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Abstract This paper develops an adaptive neuro-fuzzy

inference system-based grey time-varying sliding mode

control (TVSMC) for the application of power conditioning

systems. The presented methodology combines the merits

of TVSMC, grey prediction (GP), and adaptive neuro-

fuzzy inference system (ANFIS). Compared with classic

sliding mode control, the TVSMC accelerates reaching

phase and guarantees the sliding mode existence starting at

arbitrary primary circumstance. But, as a highly nonlinear

loading occurs, the TVSMC will undergo chattering and

steady-state errors, thus degrading PCS’s performance. The

GP is therefore used to attenuate the chattering if the

overestimate of system uncertainty bounds exists and to

lessen steady-state errors if the underestimate of system

uncertainty bounds happens. Also, the GP-compensated

TVSMC control gains are optimally tuned by the ANFIS

for achieving more precise tracking. Using the proposed

methodology, the power conditioning system (PCS)

robustness is increased expectably, and low distorted

output voltage and fast transient response at PCS output

can be achieved even under nonlinear loading. The analysis

in theory, design process, simulations, and digital signal

processing-based experimental realization for PCS are

represented to support the efficacy of the proposed

methodology. Because the proposed methodology is easier

to implement than prior methodologies and provides high

tracking accuracy and low computational complexity, the

contents of this paper will be of interest to learners of

correlated artificial intelligence applications.

Keywords Time-varying sliding mode control (TVSMC) �
Grey prediction (GP) � Adaptive neuro-fuzzy inference

system (ANFIS) � Chattering � Power conditioning system

(PCS)

1 Introduction

Numerous power conditioning systems are widely seen in

industry, such as photovoltaic energy systems, wind energy

systems, and hydrogen fuel cell systems. The PCS perfor-

mance depends on the inverter-LC filter unit, whose task is

to transform the DC to AC voltages. Thus, the capability of

promising low distorted PCS inverter output voltage under

nonlinear loading and fast transient response under phase-

controlled loading must be attained; this can be fulfilled by

utilizing feedback control strategies. The PI control is fre-

quently applied; but while the loading is highly nonlinear

and uncertain, the low distorted output voltage and fast

transient response cannot be obtained [1, 2]. Many advanced

control technologies derived for power conditioning systems

are also cited, such as deadbeat control, repetitive control,

and mu-synthesis. As reported in [3], deadbeat control has

been successfully applied to control PCS, but this method
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depends on parameters exactness and PCS output waveform

has a noticeable distortion. A multilevel PCS with the use of

deadbeat control is presented in [4]; although the proposed

system has good steady-state performance, this technique is

complex and the transient response is unsatisfactory. A

modified deadbeat control methodology is suggested for

PCS. The system exhibits very fast dynamic response, but

this methodology is sensitive to variations of plant param-

eter, leading to nonzero steady-state errors [5]. The deadbeat

control with robust predictors is applied to the dual-loop

regulation of the PCS. Although the scheme presents

excellent dynamic response in transient phase of the PCS,

the steady-state performance of this scheme with a nonlinear

loading is somewhat mediocre [6]. The repetitive control

associated with the concept of an adaption-type is proposed

for PCS to perform zero steady-state errors and to lessen

output voltage distortion in face of nonlinear loading. Nev-

ertheless, such an algorithm suffers from complicated con-

trol algorithms [7]. The PCS output is developed by a

simpler repetitive scheme, and it attenuates the harmonic

components. This scheme has simple control structure and

shows low output voltage distortion, but obtains poor tran-

sient response in the presence of nonlinear loading [8]. The

mu-synthesis is proposed as a choice to PCS control since it

resolves the problem of system uncertainties, but its com-

plex algorithm makes digital realization difficult and the

steady-state error occurs when the load is highly nonlinear

[9, 10]. Sliding mode control (SMC) is inherently robust

against internal parameter variations and external interfer-

ences [11, 12]. The SMC has displayed that it is a good

choice of techniques in PCS design [13–18]. In [13], a

reduced state feedback method for PCS is proposed. But, a

conventional SMC is employed and such a method results in

output voltage distortion in steady-state execution with a

nonlinear loading. The tracking control scheme based on

input–output feedback linearization SMC technique has also

been adopted for PCS design. The high-quality output

voltage cannot be seen between steady-state and transient

state [14]. Reference [15] utilizes an integral sliding control

law to achieve PCS tracking control. This method has poor

dynamic response and an undesirable chattering phe-

nomenon. The digital SMC with dual-loop in PCS design is

presented [16]; the tracking trajectory runs away target

sliding surface and therefore output voltage distortion exists

in nonlinear loading. In the works of [17, 18], they adopt

continuous-time SMC scheme suitable for power condi-

tioning systems, showing fast dynamic and satisfactory

steady state. Nevertheless, owing to nominal loading devi-

ation, the reliability of the SMC deteriorates. As above-

mentioned [13–18], the lessened output voltage distortion

and fast transient response in SMC design have been

reported. But, these use fixed sliding surfaces. For classic

SMC design with the fixed sliding surface, the sliding mode

exists while the tracking trajectory hits and keeps in the

sliding surface. Therefore, a reaching phase indicates the

trajectory from an arbitrary primary circumstance tending

towards sliding surface; the trajectory is not robust to system

interferences before the sliding mode happens [19, 20]. To

solve such a problem, the TVSMC with the use of rotating

and shifting from arbitrary primary circumstances tending

towards the target sliding surface can be utilized. By

applying the concept of TVSMC, the insensitivity to system

uncertainties can be decreased through speeding up the

reaching phase [21, 22]. But, if a highly nonlinear loading is

applied, the chattering and steady-state errors will occur in

TVSMC system, thus yielding severe output voltage dis-

tortion and even degrading PCS performance. The grey

prediction (GP) has been successfully applied in a wide

variety of fields. The GP without difficult computation and

complex mathematical structure is capable of building a

grey model by a few data sampling only that can precisely

forecast serial system state [23–26]. This paper uses the GP

with mathematically simple and arithmetically efficient GP

for attenuating the chattering or steady-state errors if the

overestimate or underestimate of system uncertainties

bounds occurs. Additionally, an adaptive neuro-fuzzy

inference system (ANFIS) associating the training ability of

neural network with approximate human reasoning of fuzzy

logic is popular artificial intelligence technique in many

engineering areas [27–30]. The ANFIS assists in generating

and optimizing the fuzzy membership functions as well as

the fuzzy rules [31–35]. By such a hybrid learning tech-

nique, the error between desired and actual output can be

minimized [36–39]. Thus, the ANFIS is employed to tune

GP-compensated TVSMC control gains optimally so that

more precise tracking control can be obtained. By combin-

ing TVSMC, GP, and ANFIS, the proposed methodology

produces a closed-loop power conditioning system with low

total harmonic distortion, fast transient response, chattering

alleviation, and steady-state errors attenuation under various

loadings. Simulations and experiments are finally shown to

validate the performance of the proposed methodology.

Section II presents the dynamic modelling of the power

conditioning system. The proposed methodology is repre-

sented in section III. Sections IV and V represent the sim-

ulation and experimental results and conclusions,

respectively.

2 System modelling

Figure 1 represents the structure of a static power supply,

which can be used in power conditioning system. The LC

filter and R can be regarded as a plant. The output voltage

vc of the plant has to be requested to follow an AC refer-

ence vr, by the proposed methodology.
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The plant can be written as

_xp ¼ Apxp þ Bpup þ d ð1Þ

where xp ¼ xp1 xp2½ �T¼ vc _vc½ �T , Ap ¼
0 1

� 1

LC
� 1

RC

" #
, Bp ¼

0
1

LC

" #
, up is the plant control

input, and d is the interference.

The reference model with a sinusoidal reference fre-

quency x0 can be represented as

_xm ¼ Amxm þ Bmum ð2Þ

where xm ¼ xm1 xm2½ �T¼ vr _vr½ �T , Am ¼ 0 1

x2
0 0

� �
,

Bm ¼ 0

1

� �
, and um is the model control input.

Thus, the error differential equation yields

e ¼ xm � xp

_e ¼ Ameþ ðAm � ApÞxp þ Bmum � Bpup � d

�
ð3Þ

The control goal is to design a control law up, and then the

plant state xp can follow the demanded control xm specified

by a reference model. The tracking error e = xm - xp is

therefore formulated to carry out the control aim. A control

methodology has to be designed for driving the tracking error

to zero between the model and the plant states. The control

design is developed in the following.

3 Control design

3.1 Time-varying sliding mode control (TVSMC)

The time-varying sliding surface is designed as

s ¼ qðtÞe� cðtÞ ð4Þ

where q(t) = Et ? F, c(t) = Gt ? H, and E, F, G, H are

constants. The constitution of the proposed methodology

by time-varying sliding surface is represented in Fig. 2.

Figures 3 and 4 indicate that the time-varying sliding

surface is composed of rotating sliding surface (RSS) and

shifting sliding surface (SSS). The rotating and shifting can

be operated by several ways. In the beginning the rotating

or shifting relies on the primary state position. When the

rotating is applied, the rotating will keep till the trajectory

is convergent. When the shifting is applied, the surface is

moved as this algorithm demands. Simultaneously, the

feasibility of the rotating is checked. If it is feasible, the

rotating will continue until the trajectory convergence.

Even though the rotating is infeasible, the shifting can

guarantee the state converged to the target surface and then

move forward to the origin. The algorithms of the RSS and

the SSS are outlined below.
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Assume a system with primary circumstance

(eðt0Þ; _eðt0Þ) and let the target sliding surface be

s ¼ _eþ kte: ð5Þ

Rotating sliding surface: The primary sliding surface

can be selected as

s ¼ _e0 þ q0e0 ð6Þ

where q0¼ � _eðt0Þ=eðt0Þ. The sliding surface can be deci-

ded as the following.

The new value qnew can be obtained by the sliding

surface moving every Ds second.

sj j ¼ _eþ qnewej j ¼ Dr ð7Þ

where Dr must be small so that the system behaviour can

maintain on the sliding surface, and a Ds needs to be

determined, thus moving the system from s(t) = Dr to

s(t ? Ds) = 0. In (7), two solutions satisfy the qnew. When

q0[ kt or q0\ kt, the smaller or larger value of the qnew is

applied, and the q is decreased or increased. When q0\ kt
or q0[ kt, the rotating stops under the circumstance of

qnew C kt or qnew B kt, and then qnew = kt is allowed.

Shifting sliding surface: When eðt0Þ; _eðt0Þ[ 0, the

rotating is infeasible, incurring a non-Hurwitz sliding sur-

face. The shifting with a sliding surface will pass through

eðt0Þ; _eðt0Þ, and then c0 = c(t0). The c = 0 must be

obtained and the trajectory is converged to (7).

The new value cnew can be chosen as

sj j ¼ _eþ qeþ cnewj j ¼ Ds ð8Þ

When c0\ 0 or c0[ 0, the larger or smaller value of the

cnew is applied, and the c is increased or decreased. When

c0[ 0 or c0\ 0, the shifting stops under the circumstance

of cnew B 0 or cnew C 0, and then let cnew = 0.

Differential sliding surface can be expressed as

_s ¼ Ee1 þ qðtÞ _eþ G ð9Þ

Substituting (3) into (9) gives

_s ¼ Ee1 þ qðtÞ � ½Ameþ ðAm � ApÞxp

þ Bmum � Bpup � d� þ G
ð10Þ

The control input is set as

up ¼ ue þ us ð11Þ

where ue indicates the equivalent control that allows the

execution of requested sliding mode while system uncer-

tainties are zero. The us represents the sliding control

component that guarantees sliding mode existence and can

remove system uncertainties.

The sliding control us is defined as

us ¼ Keþ Kn ð12Þ

Then, the Lyapunov function can be expressed as

V ¼ 1

2
ss2 ð13Þ

By Lyapunov criterion, the control law up guarantees
_V ¼ s _s\0 for satisfying sliding mode existence; thus, the

system is asymptotically stable.

3.2 Grey prediction (GP)

The GM(2,1) is adopted to create a grey prediction

model, and the grey modelling process is stated in the

following.

Step 1: Collecting the original sample data sequence

xð0Þ ¼ xð0ÞðnÞ; n ¼ 1; 2; . . .; k
n o

ð14Þ

Step 2: Mapping generating operation (MGO)

The system data sequence may be positive or negative,

and then the MGO is used to map the negative data to the

related positive data.

xð0Þgy ¼ xð0ÞðnÞ þ BIAS; k ¼ 1; 2; . . .; n
n o

ð15Þ

where BIAS is a constant.

Step 3: Taking accumulated generating operation (AGO)

for xgy
(0)

xð1Þgy ðnÞ ¼
Xn
j¼1

xð0Þgy ðjÞ; n ¼ 1; 2; . . .; k ð16Þ

Step 4: Constructing GM(2,1) model

The difference GP model can be written as

xð1Þgy ðnþ 2Þ þ Pxð1Þgy ðnþ 1Þ þ Qxð1Þgy ðnÞ ¼ 0 ð17Þ

where P and Q are the coefficients of the GM(2,1) that

requires estimating their values.

Equation (17) can be rewritten as

�x
ð1Þ
gy ðnþ 1Þ �x

ð1Þ
gy ðnÞ

h i
P

Q

� �
¼ xð1Þgy ðnþ 2Þ

h i
ð18Þ

Letting n ¼ 1; 2; . . .; k � 2 and (18) becomes

�x
ð1Þ
gy ð2Þ �x

ð1Þ
gy ð1Þ

�x
ð1Þ
gy ð3Þ �x

ð1Þ
gy ð2Þ

..

. ..
.

�x
ð1Þ
gy ðk � 1Þ �x

ð1Þ
gy ðk � 2Þ

2
66664

3
77775

P

Q

� �
¼

x
ð1Þ
gy ð3Þ
x
ð1Þ
gy ð4Þ
..
.

x
ð1Þ
gy ðkÞ

2
66664

3
77775 ð19Þ
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Assume Y ¼

x
ð1Þ
gy ð3Þ
x
ð1Þ
gy ð4Þ
..
.

x
ð1Þ
gy ðkÞ

2
66664

3
77775, B ¼

�x
ð1Þ
gy ð2Þ �x

ð1Þ
gy ð1Þ

�x
ð1Þ
gy ð3Þ �x

ð1Þ
gy ð2Þ

..

. ..
.

�x
ð1Þ
gy ðn� 1Þ �x

ð1Þ
gy ðn� 2Þ

2
66664

3
77775, and J ¼ P

Q

� �
, then the

estimated parameters P and Q can be solved by the least

square estimation method as follows:

J ¼ P; Q½ �T¼ ðBTBÞ�1
BTY ð20Þ

The solution of (20) can be found by defining

xgy
(1)(n) = bn, xgy

(1)(n ? 1) = bn?1, and xgy
(1)(n ? 2) = bn?2,

and thus the following equation is obtained as

bnþ2 þ Pnnþ1 þ Qnn ¼ bnðb2 þ Pnþ QÞ ¼ 0 ð21Þ

The roots for satisfying (21) are given as

b1 ¼ �Pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 4Q

p
2

b2 ¼ �P�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 4Q

p
2

8>><
>>: ð22Þ

Step 5: Taking IAGO

x̂ð0Þgy ðnÞ ¼ x̂ð1Þgy ðnÞ � x̂ð1Þgy ðn� 1Þ ð23Þ

Step 6: Inversing IMGO

Using IMGO for x̂
ð0Þ
gy , the forecasted value of the original

data sequence x̂ð0Þ yields

x̂ð0Þðnþ 1Þ ¼ x̂ð1Þgy ðnþ 1Þ � x̂ð1Þgy ðnÞ � BIAS ð24Þ

The control law of (11) can be restated as

upðnÞ ¼ ueðnÞ þ usðnÞ þ ugyðnÞ ð25Þ

where the difference GP control, ugy can remove the

chattering or attenuate steady-state errors.

ugyðnÞ ¼
0; ŝðnÞj j � e
KgyŝðnÞsgnðsðnÞŝðnÞÞ; ŝðnÞj j � e

�
ð26Þ

where ŝðnÞ denotes the predicted value of s(n) and e rep-

resents the system boundary.

3.3 Adaptive neuro-fuzzy inference system (ANFIS)

Firstly, a Takagi–Sugeno (T–S) fuzzy structure is created

by the ANFIS and then the given training data are

modelled.

Then, the ANFIS is written as

Rule n : If e1 is An1 and ek is Ank

Then un ¼ pn1e1 þ � � � þ pnkek þ rn
ð27Þ

where Rule n represents the nth fuzzy rules, n ¼ 1; 2; . . .q,

Ani denotes the fuzzy set in the antecedent associated with

the ith input variable at the nth fuzzy rule, and pn1, … pnk
and rn are the fuzzy resulting parameters.

By the use of the ANFIS, the up can be obtained as

up ¼ w1

w1 þ � � � þ wq

u1 þ � � � þ wq

w1 þ � � � þ wq

uq

¼ �w1u1 þ � � � þ �wquq

ð28Þ

where �w1 ¼ w1

w1þ���þwq
and �wq ¼ wq

w1þ���þwq
.

Owing to un ¼ pn1e1 þ � � � þ pnkek þ rn, (28) can be

restated as

up ¼ �w1u1 þ � � � þ �wquq

¼ ð �w1e1Þp11 þ � � � þ ð �w1ekÞp1k þ �w1r1

þ

..

.

þ ð �wqe1Þpq1 þ � � � þ ð �wqekÞpqk þ �wqrq

ð29Þ

Equation (29) implies the proposed ANFIS with five-

layer structure. More precisely, the concept of the neural

network learning algorithm developed in [34] can directly

be applied to (29). From the architecture of (29), it can be

explored that when the values of premise parameters are

given, the overall output can be written as a linear com-

bination of the consequent parameters. More specifically

speaking, in the forward pass of the ANFIS, functional

signals move ahead till layer 4 and the consequent

parameters are recognized by the least squares estimation;

in the backward pass, the error rates propagate backward

and the premise parameters are updated by the gradient

descent method. Figure 5 displays the structure of the

ANFIS and concisely summarizes the activities in each

pass. The layer 1 represents for inputs, and every node is an

adaptive node with a node function. The membership

function for A can be any proper parameterized member-

ship function. The layer 2 is for fuzzification, and every

node is a fixed node labelled whose output is the product of

all the incoming signals. Each node output denotes the

firing strength of a rule. The layers 3 and 4 indicate for

fuzzy rule evaluation. Every node of the layer 3 is a fixed

node labelled N. The outputs of this layer are normalized

firing strengths given, and in layer 4, every node is an

adaptive node with a node function. Parameters in this

layer are referred to as consequent parameters. The layer 5

denotes for defuzzification, and this layer with a fixed node

Neural Comput & Applic (2018) 30:699–707 703
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labelled computes the overall output as the summation of

all incoming signals.

4 Simulation and experimental results

To verify the effective operation of the proposed method-

ology, simulations and experiments are performed. The

parameters of the PCS are given as follows: DC-bus volt-

age VD = 210 V; output voltage vc = 110 V; output fre-

quency f = 60 Hz; filter inductor L = 1.2 mH; filter

capacitor C = 10 lF; switching frequency fs = 12 kHz;

rated loading R = 12X. Figures 6 and 7 show the simu-

lated output voltage and the output current obtained using

the proposed methodology and the classic SMC under

phase-controlled loading from no load to R = 12X at a 90�
firing angle every half cycle, respectively. As shown in

Fig. 6, a close examination of the waveforms shows that

there are a slight voltage droop and a rapid steady-state

recovery. But, the voltage waveform shown in Fig. 7

achieves poor dynamic response and very visible period

distortion. Evidently, as an abrupt loading disturbance is

applied to the AC power conditioner, the proposed con-

troller not only maintains the inherent robustness but has

fast dynamic response. To test the performance of the AC

power conditioner with the proposed methodology under

nonlinear loading consisted of a full-wave diode bridge

rectifier with an electrolytic capacitor of 200 lF and load

resistance of 55X, the simulated output voltage and the

output current waveforms are displayed in Fig. 8. The

output voltage is very close to sinusoidal waveform with

low THD (%THD equals 1.53 %), and high steady-state

accuracy is obtained. Compared with the proposed

methodology, the simulated waveforms obtained using the

classic SMC under nonlinear loading are reported in Fig. 9.

The high harmonic distortion exists in output voltage

(%THD equals 9.04 %), thus yielding inaccurate steady-

state response. Figure 10 displays the experimental output

voltage and the output current with the proposed method-

ology under phase-controlled loading from no load to

R = 12X. As can be seen, a fast steady-state recovery is

achieved. Nevertheless, the experimental waveform with

the classic SMC shown in Fig. 11 has unsatisfactory volt-

age sag compensation. In addition, Figs. 12 and 13

Π N

11A

21A

Π N

12A

22A

Σ

1e

2e

1w

2w

1w

2w

11uw

22uw

pu

1layer 4layer 3layer 2layer 5layer 

1e 2e

1e 2e

Fig. 5 Structure of the ANFIS

Fig. 6 Simulated waveforms under phase-controlled loading with the

proposed methodology (100 V/div; 30A/div; 5 ms/div)

Fig. 7 Simulated waveforms under phase-controlled with the classic

SMC (100 V/div; 30A/div; 5 ms/div)

Fig. 8 Simulated waveforms under nonlinear loading with the

proposed methodology (100 V/div; 30A/div; 5 ms/div)
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compare the experimental output voltage waveforms of the

power conditioning system controlled by the proposed

methodology and the classic SMC under LC filter param-

eter values undergoing 50–250 % variations of 12X nom-

inal resistive values. The proposed PCS is more insensitive

to the parameter variations than the classic sliding mode

controlled PCS. Table 1 displays the simulated and

experimental output voltage THD values of the proposed

controlled PCS and the classic SMC-controlled PCS under

different loads. In final summation, it is well confirmed that

the proposed methodology always gives better steady-state

accuracy, lower waveform distortion, and quicker conver-

gence rate under various loading conditions, as compared

to the classic SMC. The proposed methodology is thus

more suitable for use in PCS design.

Fig. 9 Simulated waveforms under nonlinear loading with the classic

SMC (100 V/div; 30A/div; 5 ms/div)

Fig. 10 Experimental waveforms under phase-controlled loading

with the proposed methodology (100 V/div; 20A/div; 5 ms/div)

Fig. 11 Experimental waveforms under phase-controlled loading

with the classic SMC (100 V/div; 20A/div; 5 ms/div)

Fig. 12 Experimental waveforms under LC parameter variations

with the proposed methodology (100 V/div; 5 ms/div)

Fig. 13 Experimental waveforms under LC parameter variations

with the classic SMC (100 V/div; 5 ms/div)

Table 1 Simulated and experimental output voltage %THD

Proposed methodology

Sim.

Loading Phase-controlled

loading

Nonlinear loading

%THD 1.62 % 1.53 %

Classic SMC

Sim.

Loading Phase-controlled

loading

Nonlinear loading

%THD 8.34 % 9.04 %

Proposed methodology

Exp.

Loading Phase-controlled

loading

LC parameter

variations

%THD 1.71 % 0.39 %

Classic SMC

Exp.

Loading Phase-controlled

loading

LC parameter

variations

%THD 8.84 % 10.52 %
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5 Conclusions

An ANFIS-based grey compensated TVSMC is presented

to increase the tracking behaviour of the PCS, even a

severe interference is applied. The TVSMC can reduce the

reaching phase and is robust to parameter variations and

interferences, thus enhancing the robustness of the system.

But, while the loading is highly nonlinear, the chattering

and steady-state errors yield. For achieving high tracking

accuracy, the GP is used to remove the chattering and

attenuate steady-state errors, which exists in TVSMC.

Moreover, using the ANFIS with reduced rule numbers,

faster operation speed and without modifying membership

function by conventional trial and error, the control gains

of the TVSMC with GP can be optimally tuned. Simula-

tions and DSP-based experiments show that low output

voltage distortion, fast dynamic response, chattering

reduction, and steady-state errors attenuation are achieved

in the presented PCS under both linear loading and non-

linear loading.
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