t2t3 þ c9t2t4
� �2

0
BB@

1
CCA:

ð10Þ
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Optimization of error function (11) is performed with

PSO and PSO-NMMs, and results are listed in Table 5 in

terms of statistical operator of the mean and standard devi-

ation, while the approximate solutions and their AEs for the

constituting equations are plotted in Fig. 4. It is seen that

average residual error for PSO-1 to PSO-4, PSO-5 to PSO-8,

PSO-9 to PSO-12 and PSO-13 to PSO-16 lies in the range

10-06–10-07, 10-07–10-09, 10-09–10-11 and 10-10–10-11,

respectively, while for PSO-NMMs, these results are around

10-21–10-32. Additionally, desired minimum values of

residual errors are achieved for each PSO-NMM, while these

results are only obtained from PSO-13 to PSO-16. It is

observed that highly accurate results are determined con-

sistently with hybrid algorithms for this problem.

3.4 Problem 4: combustion theory application

model

In this case, performance of the proposed solver is evalu-

ated for the well-known system of nonlinear equations

representing combustion process with temperature around

3000 �C [53, 59]. Governing mathematical expressions for

this problem are given below:

x1ðyÞ
x2ðyÞ
x3ðyÞ
x4ðyÞ
x5ðyÞ
x6ðyÞ
x7ðyÞ
x8ðyÞ
x9ðyÞ
x10ðyÞ

2
6666666666666666664

3
7777777777777777775

¼ 0 )

y2 þ 2y6 þ y9 þ 2y10 � 10�5 ¼ 0;

y3 þ y8 � 3� 10�5 ¼ 0;

y1 þ y3 þ 2y5 þ 2y8 þ y9 þ y10 � 5� 10�5 ¼ 0;

y4 þ 2y7 � 10�5 ¼ 0;

0:5140437 � 10�7y5 � y2
1 ¼ 0;

0:1006932� 10�6y6 � 2y2
2 ¼ 0;

0:7816278� 10�15y7 � y2
4 ¼ 0;

0:1496236� 10�6y8 � y1y3 ¼ 0;

0:6194411� 10�7y9 � y1y2 ¼ 0;

0:2089296� 10�14y10 � y1y
2
2 ¼ 0:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð13Þ

Similar approach, as followed in the previous cases, is

adopted to solve system (13) by constructing a residual

error function for the number of unknown n = 10 as:

Table 4 Results of statistical

performance indices for 100

independent runs of PSO and

PSO-NMMs in case of problem

2

Methods Fitness ‘OIR values’ Methods Fitness ‘OIR values’

MIN Mean STD MIN Mean STD

PSO-1 5.80E-05 5.41E-03 7.62E-03 PSO-NMM-1 3.74E-34 3.37E-03 7.00E-03

PSO-2 1.99E-04 4.61E-03 7.58E-03 PSO-NMM-2 2.44E-33 3.37E-03 7.00E-03

PSO-3 2.40E-05 2.67E-03 6.01E-03 PSO-NMM-3 1.31E-33 1.78E-03 5.35E-03

PSO-4 4.33E-05 2.15E-03 5.49E-03 PSO-NMM-4 4.18E-34 1.60E-03 5.11E-03

PSO-5 1.28E-04 3.00E-03 6.65E-03 PSO-NMM-5 2.38E-33 2.49E-03 6.19E-03

PSO-6 4.82E-05 2.11E-03 5.75E-03 PSO-NMM-6 3.58E-34 1.78E-03 5.35E-03

PSO-7 3.34E-05 1.85E-03 5.43E-03 PSO-NMM-7 6.56E-35 1.42E-03 4.84E-03

PSO-8 4.49E-05 6.39E-04 2.78E-03 PSO-NMM-8 4.30E-34 3.55E-04 2.50E-03

PSO-9 3.89E-05 4.68E-03 8.14E-03 PSO-NMM-9 2.44E-33 3.91E-03 7.39E-03

PSO-10 2.54E-05 1.90E-03 5.53E-03 PSO-NMM-10 2.22E-34 1.42E-03 4.84E-03

PSO-11 2.11E-05 1.15E-03 4.23E-03 PSO-NMM-11 1.21E-33 1.07E-03 4.24E-03

PSO-12 9.84E-06 5.79E-04 3.04E-03 PSO-NMM-12 2.58E-34 5.33E-04 3.04E-03

PSO-13 2.75E-05 3.44E-03 7.04E-03 PSO-NMM-13 1.11E-34 3.37E-03 7.00E-03

PSO-14 1.39E-05 2.81E-03 6.44E-03 PSO-NMM-14 1.10E-33 2.66E-03 6.37E-03

PSO-15 3.55E-06 1.61E-03 5.10E-03 PSO-NMM-15 1.22E-34 1.60E-03 5.11E-03

PSO-16 4.16E-07 5.73E-04 3.05E-03 PSO-NMM-16 5.93E-34 5.33E-04 3.04E-03

Oir ¼ 1

6

X6

i¼1

r2
i

¼ 1

5

X5

i¼1

y2
1 þ y2

3 � 1
� �2þ y2

2 þ y2
4 � 1

� �2þ y5y
2
3 þ y6y

2
4 � c1

� �2þ y5y
3
1 þ y6y

3
2 � c2

� �2

þ y5y1y
2
3 þ y6y

2
4y2 � c3

� �2þ y5y
2
1y3 þ y6y

2
2y4 � c4

� �2

 !
:

ð12Þ
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Fig. 3 Proposed results of PSO and PSO-NMMs for chemical

equilibrium application model presented in problem 2. a Approximate

solution for PSO-1. b Absolute errors (AEs) for constituents equations

of the system. c AEs for PSO-5 to PSO-8. d AEs for PSO-9 to PSO-

12. e AEs for PSO-13 to PSO-16. f Approximate solution for PSO-

NMM-1. g Absolute errors (AEs) for constituents equations of the

system. h AEs for PSO-NMM-5 to PSO-NMM-8. i AEs for PSO-

NMM-9 to PSO-NMM-12. j AEs for PSO-NMM-13 to PSO-NMM-

16
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Optimization of residual error function (13) is con-

ducted, and approximate solutions are plotted graphically

in Fig. 5 for variants of PSO and PSO-NMMs. The values

of mean and STD based on 100 independent runs of the

algorithms are listed in Table 6. It can be seen that average

residual error for PSO-1 to PSO-4, PSO-5 to PSO-8, PSO-9

to PSO-12 and PSO-13 to PSO-16 ranges from 10-04 to

10-05, 10-05–10-06, 10-07–10-08 and 10-07–10-09,

respectively, while for PSO-NMMs these results are around

10-17. Minimum values of PSO and PSO-NMMs range

from 10-05 to 10-12 and 10-33–10-35, respectively. The

dominance of hybrid schemes is generally observed for this

case study as well.

3.5 Problem 5: economics modeling system

The econometric model of arbitrary dimensions is studied

in this case [53, 59]. The problem in term of mathematical

equations is stated as:

yk þ
Pn�k�1

i¼1

yiyi þ k

� �
yn � ck ¼ 0; 1� k� n� 1

Pn�1

i¼1

yi þ 1 ¼ 0:

8>><
>>:

ð15Þ

Here the value of constant ck is chosen randomly. Pro-

posed schemes are examined in a special case of the

problem (15) by taking the values of n = 5 and k = [1–4]

as:

x1ðyÞ
x2ðyÞ
x3ðyÞ
x4ðyÞ
x5ðyÞ

2
6666664

3
7777775
¼ 0;)

y1 þ y2 þ y3 þ y4 þ 1 ¼ 0;

y1y5 þ y1y2y5 þ y2y3y5 þ y3y4y5 � 1 ¼ 0;

y2y5 þ y1y3y5 þ y2y4y5 � 1 ¼ 0;

y3y5 þ y1y4y5 � 1 ¼ 0;

y4y5 � 1 ¼ 0:

8>>>>>><
>>>>>>:

ð16Þ

Table 5 Results of statistical

performance indices for 100

independent runs of PSO and

PSO-NMMs in case of problem

3

Methods Fitness ‘OIR values’ Methods Fitness ‘OIR values’

MIN Mean STD MIN Mean STD

PSO-1 2.11E-08 7.07E-06 1.56E-05 PSO-NMM-1 0.00E?00 3.17E-15 3.17E-14

PSO-2 1.03E-08 1.91E-06 4.19E-06 PSO-NMM-2 0.00E?00 1.02E-13 1.02E-12

PSO-3 6.11E-09 1.87E-06 8.24E-06 PSO-NMM-3 0.00E?00 1.60E-15 1.60E-14

PSO-4 5.66E-09 9.42E-07 3.27E-06 PSO-NMM-4 0.00E?00 6.07E-32 2.48E-31

PSO-5 5.37E-13 1.01E-07 4.83E-07 PSO-NMM-5 0.00E?00 1.13E-32 3.78E-32

PSO-6 8.73E-14 3.05E-08 1.41E-07 PSO-NMM-6 0.00E?00 5.41E-32 2.44E-31

PSO-7 1.89E-14 1.57E-08 7.60E-08 PSO-NMM-7 0.00E?00 1.32E-30 1.28E-29

PSO-8 1.12E-14 1.18E-09 5.09E-09 PSO-NMM-8 0.00E?00 3.03E-21 3.03E-20

PSO-9 3.30E-27 3.96E-09 3.08E-08 PSO-NMM-9 0.00E?00 1.01E-30 7.03E-30

PSO-10 3.32E-28 5.33E-11 2.82E-10 PSO-NMM-10 0.00E?00 2.84E-29 1.63E-28

PSO-11 1.35E-28 1.38E-09 1.33E-08 PSO-NMM-11 0.00E?00 4.33E-30 2.61E-29

PSO-12 1.01E-29 1.41E-11 1.11E-10 PSO-NMM-12 0.00E?00 6.14E-30 3.71E-29

PSO-13 0.00E?00 5.50E-11 3.74E-10 PSO-NMM-13 0.00E?00 4.26E-32 2.30E-31

PSO-14 0.00E?00 1.02E-11 5.97E-11 PSO-NMM-14 0.00E?00 2.99E-32 1.66E-31

PSO-15 0.00E?00 1.48E-11 1.39E-10 PSO-NMM-15 0.00E?00 3.09E-32 1.27E-31

PSO-16 0.00E?00 2.37E-10 2.34E-09 PSO-NMM-16 0.00E?00 2.36E-32 1.16E-31

Oir ¼ 1

10

X10

i¼1

r2
i

¼ 1

10

X10

i¼1

y2 þ 2y6 þ y9 þ 2y10 � 10�5
� �2þ y3 þ y8 � 3 � 10�5

� �2

þ y1 þ y3 þ 2y5 þ 2y8 þ y9 þ y10 � 5 � 10�5
� �2þ y4 þ 2y7 � 10�5

� �2

þ 0:5140437 � 10�7y5 � y2
1

� �2þ 0:1006932 � 10�6y6 � 2y2
2

� �2

þ 0:7816278 � 10�15y7 � y2
4

� �2þ 0:1496236 � 10�6y8 � y1y3

� �2

þ 0:6194411 � 10�7y9 � y1y2ð Þ2þ 0:2089296 � 10�14y10 � y1y
2
2

� �2

0
BBBBBBBB@

1
CCCCCCCCA
:

ð14Þ
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Fig. 4 Proposed results of PSO and PSO-NMMs for neurophysiology

application model presented in problem 3. a Approximate solution for

PSO-1. b Absolute errors (AEs) for constituents equations of the

system. c AEs for PSO-5 to PSO-8. d AEs for PSO-9 to PSO-12.

e AEs for PSO-13 to PSO-16. f Approximate solution for PSO-NMM-

1 to PSO-NMM-4. g Approximate solution for PSO-NMM-5 to PSO-

NMM-8. h Approximate solution for PSO-NMM-9 to PSO-NMM-12.

i Approximate solution for PSO-NMM-13 to PSO-NMM-16
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Fig. 5 Proposed results of PSO and PSO-NMMs for combustion

theory application model presented in problem 4. a Approximate

solution for PSO-1. b Absolute errors (AEs) for constituents equations

of the system. c AEs for PSO-5 to PSO-8. d AEs for PSO-9 to PSO-

12. e AEs for PSO-13 to PSO-16. f Approximate solution for PSO-

NMM-1. g Absolute errors (AEs) for constituents equations of the

system. h AEs for PSO-NMM-5 to PSO-NMM-8. i AEs for PSO-

NMM-9 to PSO-NMM-12. j AEs for PSO-NMM-13 to PSO-NMM-

16
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The residual error function for the system (16) is

developed as:

Results of 16 variants of the proposed adaptive schemes

are listed in Table 7 for the values of mean and STD cal-

culated for 100 independent runs of the algorithms. Addi-

tionally, approximate solutions of the system (16) are

shown in Fig. 6. It can be seen that average residual error

for PSO-1 to PSO-4, PSO-5 to PSO-8, PSO-9 to PSO-12

and PSO-13 to PSO-16 ranges from 10-04 to 10-07, 10-07–

10-12, 10-17–10-27 and 10-29–10-33, respectively, while

for PSO-NMMs, these results are around 10-32.

4 Comparative studies

In this section, comparison between variants of PSO and

PSO-NMM is presented through results of statistical

analysis based on 100 independent runs for all five non-

linear systems.

The accuracy of the proposed schemes is examined for

100 independent runs of algorithms. An independent run of

the algorithms is defined as a run with a randomly gener-

ated initial swarm of the particles with different seeds.

Results on the basis of value of fitness, i.e., the values of

Oir, for a number of independent runs are plotted in case of

PSO and PSO-NMMs in Fig. 7a–h, respectively, for

problem 1. These plots are given on semilog scale and

fitness, sorted in ascending manner, in order to clearly

highlight small variations in the results. On the similar

pattern, results for the problems 2, 3, 4 and 5 are shown in

Figs. 8, 9, 10 and 11, respectively, for each variation. It can

be seen that generally for all five problems, with the

increase in the number of particles in the swarm from 25 to

200 for the fixed cycles of the algorithm, the results of the

PSO variants improve, which is more evident in case of

PSO-1 to PSO-4 for 50 cycles, PSO-5 to PSO-8 for 100

cycles and PSO-9 to PSO-12 for 150 cycles. However, for

the cases PSO-13 to PSO-16 for 500 cycles, no noticeable

change is observed in the results. Whereas in cases of

Table 6 Results of statistical

performance indices for 100

independent runs of PSO and

PSO-NMMs in case of problem

4

Methods Fitness ‘OIR values’ Methods Fitness ‘OIR values’

MIN Mean STD MIN Mean STD

PSO-1 1.24E-05 3.13E-04 2.95E-04 PSO-NMM-1 1.53E-34 9.34E-17 1.90E-16

PSO-2 5.39E-06 2.20E-04 3.09E-04 PSO-NMM-2 1.58E-33 7.67E-17 1.44E-16

PSO-3 3.39E-06 9.05E-05 1.02E-04 PSO-NMM-3 6.03E-35 1.03E-16 2.84E-16

PSO-4 9.90E-07 3.31E-05 2.99E-05 PSO-NMM-4 8.88E-36 6.65E-17 1.47E-16

PSO-5 3.64E-08 2.32E-05 5.30E-05 PSO-NMM-5 1.39E-34 5.87E-17 1.11E-16

PSO-6 2.09E-07 6.66E-06 6.85E-06 PSO-NMM-6 3.62E-33 4.95E-17 1.22E-16

PSO-7 5.29E-09 3.50E-06 5.69E-06 PSO-NMM-7 8.61E-35 5.58E-17 1.36E-16

PSO-8 8.73E-09 1.51E-06 2.28E-06 PSO-NMM-8 6.54E-35 7.83E-17 2.13E-16

PSO-9 3.03E-09 6.64E-07 1.97E-06 PSO-NMM-9 7.58E-34 7.96E-17 2.44E-16

PSO-10 1.26E-10 1.62E-07 1.96E-07 PSO-NMM-10 8.10E-33 5.85E-17 1.45E-16

PSO-11 6.74E-10 5.55E-08 6.99E-08 PSO-NMM-11 1.35E-35 7.69E-17 1.77E-16

PSO-12 3.08E-11 2.76E-08 4.34E-08 PSO-NMM-12 1.45E-33 4.69E-17 1.04E-16

PSO-13 2.32E-10 1.76E-07 7.69E-07 PSO-NMM-13 1.06E-33 3.20E-17 7.31E-17

PSO-14 3.32E-11 1.32E-08 2.50E-08 PSO-NMM-14 1.00E-33 3.60E-17 6.99E-17

PSO-15 1.01E-11 4.88E-09 8.68E-09 PSO-NMM-15 1.28E-33 6.91E-17 2.37E-16

PSO-16 3.99E-12 2.22E-09 4.21E-09 PSO-NMM-16 4.69E-34 5.05E-17 1.09E-16

Oir ¼ 1

5

X5

i¼1

r2
i

¼ 1

5

X5

i¼1

y1 þ y2 þ y3 þ y4 þ 1ð Þ2þ y1y5 þ y1y2y5 þ y2y3y5 þ y3y4y5 � 1ð Þ2þ

y2y5 þ y1y3y5 þ y2y4y5 � 1ð Þ2þ y3y5 þ y1y4y5 � 1ð Þ2þ y4y5 � 1ð Þ2

0
@

1
A:

ð17Þ
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hybrid PSO-NMM approach by taking the best particle of

PSO as the starting point of NMM, precision enhanced

considerably. Generally, results of PSO-NMMs are

improved as compared to respective PSO variants and this

improvement is more apparent in the case of PSO-NMM-1

to PSO-NMM-12 and for the cases for which PSO algo-

rithm achieved fitness around 10-30; however, no signifi-

cant contribution of hybridization with local search is

observed.

Next accuracy and convergence are examined for 100

independent runs of PSO and PSO-NMMs achieving dif-

ferent levels of accuracy. Results of convergence analyses,

based on different criterion, are listed in Table 6 for vari-

ants of PSO for all five problems, while for variants of

PSO-NMMs, these results are given in Table 7. It can be

seen that criteria based on fitness values around 10-07–

10-09, almost 100 % of the runs for all hybrid approaches

PSO-NMM-1 to PSO-NMM-16 and algorithms PSO-13 to

PSO-16, have fulfilled the criteria, while PSO-1 to PSO-12

gave relatively degraded convergence rate. Generally, in all

five cases, the rate of convergence of the hybrid PSO-

NMMs approaches is relatively better than that of PSO

variants. Additionally, it can be seen that the performance

of the proposed algorithms based on both PSO and PSO-

NMMs is relatively superior for the third problem as

compared to the other four problems and more accurate

results are obtained for second problem as compared to the

remaining problems (Tables 8, 9).

Complexity analysis of the variants of PSO and PSO-

NMMs is performed on the basis of average time consumed

by the algorithm to find the approximate solution of a given

nonlinear system. The values of mean execution time along

with STD for 100 independent runs of each solver for all five

problems are listed in Table 10. It is seen from the results

presented that with the increase in the number of particles of

the swarm or number of flights, the values of mean execu-

tion time also increase. The values of complexity operator

for PSO variants are relatively smaller than that of PSO-

NMMs in case of all five case studies, i.e., hybrid approa-

ches take 3–4 times more time as compared to the execution

time of PSO variants. The optimization process of the pro-

posed algorithms relatively takes longer execution time in

case of problem 2 as compared to other problems. Simula-

tions are carried out in the present study on ACER Laptop

Model V3-471G with Core i5-3210 M 2.6 GHz processor

with turbo boost up to 3.1 GHz, 4.00 GB DDR3 memory

and running MATLAB software package version 2012a in a

Microsoft Windows 7 operating environment.

The true comparison among between stochastic and

deterministic numerical methods is not possible due to

their inherent different optimization procedures; however,

in order to establish the effectiveness of proposed design

algorithms, a generic comparison among standard solvers

is given here. The solution of all five benchmark studies

are determined by using ‘fsolve’ routine, a built-in func-

tion of MATLAB optimization toolbox for solving non-

linear system of equations with known initial start point

based on trust-region-dogleg, trust-region-reflective and

Levenberg–Marquardt algorithms. Default setting of the

parameters of all three algorithms is used for finding the

solution. It is found that the results obtained by all three

algorithms lie in the range of 10-03–10-09 for arithmetic

Table 7 Results of statistical

performance indices for 100

independent runs of PSO and

PSO-NMMs in case of problem

5

Methods Fitness ‘OIR values’ Methods Fitness ‘OIR values’

MIN Mean STD MIN Mean STD

PSO-1 6.42E-07 2.09E-04 4.30E-04 PSO-NMM-1 2.47E-33 6.76E-32 7.46E-32

PSO-2 6.12E-07 1.98E-05 2.15E-05 PSO-NMM-2 2.47E-33 7.27E-32 7.40E-32

PSO-3 9.57E-08 2.80E-06 2.62E-06 PSO-NMM-3 2.47E-33 9.47E-32 1.05E-31

PSO-4 1.12E-08 4.84E-07 3.66E-07 PSO-NMM-4 2.47E-33 5.37E-32 4.96E-32

PSO-5 2.93E-11 7.81E-07 3.81E-06 PSO-NMM-5 2.47E-33 5.22E-32 4.06E-32

PSO-6 1.74E-12 6.13E-10 9.16E-10 PSO-NMM-6 2.47E-33 8.78E-32 1.02E-31

PSO-7 4.02E-13 3.71E-11 4.43E-11 PSO-NMM-7 9.86E-33 6.13E-32 6.91E-32

PSO-8 7.02E-14 3.67E-12 4.10E-12 PSO-NMM-8 9.86E-33 6.37E-32 6.14E-32

PSO-9 2.21E-23 2.35E-17 8.19E-17 PSO-NMM-9 2.47E-33 8.00E-32 1.06E-31

PSO-10 4.22E-25 1.72E-21 5.73E-21 PSO-NMM-10 2.47E-33 7.11E-32 6.61E-32

PSO-11 5.79E-28 4.41E-25 7.45E-25 PSO-NMM-11 2.47E-33 6.29E-32 6.22E-32

PSO-12 2.77E-30 2.52E-27 4.08E-27 PSO-NMM-12 4.93E-33 4.91E-32 4.13E-32

PSO-13 2.47E-33 1.29E-29 1.04E-28 PSO-NMM-13 2.47E-33 1.43E-32 1.05E-32

PSO-14 2.47E-33 1.16E-32 7.37E-33 PSO-NMM-14 2.47E-33 1.08E-32 6.05E-33

PSO-15 2.47E-33 1.03E-32 4.56E-33 PSO-NMM-15 2.47E-33 1.02E-32 4.46E-33

PSO-16 2.47E-33 9.69E-33 4.32E-33 PSO-NMM-16 2.47E-33 9.60E-33 4.24E-33
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benchmark model, chemical equilibrium, neurophysiol-

ogy, combustion theory and economics models, whereas

the proposed methods based on PSO hybrid with NMM

achieved the accuracy of order 10-30. The complexity of

the deterministic solver is superior from stochastic

methods, which is understandable due to the stochastic

solver based on complex global search procedures.

However, this aspect of stochastic numerical scheme is

overshadowed due to consistently accurate results without

known initial bias guess.

Fig. 6 Proposed results of PSO and PSO-NMMs for economics

modeling system presented in problem 5. a Approximate solution for

PSO-1. b Absolute errors (AEs) for constituents equations of the

system. c AEs for PSO-5 to PSO-8. d AEs for PSO-9 to PSO-12.

e AEs for PSO-13 to PSO-16. f Approximate solution for PSO-NMM-

1. g Absolute errors (AEs) for constituents equations of the system.

h AEs for PSO-NMM-5 to PSO-NMM-8. i AEs for PSO-NMM-9 to

PSO-NMM-12. j AEs for PSO-NMM-13 to PSO-NMM-16
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Fig. 7 Plot of sorted fitness, Oir, values for 100 independent runs of algorithms in the case of the interval arithmetic benchmark model presented

in problem 1. a–h Are for PSO and PSO-NMMs, respectively
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Fig. 8 Plot of sorted fitness, Oir, values for 100 independent runs of algorithms in the case of the chemical equilibrium application model

presented in problem 2. a–h Are for PSO and PSO-NMMs, respectively
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Fig. 9 Plot of sorted fitness, Oir, values for 100 independent runs of algorithms in the case of the neurophysiology application model presented

in problem 3. a–h Are for PSO and PSO-NMMs, respectively
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Fig. 10 Plot of sorted fitness, Oir, values for 100 independent runs of algorithms in the case of combustion theory application model presented in

problem 4. a–h Are for PSO and PSO-NMMs, respectively
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Fig. 11 Plot of sorted fitness, Oir, values for 100 independent runs of algorithms in the case of economics modeling system presented in problem

5. a–h Are for PSO and PSO-NMMs, respectively
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5 Conclusions

On the basis of simulation performed in this study, fol-

lowing conclusions are drawn:

1. Sixteen variants PSO-1 to PSO-16 of swarm intelli-

gence algorithms hybridized with Nelder–Mead

method PSO-NMM-1 to PSO-NMM-16 are developed

effectively to solve the nonlinear system of equations

by taking different scenarios based on the number of

particles in the swarm and the flights of the swarm.

2. Validation of the performance of the proposed schemes

based on 100 independent runs is established through

consistently getting the small values of statistically

Table 8 Comparison of results

on the basis of convergence

analysis for 100 independent

runs of PSO variants

Methods Convergence criteria on fitness B10-xx

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

03 05 09 03 05 07 03 05 09 03 05 07 03 05 09

PSO-1 98 0 0 23 0 0 100 82 0 97 0 0 81 13 0

PSO-2 100 20 0 53 0 0 100 98 0 97 3 0 94 39 0

PSO-3 100 77 0 82 0 0 100 97 0 100 5 0 93 84 0

PSO-4 100 100 0 89 0 0 100 98 0 100 28 0 97 96 0

PSO-5 100 100 0 86 0 0 100 100 63 100 52 2 96 82 12

PSO-6 100 100 10 90 0 0 100 100 79 100 75 0 96 95 71

PSO-7 100 100 62 90 0 0 100 100 80 100 91 6 96 96 93

PSO-8 100 100 98 94 0 0 100 100 87 100 97 5 99 99 99

PSO-9 100 100 100 75 0 0 100 100 89 100 99 29 89 89 87

PSO-10 100 100 100 90 0 0 100 100 97 100 100 51 96 96 95

PSO-11 100 100 100 92 0 0 100 100 98 100 100 85 97 97 97

PSO-12 100 100 100 97 1 0 100 100 99 100 100 95 99 99 99

PSO-13 100 100 100 81 0 0 100 100 99 100 100 86 91 91 91

PSO-14 100 100 100 84 0 0 100 100 100 100 100 98 93 93 93

PSO-15 100 100 100 91 2 0 100 100 99 100 100 100 96 96 96

PSO-16 100 100 100 96 22 0 100 100 99 100 100 100 98 98 98

Table 9 Comparison of results

on the basis of convergence

analysis for 100 independent

runs of PSO-NMMs

Methods Convergence criteria on fitness B10-xx

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

03 05 09 03 05 07 03 05 09 03 05 07 03 05 09

PSO-NMM-1 100 100 100 81 81 78 99 99 97 21 15 10 93 93 90

PSO-NMM-2 100 100 98 81 81 81 99 99 99 19 14 5 97 97 94

PSO-NMM-3 100 100 98 90 90 90 99 99 96 14 12 5 93 93 91

PSO-NMM-4 100 100 99 91 91 88 100 100 98 13 12 5 97 97 94

PSO-NMM-5 100 100 99 86 86 86 100 100 100 23 19 15 98 98 96

PSO-NMM-6 100 100 100 90 90 90 100 100 97 20 20 11 96 96 92

PSO-NMM-7 100 100 98 92 92 92 100 100 98 26 21 14 96 96 94

PSO-NMM-8 100 100 99 98 98 98 99 99 99 19 13 6 99 99 96

PSO-NMM-9 100 100 99 78 78 78 100 100 98 18 15 8 89 89 89

PSO-NMM-10 100 100 98 92 92 92 100 100 94 18 15 8 96 96 93

PSO-NMM-11 100 100 100 94 94 91 100 100 94 19 16 8 97 97 96

PSO-NMM-12 100 100 99 97 97 96 100 100 91 13 12 6 99 99 96

PSO-NMM-13 100 100 100 81 81 80 100 100 99 19 16 8 91 91 91

PSO-NMM-14 100 100 100 85 85 83 100 100 99 21 19 15 93 93 92

PSO-NMM-15 100 100 100 91 91 90 100 100 100 16 12 10 96 96 96

PSO-NMM-16 100 100 100 97 97 97 100 100 99 19 17 14 98 98 98
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operators in terms of mean and standard deviation in

case of all five nonlinear systems.

3. The accuracy and convergence of the given schemes

are further evaluated through calculation of percentage

convergent runs based on different precision levels,

and the results show that hybrid approaches are almost

100 % convergent on the basis of fitness B10-03 in

case of all five nonlinear systems. For stiff criteria, i.e.,

fitness B10-09, problems 1, 3 and 5 are still around

100 % convergent, while for problems 2 and 5,

convergence rates degraded but remained in close

vicinity of 85 %.

4. Computational complexity in terms of mean and

standard deviation values shows that variants of PSO

with more number of particles in the swarm or number

of flights of the swarm have long execution time and

vice versa, whereas the complexity of the hybrid

computing approaches PSO-NMMs is always on the

higher side than that of PSO variants, but this

limitation can be afforded due to their better perfor-

mance on accuracy and convergence from the rest.

One may explore to apply the design variants of PSO

and PSO-NMMs to solve stiff nonlinear systems,

Table 10 Complexity analysis based on average execution time consumed by the algorithms during optimization process for PSO and PSO-

NMMs

Methods Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Mean STD Mean STD Mean STD Mean STD Mean STD

PSO-1 0.0138 0.0091 0.0167 0.0359 0.0124 0.0012 0.0124 0.0025 0.0110 0.0014

PSO-2 0.0206 0.0017 0.0209 0.0019 0.0195 0.0022 0.0188 0.0016 0.0166 0.0016

PSO-3 0.0351 0.0021 0.0350 0.0022 0.0322 0.0021 0.0320 0.0024 0.0271 0.0013

PSO-4 0.0637 0.0028 0.0641 0.0026 0.0589 0.0029 0.0577 0.0028 0.0490 0.0024

PSO-5 0.0237 0.0013 0.0237 0.0015 0.0223 0.0013 0.0221 0.0015 0.0201 0.0013

PSO-6 0.0382 0.0024 0.0380 0.0017 0.0358 0.0025 0.0351 0.0022 0.0306 0.0013

PSO-7 0.0672 0.0035 0.0671 0.0034 0.0616 0.0033 0.0604 0.0028 0.0516 0.0022

PSO-8 0.1243 0.0048 0.1245 0.0044 0.1138 0.0052 0.1121 0.0050 0.0951 0.0037

PSO-9 0.0565 0.0024 0.0568 0.0029 0.0528 0.0020 0.0526 0.0027 0.0474 0.0030

PSO-10 0.0939 0.0050 0.0931 0.0036 0.0865 0.0037 0.0848 0.0033 0.0740 0.0034

PSO-11 0.1649 0.0052 0.1645 0.0066 0.1504 0.0067 0.1488 0.0066 0.1263 0.0041

PSO-12 0.3120 0.0238 0.3098 0.0146 0.2818 0.0146 0.2774 0.0132 0.2361 0.0140

PSO-13 0.1118 0.0046 0.1110 0.0023 0.1052 0.0042 0.1033 0.0038 0.0922 0.0026

PSO-14 0.1847 0.0053 0.1837 0.0054 0.1701 0.0049 0.1670 0.0041 0.1459 0.0048

PSO-15 0.3261 0.0056 0.3271 0.0083 0.3001 0.0084 0.2932 0.0060 0.2505 0.0045

PSO-16 0.6125 0.0105 0.6144 0.0127 0.5588 0.0135 0.5489 0.0120 0.4641 0.0081

PSO-NMM-1 1.4346 0.8203 0.9118 0.6160 0.8881 0.6835 0.4158 0.3828 1.0212 0.5467

PSO-NMM-2 1.5038 0.7740 1.0341 0.5256 0.8001 0.6959 0.4319 0.3754 1.0384 0.5519

PSO-NMM-3 1.5270 0.8330 1.0725 0.5295 0.8047 0.7157 0.3925 0.2990 1.0131 0.5835

PSO-NMM-4 1.4836 0.8058 1.0417 0.5350 0.8201 0.6945 0.4687 0.3383 1.0099 0.5722

PSO-NMM-5 1.4012 0.8035 0.9869 0.5033 0.7234 0.6552 0.3945 0.2821 0.9792 0.5236

PSO-NMM-6 1.6059 0.7158 1.0195 0.5331 0.6763 0.6733 0.4100 0.2921 0.8794 0.6115

PSO-NMM-7 1.4248 0.8204 1.0166 0.5337 0.7811 0.6893 0.4535 0.3059 1.0524 0.5245

PSO-NMM-8 1.5140 0.8031 1.1803 0.4667 0.7511 0.6868 0.4991 0.3366 1.0183 0.5644

PSO-NMM-9 1.4426 0.8017 0.9864 0.5694 0.7385 0.6836 0.3934 0.2499 0.9770 0.5238

PSO-NMM-10 1.4637 0.8489 1.0892 0.5304 0.7812 0.7114 0.4869 0.3127 1.1028 0.5200

PSO-NMM-11 1.5984 0.8566 1.1962 0.5532 0.9072 0.7248 0.5173 0.3056 1.1871 0.5163

PSO-NMM-12 1.7646 0.8976 1.3990 0.5597 0.9813 0.7289 0.6511 0.3197 1.2391 0.5992

PSO-NMM-13 1.6497 0.7882 1.0547 0.5734 1.1439 0.6868 0.4964 0.3184 1.2071 0.3816

PSO-NMM-14 2.1161 0.2817 1.0572 0.6186 1.1444 0.7249 0.5143 0.2656 1.3251 0.2912

PSO-NMM-15 2.5246 0.2101 1.4157 0.6135 1.2881 0.8334 0.7396 0.3969 1.5876 0.2480

PSO-NMM-16 2.6934 0.1900 1.6640 0.5764 1.5519 0.7673 0.9495 0.3055 1.7210 0.2546
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differential–algebraic system, ordinary, partial, fractional

differential equations and their systems to different physi-

cal science application which still remained unsolved by

conventional or classical techniques. Recently introduced

fractional variants of PSO [60–64] look as a promising area

to be exploited to study the dynamics of nonlinear systems.

Additionally, the better performance in terms of accuracy

and convergence may achieved by exploring neural net-

work model for solving these benchmark systems.
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