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Abstract Cancer data analysis is significant to detect the

codes that are responsible for cancer diseases. It is signif-

icant to find out the coding regions from diseases infected

biological data. The infected data will be helpful to design

proper drugs and will be supportable in laboratory assess-

ments. Codes bear specific meaning on various features as

well as symptoms of diseases. Coding of biological data is

a key area to get exact information on animals to discover

the desired medicine. In the current work, four different

machine learning approaches such as support vector

machine (SVM), principal component analysis (PCA)

technique, neural mapping skyline filtering (NMSF) and

Fisher’s discriminant analysis (FDA) were applied for data

reduction and coding area selection. The experimental

analysis established that the SVM outperforms PCA and

FDA. However, due to the mapping facility, NMSF out-

performs SVM. Thus, the NMSF achieved the preeminent

results among the four techniques. Matthews’s correlation

coefficient was used to evaluate the accuracy, specificity,

sensitivity, F-measures and error rate of the four methods

that are used to determine the coding area. Detailed

experimental analysis included comparison study among

the four classifiers for the deoxyribonucleic acid dataset.

Keywords Principal component analysis (PCA) � Support
vector machine (SVM) � Neural mapping skyline filtering

(NMSF) � Fisher’s discriminant analysis (FDA) � Cancer
DNA dataset � Matthews’s correlation coefficient (MCC)

1 Introduction

All cancers instigate in cells that endure selection/mutation

process. It starts with alterations in one cell/a small group

of cells. Generally, in the cancer cell, most mutations DNA

occur in the noncoding regions in the genome length.
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Predicting the noncoding DNA impact remains tremen-

dously difficult. Cancer cells may endure alterations or loss

in their functions. The DNA sequencing is a high-

throughput approach to measure the biological expression

that consists thousands of gene codes concurrently. The

DNA sequence includes a set of codes that labeled the

thousands of gene expression regions. These coding

regions make the DNA spots. Each DNA spot represents

individual gene that contains the multiple identical DNA

strands. The labeled codes find and stick their perfect

matching for biological data. This requires big data pro-

cessing, which is one of the popular and significant pro-

cedures in computational biology. There are several

numbers of codes in DNA, ribonucleic acid (RNA) and

proteins. These codes carry all the features and information

of human, insects, plants, fishes and paddies. Human dis-

eases analysis is one of the fundamental aspects of civilized

life. Here, cancer datasets are used to detect the codes that

are responsible for human genomes.

The basic idea is to identify complementary base pair to

measure the different types of DNA synthesis sequencing

and expression code of gene [1, 2]. Presentation of the

DNA coding data for disease classification based on dif-

ferent pattern of gene expression has an impact on medical

research. The DNA sequencing technology helps the

researchers to know the various types of diseases related to

gene, including cancer, heart disease and mental disease.

Moreover, DNA allows the researchers to identify all dif-

ferences between any two different cells types, e.g., normal

(healthy) and diseased (cancer).Scientists have classified

the cancers based on gene pattern of the tumor cancer cells

activities that has become easy due to coding regions of

DNA. Therefore, DNA coding regions finding and analysis

are important for diagnosis and pathogenic mechanism

disease-related gene. These biological operations raise

huge challenges to the researchers in statistical and com-

putational environments due to high-dimensional and low

sample nature of biological data. Fuzzy standard additive

model (FSAM) [3] concentrates to find out the cancer

responsible codes from DNA dataset. The genetic algo-

rithm (GA) incorporated with FSAM approach to enhance

FSAM learning process for generating rules that enhanced

the efficiency of the FSAM approach with high-dimen-

sional low sample data.

The DNA sequences or microarray data often contain

small in size or large number of samples(ten to thou-

sands).This is responsible for variations of codes and

noncoding part of the collected DNA sequences [4, 5].

Many researchers demonstrate the classification accuracy

that increased with the increasing data dimensionality.

Conversely, the classification accuracy decreases with the

decrease in the data dimensionality. Thus, the learning

process of gene sequencing depends on the classification

process providing high throughput for coding area analysis.

Therefore, classification ensures the best accuracy for large

biological sample. Nevertheless, large sample data require

more accurate learning approach for handling increased

number of biological features. So, it is difficult to obtain

large biological sample because of high code selections

experimental costs. Moreover, the DNA contains several

many redundant and irrelevant genes that increase the

feature dimensionality and decrease the learning/classifi-

cation accuracy. These redundant and irrelevant data

increase the noise probability and affect the construction

and classification model results. Therefore, it is critical to

reduce the adverse effect and to reduce the dimension of

the feature space by removing the irrelevant and redundant

data from the original dataset. Consequently, data reduc-

tion effectively and efficiently improves both the gene

classification without filtering approach and the perfor-

mance of gene selection method.

Code findings and gene selection refer to the process of

removing redundant and irrelevant data and classify

microarray data based on features of genes. Most common

code and gene selection approaches are based on ranking

[6]. Each gene evaluated individually and assigned a cor-

relation score with different class with their certain criteria.

Genes are ranked based on their score, and then, the top

scored genes are considered to be feature genes. For feature

gene selection, rank based includes t test [7], v2 test [8],

information gain [9, 10], threshold number of miss classi-

fication [11], feature filtering [12], Relief [13] and entropy

[14]. Additionally, mutual information (MI) is widely used

for effective gene selection classification approach [15].

The MI approach is applied to measure the information of

random variable that contains the information of another

random variable. The MI analysis shows the degree of

linear and nonlinear dependency between the random

variables. In MI computing, probability distribution and

joint distribution for every random variable are essential.

The MI approach estimates the joint probability for vari-

able features. If the feature is discrete, histogram is used to

estimate feature probability. The probability is measured

from relative frequency of features samples. If the features

are continuous, two methods are used to estimate the fea-

tures probabilities, namely the Parzen window and the

discretization. Parzen window [16] is used to estimate the

features information, but it does not estimate accurate

probabilities for high-dimensional multivariate density

samples and estimation cost is very high. Basically, mul-

tivariate density sample is spare distribution, so it is diffi-

cult to estimate accurate probabilities. Biological DNA

data are continuous and spares, and it leads to the limita-

tions of Parzen window approach. The other approach is

discretization [17] that partitions the domain features into

several subparts. Discretization process may loss some
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information from the original datasets, which affects the

classification accuracy due to the information loss of fea-

tures and not all information is fully utilized. In order to

address this problem, neighbor mutual information (NMI)

approach [18] is used to measure the relevance between

continuous genes and discrete features. The NMI approach

is constructed by integrating the concept of neighborhood

information theory and natural generalization information

of numerical feature spaces.

Consequently, in the present work, the principal com-

ponent analysis (PCA), support vector machine (SVM),

Fisher’s discriminate analysis (FDA) and mapping-based

neural skyline filter (MNSF) are utilized to maintain effi-

cient code finding. Confusion matrix is also obtained to

check the specificity, sensitivity, accuracy, F-measures

among all the classifiers implemented. Among all the

machine learning approaches used in this research activity,

support vector machine outperforms principal component

analysis and Fisher’s discriminate analysis. The main SVM

advantage is that it marginalizes the related dataset in a

specific regions that are absent in other two methods. This

area is called the maximum margin hyperlength, which

helps to process data faster due its shorter area of key data

points. Threshold values are used for certain area selections

in the SVM from collected cancer dataset. Neural skyline

filtering is a dynamic process that controls the cancer code

predictions under the artificial neural network (ANN).

Mapping-based ANN clusters the whole DNA sequences

into certain groups with limited segments. These limited

segments help to process the cancer codes from large DNA

sequences. For mapping, mathematical arrangements

assess all the training datasets.

The organization of the remaining sections is as follows.

Literature review and the methodology are narrated at

Sects. 2 and 3, respectively. Section 3 describes the PCA

for DNA codes finding, the SVM, FDA and the MNSF.

Section 4 presents the results and implementation, which is

followed by the conclusion in Sect. 5.

2 Literature review

Classification problems aim to build an effective and effi-

cient model for predicting class members. The learner

performs training for the data that selected from input

space and their class interval. A building hypothesis not

only classifies on the training data, but also predicts

accurate output for unseen data. Binary classification refers

to classification problems that consist of two classes, while

multiclass classifier refers to the existence of more than

two classification labels. Real problems are multiclass

classifiers with complex classification approach. On the

other hand, binary classifier is simple and easy to

classification. Multiclass classifier is roughly divided two

types. First one is the binary classification approach that

directly extends to handle the multiclass problem, such as

the discriminate analysis, regression and decision tree

[19].The second type is the decomposition of multiclass

classifier, such as the one-versus-the-rest method [20],

pairwise comparison [21], error-correcting output coding

[22] and multiclass objective function [23]. There are two

prior works for multiclass classification. A comparative

heuristic approach [24] is used gene classification for two

datasets. Discriminate classification method [25] is used

tumor cell classification for multiple datasets.

Recently, a significant number of research activities

have been done on cancer disease identifications. Most of

the studies were performed on the chemical-based mole-

cules. Chemical centric analysis is good for small numbers

of DNA sequences. Automated approach for cancer codes

finding is essential [26]. In order to ensure proper treat-

ments for cancer patients, set of biomarkers have been used

and proposed. These markers are expensive and very much

sensitive to the environments. These biomarkers are

genomic, proteomic, metabolomics, imaging and psycho-

logical factors. Among all cancer types, codes are consid-

ered to be the key for all controlling aspects. Several gene

selection methods have been used for cancer identification.

However, these are not essential for complete process.

Various cancer organizations have initiated couple of

projects for cancer investigations. Large-scale dataset

handling techniques such as next-generation sequencing

and microarray have imposed to measure the DNA copy

number alterations, messenger RNA formations and DNA

mutations. However, all of these methods are not in

machine learning environments [27–30].

Laplace naı̈ve Bayes [31] model for microarray data

classification focused on the robustness of gene outliers.

Gene pair combination inputs [32] are used for cancer

classification algorithm rather than gene original profiler.

Supervised and unsupervised approaches [33] are used for

microarray gene classification. Supervised classification

classified the tissues based on specific gene, and unsuper-

vised techniques classified the gene based on tissues.

Computational protocols [34] used gene markers for vari-

ous cancer tissues. Under sampling method [34] was used

for the idea of ant colony optimization to classify imbal-

anced microarray data analysis. Association rules [35] were

also used for gene classification, but it required system

complexity enhancement. The author suggested that the

transcript expression interval demonstration discriminates

subtype in the same class. A Web-based interactive tool

[36] is used to assess the discriminate of hypothesis per-

formance of biological gene datasets. The tool is able to

evaluate for medical diagnosis and management decision.

Many methods and classification approaches are used to
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classify microarray data classification. These approaches

are applicable and comprehensive for clinical and real

practice. The behavior of classification rules is also used

for biological data size [37].

3 Methodology

The present work is an integrated environment that

mechanically finds the coding area from cancer infected

DNA sequences. These codes are responsible for cancer

and help to design drugs for cancer removal diseases.

These datasets are used to detect the codes that are

responsible for human genomes. Real-world datasets have

been collected from ICDDRB (International Centre for

Diarrhoeal Disease Research, www.icddrb.org), Bangla-

desh. These data are verified by the experts around the

globe. The proposed integrated environment approach is

illustrated in Fig. 1.

Figure 1 depicts that the PCA was initially checked the

whole data for dimension reduction to find the desired

DNA codes. Each method determined new codes that PCA

was unable to detect. From the PCA code and the newly

measured codes, mapping-based neural skyline filter

counted the maximum number of codes in short compu-

tation time. The integrated environment in Fig. 1 demon-

strated the training DNA sequences process being collected

from real-world DNA databases in the first step. Biological

raw datasets were collected from the NCBI database that

the ICDDRB used. In these databases, various types of

biological data are available. There were some noise types

in the collected datasets including symbols as well as

characters. In the second phase, PCA was used to reduce

the irrelevant dimensions of the dataset. Here, noise and

other symbols were removed and cleared by the global

processing of PCA. The FDA, SVM and mapping-based

neural skyline filtering were imposed to verify the whole

dataset. Only mapping centric neural skyline filtering per-

mitted the parallel data processing. Typically, these map-

ping consumes less time for codes finding in the real-world

DNA sequences. Through the next step, the whole datasets

are transformed into specific frameworks to reduce the

spaces as well as time. This is known as the evidential

reasoning, which individually checked the entire datasets

with a specific threshold value. It took half time than that of

Markov chain as well as maximum likelihood estimation.

The comparative outcomes of each and every method are

essential to verify; thus, the Matthews’s correlation coef-

ficient (MCC)-based performance evaluation was calcu-

lated. This is the final step of the proposed framework.

More detailed description of the proposed approach

methodology is as follows.

3.1 Principal component analysis

Principal component analysis (PCA) is broadly used to

reduce the dataset dimensionality by summarizing the data

from many variables to a minimal amount of variables in

such a way that the present component has the maximum

variance than the upcoming one. Therefore, principal

component is the first component that will have the max-

imum variance than the others and the covariance of any

component is zero.

Total variance ¼
Xn

i¼1

varianceðiÞ ð1Þ

where n refers to the variables. The total variance in

principal component analysis refers to the sum of the
B
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variances of the observed data. The observed data are

standardized, where all variables have a mean of zero and

variance of one. The PCA is considered a preprocessing

step for analyzing as it determines linear relations among

the variables. It disperses the dataset into principal com-

ponents (PCs), which are linear combinations of original

measurements.

For large DNA dataset, assume z DNA base pair in each

sequence with w dimensions. Globally, the whole dataset is

merged with Dw. The DNA dataset is accomplished with

their mean, eigenvalues, eigenvectors and covariance of the

collected dataset. Each d denotes the mean of a small

group. In this regard, the mean value of all DNA base pairs

in a certain DNA sequence is given as follows:

l ¼ 1

z
d1 þ d2 � � � dz
� �

: ð2Þ

The mean in Eq. (2) defines the changes coding and

noncoding areas of DNA base pair. However, all the

changes are not equal due to the massive changes of the

DNA dataset. The variance of whole DNA sequence is

given by:

VarðWhole DNAÞ ¼ 1

z� 1
d1 � l1ð Þ2 þ d2 � l2ð Þ2 þ � � �

þ dz � lz
� �2

: ð3Þ

This calculated variance can assist to get accurate out-

comes of single code. In order to adjust the value of mean

and variances of the training DNA sequences, it is required

to redirects the mean to zero. Afterward, each redirected

mean is subtracted from each DNA base pair d. The out-

comes are categorized into a w 9 z matrix that is given by:

M ¼ d1 � l � � �j jd2 � l½ �: ð4Þ

The covariance of the whole training dataset of DNA

sequence that covers efficient codes regions in terms of

matrix evaluation is expressed as follows:

S ¼ 1

z� 1
MMT: ð5Þ

This analysis enables symmetric matrix evaluations for

the test and training data. In order to examine the quality of

two matrices, thus, both of them should have nonzero

eigenvalues. So, the MMT and MTM share nonzero

eigenvalues. Suppose b is a eigenvector of MTM with

eigenvalues k not equal zero. Hence, the interchanges

produce the same values for both matrices as follows:

ðMTMÞb ¼ kb ð6Þ

MMTðMbÞ ¼ kðMbÞ: ð7Þ

Since, the PCA applies orthogonal matrix during the

execution of eigenvalues measurements. These eigenvalues

reduce data redundancy from large training data. In

addition, the PCA has several advantages including (1) it

has fewer complexities in grouping the datasets, (2) it

stores only trainee sample in its database; thus, it takes

small space in database, (3) it reduces the noises and

irrelevant factors from DNA sequences due its small

changes in collected datasets, (4) it does not consider pri-

mary class format, (5) it requires small computational

analysis, and (6) it checks the grater class variations.

Consequently, the PCA approach is employed in the cur-

rent work.

3.2 Fisher’s discriminate criterion

Several methods can be used for DNA code selection

from large datasets [38, 39]. One of the powerful adaptive

learning approaches for DNA code selection techniques is

the Fisher’s discriminate analysis (FDA). It achieves good

performance for classification by using covariance matrix

among the groups [40]. The FDA has used for code

finding that classifies the datasets into different class

groups. In massive processing, data are selected according

to the specified data of interest. The FDA is classified the

training dataset into two different approaches: bidirec-

tional and global approaches. FDA can cover both local

and global datasets. When, the FDA is applied for local

DNA training dataset, it can compute the codes. However,

for local training data, the FDA is costly in terms of time

and space.

3.2.1 Bidirectional approach

The FDA was introduced by Fisher [41] for two classes to

transform multivariate observations x to uni-varied obser-

vations y. The uni-varied observation y is classified into

different groups that are derived from the two possible

classes. Suppose there is a set of z samples d1; d2; . . .; dn
that belong to two different classes’ c1 and c2. The scatter

matrix for the two classes is given by:

SMi ¼
X

x2ci
d � d0i
� �

d � dð Þ0 ð8Þ

where d0i ¼ 1
z

P
d2ci d and mi is the number of sample of ci.

The total inter-class scatter matrix is given by:

S wð Þ ¼ SM1 þ SM2 ¼
X

i¼1

X

d2ci
d � d0i
� �

d � d0i
� �0

: ð9Þ

The inter-class scatter matrix is given by:

S bð Þ ¼ d � dð Þ d � dð Þ0: ð10Þ

The linear discriminant analysis (LDA) is a general-

ization form of Fisher’s linear discriminant. It is used to

find the projected vector W that maximizes the fisher sep-

aration criteria, which is expressed by:
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J ¼
WTSbW
�� ��
WTSWWj j : ð11Þ

To determine the value ofW, the eigenvalues problem of

SbW ¼ kSwW with its eigenvalue was generalized. Assume

here n number of the original feature set to be

f1; f2; . . .; fnf g. Then, the feature selection is required to

select certain number of feature d, Fd ¼ fd1; fd2; . . .fdnf g
from the original features that have the largest fisher’s

selection value. Here, d(i) is the selected feature index in the

features’ subset. The selected feature set Fd was denoted for

the class scatter and within class scatter as Sb fdð Þ and Sw fdð Þ,
respectively. The fisher selection criterion J Fdð Þ is based on
separation criterion using the formula:

Fd ¼ maxarg J Fdð Þð Þ ð12Þ

where J Fdð Þ ¼ J F1;F2; . . .;Fdð Þ is defined as:

J Fdð Þ ¼
WTSb Fdð ÞW
�� ��
WTSW Fdð ÞWj j : ð13Þ

3.2.2 Global approach

The global approach is used when the training DNA

sequence contains more than two classes. Thus, Fisher’s

linear discriminate will be global discriminate analyses

(GDA) [42]. However, the maximum value is computed for

several competing classes. The intra-class matrix for n

classes is calculated by:

S wð Þ ¼ SM1 þ � � � þ SMn ¼
Xn

i¼1

X

x2ci
d � dð Þ d � d0i

� �0 ð14Þ

The inter-class scatter matrix is computed by:

S bð Þ ¼
Xz

i�1

z d � d0i
� �

d � d0i
� �0 ð15Þ

where zi is the training sample for every class, d0i is the

mean of every class and d0 is total mean vector expressed

by d0 ¼ 1
z

Pw
i¼1 zid

0
i. After obtaining S wð Þ and S bð Þ, the linear

transformation W can be calculated by generalized the

eigenvalue problem:

SbW ¼ kSwW : ð16Þ

By solving the eigenvalue problem, the data were clas-

sified into multiple classes. Once the transformation W is

obtained, the classification is performed based on distance

matrix that is calculated by the Euclidian distance using the

following expression:

dist d; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

di � yið Þ2
s

: ð17Þ

In addition, the cosine distance is used:

d x; yð Þ ¼ 1�
Pn

i¼1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p : ð18Þ

If any new instance Z is arrived, it is classified as new

class that is generated by:

argmind ZW ; x0kW
� �

: ð19Þ

where x0k is the central point in kth class. Generally, the

data are classified based on the centre classified point.

3.3 Support vector machine

Machine learning is a subfield of artificial intelligence

and different statistical methods. Different supervised

and unsupervised learning techniques, such as support

vector machine (SVM), self-organization map (SOM),

are used for classification and regression [43].The SVM

is a classification and regression approach that maxi-

mizes the prediction accuracy and avoiding data over-

fitting. It can be defined as a system in which a linear

function is used as a hypothesis to minimize the classi-

fication errors. It is used a kernel function that is solved

by the quadric programming for hypothesis searching.

All hypothesis space identifies maximum matching

hyperplane (MMH) that classifies the best and almost

correct data that are demonstrated in Fig. 2. Length of

the MMH depends on the threshold values used in the

data integration. For big dataset, the threshold value has

maximum value of 1, while in another cases, this limit is

always \1.

Suppose m number of datasets represented by a matrix X

with ith row Ai 1; 2; . . .;mð Þ. Let yi e {1, 1} belongs the

classes of datasets. The hyperplane of SVM can be

expressed by:

yi xiwþ bð Þ� 1 ð20Þ

Fig. 2 Representation of hyperplane of SVM
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where w is weighted vector and b is the constant for a

linear equation. The hyperplane of the SVM described by

wTxþ b ¼ 0 lies in midline between the boundary hyper-

plane described by wxþ þ b ¼ 1 and wx� þ b ¼ �1. The

distance of a point x is calculated by a distance function:

matching ¼ argmind xð Þ
x2D ¼ argmin

w � xþ bj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼2 w

2
i

q : ð21Þ

Distance of the closest point on hyperplane to the origin

can be found by maximizing the data point x on the

hyperplane. Similarly, for the other side points the similar

distances were calculated. Maximum margin is calculated

by subtracting the two distances from the separating

hyperplane to the nearest points. Subtracting distances is

w xþ � x�ð Þ ¼ 2:. The maximum matching hyperplane is

given by:

M ¼ w xþ � x�ð Þ
wk k ¼ 2

wk k : ð22Þ

3.4 Map-centric neural approach

Neural network-based filtering suffers for probabilistic

independent values. The Naive skyline measures the

interactions of the dataset by using the conditional proba-

bilities. On the other hand, the neural skyline filtering

measures the interactions by back propagations. Probability

approaches suffer from uncertainty due to the long

sequences. However, the back propagation adjusts the error

rates and uncertainty repeatedly by certain mathematical

formula for big dataset. Hence, the neural skyline filtering

achieves better options to measure accurate coding area.

The back propagation iteration for codes identification is

conducted for the mapping-based neural skyline filtering.

Most of the cases, large dataset analysis generates greater

percentages of errors due to lack of appropriate interpre-

tations to all datasets. Another noticeable problem is that it

consumes excessive time computing even for small number

of DNA sequences. Figure 3 illustrates the map centric

(featured neural approach) that can overcome these draw-

backs. Mapping facilities organize the datasets in specific

format. Certain randomized algorithm is used to arrange

the mapping. This will be applicable when the total dataset

is in the skyline region [44–49]. Naı̈ve skyline measures

the interactions of the dataset by using the conditional

probabilities. On the other hand, neural skyline filtering

measures the interactions by back propagations. Probability

approaches suffer uncertainty due to the long sequences.

However, back propagation adjusts the error rates and

uncertainty repeatedly by certain mathematical formula for

big dataset. So neural skyline filtering has better options to

measure accurate coding area.

Mathematically, the input layer processes the datasets

Strain with associated features c faster than any other fil-

tering by covering more datasets as follows:

a0ðmÞ ¼ ½minða1ðmÞ; . . .acðmÞÞ; sumða1ðmÞ; . . .acðmÞÞ�: ð23Þ

Here, minð�Þ is for the first node and sumð�Þ is for the

second node. Here, mi indicates the total DNA segments

under training datasets. This was repeated for rest of the

input nodes. Subsequent layer (hidden layer) maintains

complete relationships with a specific function called

hyperbolic function using the following equations [40–51]:

hiðmÞ ¼
X2

j¼1

x1ija
0ðmÞ þ bi ð24Þ

Result
ð2Þ
i ¼ increðhiðmÞÞ � increð�hiðmÞÞ

increðhiðmÞÞ þ increð�hiðmÞÞ
ð25Þ

pðmÞ ¼
X2

i¼1

x2i Result
2
i ðmÞ: ð26Þ

Figure 4 deploys the map-based neural approach.

Incre is a method that adjusts the weights for the desired

code findings. P(m) is the probability estimation functions

that measures the chances to become a code in a segments.

The flowchart represented in Fig. 4 included the following

systematic processes:

1. Map datasets according to their priority [52–56].

2. Proper associations with input datasets and training

datasets [57–60].

3. Conversion of the input training data y (neural

approach) to pf. The map-centric approach of the data

is performed using the following expressions:

y1fij ¼ min fj �
i

z
f i � /1
� �� �

; sum fj �
i

z
fj � /1
� �� �� 	

ð27Þ

y2fij ¼ min fj þ
i

z
/2 � fj
� �� �

; sum fj þ
i

z
/2 � fj
� �� �� 	

ð28Þ

Fig. 3 Structure of feature neural skyline filter
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4. Finally, the queries have been imposed for mapped

datasets [61–63] using the following expression:

STrainðmÞ ¼ ½minðSðmÞÞ; SumðSðmÞÞ� ð29Þ

S(m) is a method that computes the summations of whole

probability.

3.5 Data transformation by using evidential

reasoning approach

Data transformation is imperative for large biological data

analysis. The system complexity becomes high when data

size is large. For that, data transformation approach is used

to reduce the data size for next size biological data oper-

ation. In the present work, data transformation approach

was carried out using the evidential reasoning approach

(ER). The ER approach covers the whole dataset with

multidimensional weight, while the Bayesian reasoning

covers the weight by single operational probability. As a

result, the scope of Bayesian reasoning is small and slow.

The ER approach can be used to generate rules from

sample biological data. It transforms the biological data

based on degree of belief bij and all i = 1, 2, …, N and

j = 1, 2, …, M. The basic probability mass is assigned for

gene expression data by using the following ER approach

[1, 2]:

pij ¼ wibij; i ¼ 1; 2. . .N ð30Þ

pL;j ¼ 1�
XN

i¼1

pij ¼ 1� wi

XN

i¼1

bij ð31Þ

�pL;j ¼ 1� wi ð32Þ

~pL;j ¼ 1� wi 1�
XN

i¼1

bij

 !
ð33Þ

where pL;j ¼ �pL;j ? ~pL;j, j = 1, 2, …, M and the total

weight
PM

i wi. The probability mass assigned for the input

biological dataset L. The unassigned probabilities before

biological data transformation are split into two parts: one

cause is relative importance of J biological dataset �mL;j and

other cause due to incompleteness of the biological dataset

~mL;j. Data incompleteness arises for the presence of spu-

rious datasets and noisy biological data elements.

Aggregation of all input biological data L generated the

output biological dataset D. Degree of belief is assigned for

every input dataset (I1, …, Ik) and generate the output

datasets (O1, …, Ok).Suppose mJ,I(k) is assigned degree of

belief and mD,I(k) is unassigned degree of belief for the

output datasets. Then, the overall degree of belief bj in Dj is

calculated as:

Lj

 �

: pj;I kþ1ð Þ
¼ KI kþ1ð Þ pjI kð Þpj;kþ1 þ pjI kð Þ � pL;kþ1 þ pL;I kð Þpj;kþ1

� 


ð34Þ
pL;j kð Þ ¼ �pL;j kð Þ þ ~pL;j k ¼ 1; 2; . . .;N ð35Þ

~pL;I kþ1ð Þ ¼ KI kþ1ð Þ ~pL;I kð Þ ~pL;kþ1 þ ~pL;I kð Þ � �pL;kþ1 þ �pL;I kð Þ~pj;kþ1

h i

ð36Þ

�pL;I kþ1ð Þ ¼ KI kþ1ð Þ �pL;I kð Þ�pj;kþ1

h i
; k ¼ 1; . . .;N ð37Þ

Fig. 4 Flowchart representing

map-centric neural skyline filter
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KI kþ1ð Þ ¼ 1�
XN

j¼1

XN

i ¼ 1

i 6¼ j

pj;I kð Þpi;kþ1

2
66664

3
77775

�1

ð38Þ

Lj

 �

: bj ¼
pj;I Nð Þ

1� �pL;I Nð Þ ð39Þ

Lf g : bL ¼
~pL;I Nð Þ

1� ~pL;I Nð Þ : ð40Þ

Here, bL represents the unsigned degree of probability to

any input sequence L. It has been proved that
PN

j¼1 bj þ
bL ¼ 1 [3]. The final output sequences are generated by the

aggregation of L sequences. The lower bound of the like-

lihood is bj that assess the output sequence Lj and the upper
bound of likelihood represented by ðbj þ bLÞ:

The logic behind the ER approach is that all output kth

sequences are activated by weight; then, the overall out-

put sequence must be assigned Lj degree of belief. The

degree is measured by both the degree by which is

assigned by the kth output and degree of belief is assigned

by the activation weight of input sequences. The ER

approach is used for biological data reduction and gen-

erates small size of data volume from large biological

datasets. It is based on the Dumpster’s theory which is P-

complete approach [64–66]. It also solved the data con-

flict and removed noisy data from large biological data

sample.

3.6 Matthews’s correlation coefficient (MCC)-based

performance evaluation

Modern computational analysis supports set of metrics to

assess the mining algorithms. The MCC enables set mea-

surements to assess the performances of the classification

techniques. These metrics are measured under confusion

matrix with sensitivity, specificity, precision, accuracy, F-

measures, negative predictions and false positive rate that

expressed as follows:

Sensitivity ¼ True Positive

True Positiveþ FalseNegative
ð41Þ

Specificity ¼ TrueNegative

False Positiveþ TrueNegative
ð42Þ

Precision ¼ True Positive

True Positiveþ False Positive
ð43Þ

Accuracy ¼ True Positiveþ TrueNegative

Positiveþ Negative
ð44Þ

F-measure ¼ 2 True Positive

2 True Positiveþ False Positiveþ False Negative

ð45Þ

These metrics are used to evaluate the performance of

the proposed classification techniques.

4 Result and Implementation

Java platform is used for implementing the proposed

approach. The NetBeans IDE (integrated development

environment) with Java Development Kit 1.7 (JDK 1.7) has

supported for the overall design and assessment. Two dif-

ferent systems have been used to validate the result. First

one is core i3 with memory 2 GB, and second one is core

i5 with memory 3 GB. The designed system occupied very

less space and platform independent as illustrated in Fig. 5.

It is possible to design the whole system in the .net

framework. However, the Java is more available.

The implemented system user interface as illustrated in

Fig. 5 shows that every button on this tool enables the user

to perform specific operation. The first button is associated

for the DNA clustering process. After selecting this button,

four options will show as principal component analysis

(PCA), support vector machine (SVM), neural skyline filter

(NSF) and finally Fisher’s discriminate analysis (FDA).

4.1 The PCA versus the SVM

In the current work, the PCA has two different options,

namely intra-class and inter-class variations; its perfor-

mance degrades when it checks datasets on global domain.

On the other hand, SVM determines the whole dataset into

a common platform that is called maximum margin

hyperlane (MMH). Repeatedly this margin has been

MCC ¼ True Positive� TrueNegative� False Positve � False 
True Positiveþ False Positiveð Þ True Positiveþ False Negativeð Þ True Negativeþ False Positiveð Þ True Negativeþ False Negativeð Þ

p

ð46Þ

Neural Comput & Applic (2018) 29:1015–1037 1023

123



reduced to get the better area of the datasets. This is a

mechanical adjustment that deals the large data size for

code finding from DNA sequences. The first column in

Table 1 represents the testing DNA sequences that are

started from 1-million base pair. This table holds 18-mil-

lion base pair. Initially, the PCA is used with these datasets

for dimension reductions and codes finding over cancer

dataset. The PCA continuously measures the eigenvalues

of the collected data. Infected sequences generate less

number of codes. The related eigenvalues with the asso-

ciated vectors denote all noncoding and coding parts of the

infected sequences. The same data size is used by the

SVM. Table 1 includes the comparison between the PCA

and SVM in terms of the numbers of codes. Moreover,

there are more codes than that of counter parts that exist in

the table. The dataset length beyond the lengths used here

is also checked and noticed that the differences between

methods are equally changing over the lengths increases.

Table 1 portrays that the coding regions determined by

the SVM are increased with the increase in the DNA

sequence. For 20-million DNA base pair, the PCA codes

are 246, whereas it is 267 for the SVM counts. For

Fig. 5 System implementation

Table 1 Numbers of codes between PCA and SVM

Data size (bp) PCA SVM

10,000,000 123 137

20,000,000 246 267

30000,000 376 412

40,000,000 512 601

50,000,000 678 765

60,000,000 821 901

70,000,000 981 1123

800,000,000 1132 1421

90,000,000 1324 1678

100,000,000 1523 1874

1,100,000,000 1743 2098

120,000,000 2013 2345

130,000,000 2212 2674

140,000,000 2451 2905

150,000,000 2678 3345

160,000,000 2901 3601

170,000,000 3263 4012

180,000,000 3576 4521
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1-million data, there is about (267 - 246/267 = 7.86 %)

increase in SVM coding area selections. For 30-million

data, the counts of the PCA and SVM are 376, and 412,

respectively. Thus, there are about (412 - 376/412 =

8.73 %) changes for SVM. It was about 1 % changes from

the previous dataset findings. Consecutively, there are 2.5,

3.13, 4.54 and 6 % for 40, 50, 60 and 70-million DNA base

pair for SVM over PCA, respectively. For each and every

finding, ten to twenty times repetitions are performed

during this experimental outcome. As the DNA sequences

increases, the differences are also increased. From 100- to

200-million DNA base pair, the differences are larger than

that of previous half part of the DNA base pair. The dif-

ferences for second parts are 9 % for 100-million data,

12 % for 120-million data, 14 % for 150-million dataset,

and 17 % for 170-million DNA base pair and finally 20 %

for 200-million DNA nucleotides. The relationships and

changes are demonstrated in Fig. 6, where the green stair is

the coding areas from SVM and the red stair represents the

outcomes from PCA. The green part is little higher than the

red. This 3-D demonstrates the findings between the PCA

and SVM. The X-axis denotes the data sizes that are stated

from 1-million DNA bases to 18-million DNA bases. The

Y-axis depicts the findings of both methods. Initial point is

0 where last point is 5000. The last highest value of the

SVM is 4521; therefore, the maximum y-axis limit is 5000.

Z-axis portrayed the graphical differences between these

two processes.

Figure 6 depicts that from the starting point till the end,

the SVM outcomes are higher than PCA. At the beginning,

the differences are slight and invisible as compared to

individual stair. From second stair to last one, there are

clear graphical differences between the coding regions

finding between the PCA and SVM. It is easy to conclude

that for large DNA base pair, the SVM has better capa-

bilities than PCA for DNA coding area findings. Same

impact is noticed for data size beyond the table. For any

size of the dataset, same differences are verified. Due to the

space limitations, only small size is depicted.

4.1.1 The PCA and SVM confusion matrix measurements

Table 1 depicts that PCA finds 123 coding areas from

10-million infected DNA base pairs, whereas the SVM

detects 137 coding areas. Thus, the SVM outperforms the

PCA due to repeated adjustment of theMMH.Moreover, the

confusion matrix is included to measure the accuracy and

error rate of both processes. The confusion matrix analysis

for these codes using the PCA is illustrated in Table 2.

Table 2 depicts that the overall evaluation for PCA with

the 10-million DNA base pair (last column in Table 1) has

error rate and accuracy rate of values 5 and 95 %,

Fig. 6 Coding regions counts

by PCA and SVM
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respectively. The confusion matrix analysis for these codes

using the SVM is illustrated in Table 3.

Table 3 depicts that for the SVM with 10-million DNA

base pair, the overall outcomes for the SVM achieve error

rate and accuracy rate of 3 and 97 %, respectively. The

confusion matrix of SVM reflects better impact than that of

PCA, where the accuracy rate has increased. The accuracy

rates for the 18-million dataset are 94 % for the PCA and

95.7 % for the SVM. Thus, as data size gradually

increased, the accuracy rate of SVM also increased in all

level of data volume. However, the accuracy rate does not

always show the actual predictions in machine learning

analysis. Therefore, the sensitivity, specificity and F-mea-

sures assure perfect predictions or identification in DNA

coding part experimental analysis.

4.1.2 The PCA and SVM sensitivity measurements

In the current work, the sensitivity defines how well the

PCA finds the coding area. The complement of the coding

area as a false negative measurement is the noncoding part

of the DNA, where Sensitivity þ False Negative rate¼ 1.

By applying Eq. (41), the PCA sensitivity is approximately

20 % with accurate prediction value of approximately

88 %.

Consequently, it is noticed that the accuracy measure-

ment was 95 %, while the Sensitivity ¼ 1� False

Negative rate in the confusion matrix measures 88 %. So,

there is some limitation in the accuracy computing. This

difference between sensitivity and accuracy for the PCA

indicates the significance of sensitivity measurements for

machine learning assessments. It is obvious that PCA is

also very impactful techniques to address the problems in

automated and dynamic environments.

Meanwhile, the SVM generates better sensitivity for

coding area selections and investigation. The SVM

sensitivity tells about the prediction rate of the collected

datasets by imposing the idea of maximum margin hyper-

lane (MMH) of SVM.

The experimental results illustrate that by a confusion

matrix for 10-million DNA base pair, the SVM identifies

137 coding regions from the DNA long sequences, while it

was on 123 coding regions for the PCA. Measurement of

the SVM sensitivity by taking value from the confusion

matrix (Table 3) is 30 % approximately. For the PCA,

from the confusion matrix (Table 2), the sensitivity is

20 %. Thus, the overall improvement in SVM is 33 %.

This is a significant progress of SVM due to its repeatedly

adjustment of maximum margin of datasets variations.

Moreover, the absolute predicted coding regions of the

SVM are 95.5 %. However, the accuracy measurement of

SVM was 97 % at initial assessment. So, the sensitivity

measurements reduced 1.5 % negative predictions than the

accuracy. On the other hand, the sensitivity accuracy of

PCA is 88 %. So there is about 7 % better renovation of

SVM than that of PCA. Thus, the SVM outperforms PCA

for DNA coding selection from large DAN datasets. As

data length increases, these differences will be also

increase. Above measurement and comparisons are done

for 10-million DNA base pair.

4.1.3 The PCA and SVM specificity measurements

In the experimental results, there are two different out-

comes such as target values and nontarget values. Targeted

points are the key values. However, sometimes nontargeted

values are very significant for its existence in total dataset.

In current machine learning techniques, specificity deals

with this phenomenon. Consecutively, the specificity refers

to the correctness of identifying the noncoding areas

accurately from collected dataset. Rather finding exact

outcomes, specificity measures the negative part of an

experiment. Though, specificity deals with the less

important features of the collected dataset. It has equal

impact as pivotal features finding. In the case of very large

data size, this process predicts wrong values with slow

processing. In a sense, it can be defined as summation of

corrected area and false positive area. Mathematically, the

specificity is calculated using Table 4 and Eq. (47).

Specificity ¼ 1� False PositiveDNA coding area ð47Þ

From the specificity measurements, the experimental

result can be easily concluded that PCA accurately detected

the noncoding parts of the total datasets with 99 % speci-

ficity, while 99.98 % specificity is calculated for the SVM.

The outcomes of specificity provide the confident that

the assessment and analysis done over the datasets are

valid.

Table 2 PCA confusion matrix

Predicted code (total

codes = 140)

Predicted not

140

Actual codes (total

codes = 140)

123 17

Actual not codes 483 9764

Table 3 SVM confusion matrix

Predicted code (total

codes = 140)

Predicted not

code

Actual code (total

codes = 140)

137 3

Actual not code 321 9926
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4.1.4 The F-measures for PCA and SVM

The F-measures indicates the exact outcomes of the PCA

or the SVM using a ratio between precision and recall

measure. For the PCA, the precision, recall and the F-

measure are 88, 20 and 4.33 %, respectively. The value of

4.33 %indicates that the PCA predictions are almost

accurate in all respects of accuracy, sensitivity and speci-

ficity. Figure 7 illustrates the graphical relationship

between the precision and recall. In Fig. 7, the range is

normalized for better results representation. These small

changes help to fit the training data point perfectly over any

line graph. It establishes the impact of PCA for codes

finding from DNA sequences.

In Fig. 7, the recall line indicates that it has less value

that going down from a certain value to the last value that

is 1. Similarly, the precision value is also decreased due to

the wrong predictions. The range of the both values can be

easily extendable to any range. Meanwhile, for the SVM,

the precision, recall and the F-measure are 95.5, 30 and

3.18 %, respectively. Figure 8 (blue line) illustrates the

relationship between precision and recall for the SVM.

Figure 8 demonstrates the comparative representation

for the recall and precision for both the PCA and SVM.

The F-measure value of the PCA is 4.33, whereas it has

value of 3.18 for the SVM. Reduced F-measures proved

also that the SVM achieves better outcomes compared to

the PCA. In the case of comparison for 10-million data-

sets, the SVM has perfect impact of 36 % than the PCA.

For 20-million dataset, the PCA achieves F-measures of

4.78 % and SVM of 3.21 %, which indicates 48 %

superiority for the SVM. For 1-million DNA base pair,

there are about 12 % differences between these two

machine learning processes. For 90-million dataset (mid-

dle of the dataset), PCA assesses the F-measure is 5.23,

whereas the SVM achieves 3.32 % with difference of

57 %. So, at the half of dataset size, the SVM is more

perfect compared to the PCA. For 100- and 80-million

DNA sequences, the 20-million datasets, the differences

are about 72 % and it will be increased more when the

DNA sequences are going large scale.

In Fig. 8, the blue and pink lines indicate the SVM and

PCA corresponding F-measures, respectively. Conse-

quently, for the obtained results the SVM accuracy shows

better impact compared to the PCA. Additionally, sensi-

tivity, specificity and F-measure also show the superiority

of the SVM over the PCA.

4.2 The FDA versus the SVM and PCA

Previous experiments proved the superiority of the SVM to

the PCA. Therefore, for same data length in Table 1, new

experiments have been analyzed to compare between the

FDA and SVM. The system that is developed to provide an

option to solve the dataset with the desired techniques is

illustrated in Fig. 9.

By selecting the first button of Fig. 1, the user will find a

new screen as shown in Fig. 9. The browse button enables

the user to choose the file from database or any drive or

internet. Then, the FDA or SVM buttons guide the

researchers to perform their experiments to find the specific

features from training dataset. In the current work, the

numbers of coding regions are the key outcomes from FDAFig. 7 Relationship between precision and recall for PCA

Fig. 8 Relationship between precision and recall for SVM and PCA

Table 4 Specificity of PCA

Prediction

Coding area Noncoding area

PCA

Coding area 123 17 140

Noncoding area 483 9764 10,247

606 9781 10,387
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or SVM. The comparison of the outcomes of the FDA and

SVM as well as the PCA is depicted in Table 5.

Table 5 establishes that FDA provides superior mea-

surements compared to the SVM and the PCA. For some

initial dataset, the differences between the FDA and SVM

are very small. For 10–15-million dataset, there is no

difference between the FDA and SVM. Ten times are

verified for the same data, and there are no differences for

the codes finding, where both the FDA and SVM generate

the same amount of codes. However, when the DNA base

pair reaches 6,000,000 bp, then the SVM counts 901

codes, and for same data the FDA measures 1020 codes.

Table 5 depicts that for 60-million large DNA base, the

SVM finds 901 codes, while the FDA finds 1020 codes.

However, the PCA finds 821 codes. So, it counts

(1020 - 901/1020 = 11.66 %) greater than the SVM and

(1020 - 821/1020 = 19.50 %) greater than PCA. For the

next subsequent dataset, FDA counts 1453 codes from the

whole DNA, whereas SVM counts 1123 codes with dif-

ference of 22.71 %. Meanwhile, with the increase in the

data size, the difference between the previous counts and

current counts becomes almost double. For 100-million

DNA base pair, the difference in codes finding when

using FDA and SVM has a value of 24 %. For last DNA

base pair (hundred eighty millions), the difference

between these two methods is 1594 codes. The FDA can

find almost 1600 more codes than that of SVM. These

counts are almost 26 % more than SVM and 42 % more

than PCA. Due to long data transformation capability and

distributions, the FDA can compute the whole DNA

sequences together. The FDA manages all the data lengths

either inter- or intra-class variations. These variations

allow counting the whole data in a certain length. PCA

and SVM are not able to do the same, and it missed some

parts of the training data. On the contrary, the SVM

divides the whole sequences into two separate regions.

Therefore, the SVM might lose some DNA segments

uncovered due to lack of adjustment of two separated

regions into one. However, FDA combines all dataset into

a common compact distribution that is harmonic distri-

bution. These are the key facts FDA outperforms the PCA

and SVM. Later section will validate the FDA findings.

As a result, FDA covers the whole DNA data and finds

more codes from given training dataset.

Fig. 9 Options for FDA and SVM comparisons
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From Table 5, the 3-D relationship among PCA, SVM

and FDA demonstrates that FDA finds better prediction

than other two processes as illustrated in Fig. 10.

Figure 10 establishes that the FDA finds maximum

number of codes from the training dataset. In the current

work, cancer dataset is used to detect the codes that are

responsible for cancer diseases. It is clear form Fig. 10 that

the FDA is higher than other two stairs. For the last DNA

base pair, the differences show the maximum differences

among these three classification methods. Since, FDA

holds dynamic features to maintain automatically large

DNA data, it can compute better outcomes. The FDA uses

two different mathematical functions during the assessment

of the whole DNA sequences. There are inter-class and

intra-class variability, where with small data lengths, intra-

class variability is used, while with very large data sizes,

big dataset inter-class variability.

4.2.1 Confusion matrix of the FDA compared to the PCA

and SVM

The FDA shows the same accuracy for 10–50-million DNA

base pair as the SVM. From 60-million DNA base pair for

FDA, the following metrics are studied. The first column in

the confusion matrix of the FDA indicates the exact find-

ings and wrong predictions. The second column denotes

the number of codes not measured. The first row indicates

the actual determined codes from the existing total codes in

the given training DNA base pair. The second row portrays

the complementary of the codes, the noncoding area find-

ings. Table 6 illustrates the FDA confusion matrix.

For very large dataset, it is difficult to compute the

coding areas compared to small DNA base pair. From

Table 6, the computed error rate for the FDA is 3 %, while

for same data length the error rate for the SVM is 8.7 %.

There are about 5 % benefits of the FDA over SVM.

Moreover, the obtained FDA accuracy is 97 %, while from

the previous experiments the SVM gained 97 % accuracy

SVM for 10-million DNA base pair. Thus, the FDA pre-

dicts the same impact for 60-million DNA base pair.

Moreover, FDA accuracy is about 22 % more than the

PCA for similar DNA base pair. So, the FDA can easily

handle big DNA dataset than that of PCA and SVM.

Moreover, FDA can perform its analysis for supervised and

unsupervised learning. In this research, when the DNA

base pair is small, it can be considered as supervised

learning, while in the case of large datasets, it is easy to

consider as unsupervised learning. Nowadays, unsuper-

vised learning is significant for large data handlings irre-

spective of bioinformatics, data mining, image processing

or signal processing.

4.2.2 Sensitivity of the FDA compared to the PCA

and SVM

The sensitivity of FDA reflects the applied dynamic

environment during the experiments. The FDA covers

whole dataset into a certain area where repeated counting

is done. These iterative analyses identify all the coding

regions exist in certain DNA sequences. For large DNA

sequences of 60-million base pair, the confusion matrix

has portrayed the outcomes of the FDA findings. The

sensitivity confusion matrix includes rows reflecting the

FDA and columns indicating the resultant values of FDA

as demonstrated in Table 7. The first column and first row

relate the actual findings. The second row and first col-

umn associate the misjudgment of coding area selections.

Similarly, the first row and second column make the

relationship that failed to find the coding area from total

number of coding area. The second row and second col-

umn show the not code values, which indicated exactly

not coding area. Thus, the sensitivity of FDA = 1 -

wrong perditions.

Here, for 60-million DNA base pair, resultant narrated

into the matrix. This FDA-automated computing finds 1020

codes out of 1022 coding areas for 60,000,000 DNA base

pair. SVM outcomes are 901 and PCA finding are 821.

Table 7 depicts that the sensitivity of FDA is 9 % for

60-million large dataset, while 7 % is achieved for the

SVM over same data. So, there are about 2 % better

measurements on the FDA over SVM. Moreover, the PCA

sensitivity for same data is about 5 %. For 60-million DNA

Table 5 Coding areas findings among PCA, SVM and FDA

Data size (bp) PCA SVM FDA

10,000,000 123 137 137

20,000,000 246 267 267

30,000,000 376 412 412

40,000,000 512 601 601

50,000,000 678 765 765

60,000,000 821 901 1020

70,000,000 981 1123 1453

80,000,000 1132 1421 1765

90,000,000 1324 1678 2098

100,000,000 1523 1874 2452

110,000,000 1743 2098 2786

120,000,000 2013 2345 3198

130,000,000 2212 2674 3578

140,000,000 2451 2905 3999

150,000,000 2678 3345 4564

160,000,000 2901 3601 5012

170,000,000 3263 4012 5563

180,000,000 3576 4521 6109
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base pair, the FDA has 4 % better impact than PCA. As

data size increases, the FDA measures achieve greater

values compared to both the SVM and PCA. Subsequently,

for 70-million DNA base pair, the FDA sensitivity is 11 %,

while the SVM and the PCA count 8 and 5 %, respectively.

In addition, the increase of 1-million DNA sequences

increases the sensitivity of the FDA by 1 %. For 80-million

DNA sequences, and the FDA achieves 14 % increase,

whereas the SVM and PCA achieve 9 and 7 %, respec-

tively. Thus, for these dataset, the FDA outperforms PCA

by 50 % and gains 5 % more than SVM. These increases

are continued up to last dataset. The FDA measurements

are more perfectly compared to the SVM and PCA.

However, some other metrics such as the specificity and F-

measures are also vital to prove the FDA superiority.

4.2.3 Specificity of the FDA compared to the PCA

and SVM

In this work, for measuring noncoding regions with large

DNA data, it consumes 120 s for 500-million DNA bases.

So, the specificity = 1 - coding areas from whole training

DNA bases has a value of 3.71 % for the FDA.

A small value of specificity defines the true impacts of

large data handling problems in bioinformatics assess-

ments. This value defines the validity of specific DNA

sequences for FDA.

Fig. 10 Codes finding

relationships among PCA, SVM

and FDA

Table 7 FDA sensitivity confusion matrix

Prediction

Coding area Noncoding area

Coding area 1020 2 1022

Noncoding area 11,134 296,782 307,916

12,154 296,784 308,938

Table 6 FDA confusion matrix

Predicted codes (total

codes = 1022)

Predicted not

codes

Actual codes (total

codes = 1022)

1020 2

Actual not codes 11,134 296,782
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4.2.4 F-measures of the FDA Compared to the PCA

and SVM

Since, the measured precision and recall for the FDA are 99

and 8 %, respectively. Thus, the F-measure of FDA is

12.4 %. For same data length, the F-measure for SVM and

the PCA are 16.45 and 20.87 %, respectively. For the

60-million datasets, the FDA has perfect predictions com-

pared to the SVM that achieves 32 % F-measure. After-

ward, for 70-million DNA base pair, the differences become

almost 34 %. Additionally, the differences between PCA

and FDA are about 47 and 52 % for 60 and 70-million DNA

base pairs, respectively. Eighty-million DNA dataset gen-

erates more differences of 42 % than SVM and 58 % than

PCA. Due to the large data processing capabilities, FDA

always outperforms PCA and SVM for any amounts of

DNA data. Figure 11 illustrates the comparative plots of the

F-measure performance for both the FDA and SVM.

Figure 11 establishes that gradually as data size reduces,

the F-measure values for both methods reduce to certain

points. However, irrespective of DNA data size, the FDA

always computes better outcomes. For SVM and PCA,

ranges of recall and precisions are 0–1; however, for the

FDA random ranges have been used to make dynamic

prediction environments.

4.3 The MNSF versus the FDA

Mapping-based neural skyline filtering enables faster and

efficient processing than PCA, SVM and FDA. Mapping is

a function that computes large dataset in a parallel envi-

ronment. This function repeatedly measures the whole

dataset at a time. In a second, 32 mapping functions are

used to find the coding area. Other methods serially

compute the DNA sequences, whereas the MNSF imposes

32 functions in a row. This facility makes MNSF distinct

from PCA, FDA and SVM. The mapping quarry that

MNSF applied in the current work is an integrated envi-

ronment, which are implemented as follows.

Mapping Quarry Using The MNSF

Generate Outer DNA Data Table for Codes
With

(
Type=Combined_MAP_Function,
Location=localhost.DNA database
Database=Mapping DNA
Documentation= Sarwar Kamal,
Combined_MAPPING=Codes Map
)

This quarry followed by some other significant quarries

that are essential for codes finding. There are huge numbers

of DNA segments for over all experiments. However, faster

analysis requires more DNA sequencing. In this work,

there are 32 parallel quarries that are used to perform all

the included datasets. The parallel environment is the key

improvement for MNSF codes findings. The quarry for the

implementation of the whole DNA segments with small

dataset is given as follows.

Implementation Quarry of the whole DNA Segmen
ts with Small Dataset

Produce outer Tables External Table
[DNA].[All codes excess ]

(
[DNA Codes ID] int,
[Non codes ID] int,
[Time] of Codes findings, 
[Type] varchar(30000000),
[Instruction] varchar(234432),
[SQL Management] varbinary(453),
[Beginning offset] int,
[Last offset] int,
[System Time] int,
)

Under
(
DNA Segment source = DNA Table,
Schema = DNA_System
Object = Codes,
Environment=Iterative
)

The union quarry is then applied to bind all table codes

in a certain area. The DNA table is the physical storage

area to store the training and testing DNA dataset. There

are n numbers of tables to store the whole DNA sequences.Fig. 11 F-measures between FDA and SVM

Neural Comput & Applic (2018) 29:1015–1037 1031

123



The iterative environment assures the continuous support

to codes selections from table.

Selection Procedure
SELECT DNA_Codes  FROM Segment 1
UNION ALL
SELECT DNA_Double Codes FROM Segment 2

The specific quarry that is critical for sequencing of

large DNA segment finding is given by:

Quarry for Sequencing of Large DNA Segment 
Finding

SelectCode Symbol, having first_A, last_T
From DNA Bank

Accurate Match_Identify (
Separated byC,G, Order By A,C,T,G

Compute First (A.DNA Bank) as first_A,
Last(T.DNA Bank) as last_T

Whole rows matches
Segments ((A+ T+) (G+ C+) A)
IntroduceA as (Initial),

G as (Middle nucleotide), 
T as end (G.DNA Bank) – Initial (A.DNA Bank <= 3 

)
Where symbols (AGCT)

For all data lengths, the remaining processes compute

less number of DNA codes. There are significant

improvements in the codes findings due to the mapping

facilities of the MNSF. There are twenty times iterations to

check the outcomes among these four methods. Symbol

arrangement of the quarry might be changed at any time.

Last line of the last quarry plays a vital role for checking

complete sequences of the training DNA dataset. The dif-

ference between G and Amakes as less than or equals 3 due

to the common length which is always 3 for all DNA codes

sequences. Segments that enlarge with plus sign indicate

the more same nucleotides belong to the DNA segments.

The whole dataset is stored into database named as DNA

bank. Dot operator enables to access the desired nucleotide

from the DNA bank to move forward to check whole DNA

sequences. This process supports the finding of frequent

codes from uninterrupted DNA sequences. Traditional

database is used here for whole sequencing. However,

Hadoop and Spark are checked for some part of the

sequencing and the outcomes are remarkable than tradi-

tional database. The positive part of this research is that it

is adjustable to both traditional and big database. Tradi-

tional database indicates MySQL, Microsoft access and so

on. On the other hand, Hadoop, Spark and Shark are the big

data environments. Among these three, Spark is the best

big data handling environments for bioinformatics data and

algorithms. Hadoop focused mainly on Web links and

resource description framework (RDF). However, DNA,

RNA (ribonucleic acid) and proteins are the large biolog-

ical networks that deal lots of interaction that are very

complex as well as large in size. Consequently, huge

numbers of interactions are created as well as distributed

environments. Spark enables to process such big interac-

tions and distributed hub.

The outcomes of MNSF compared to the FDA, SVM

and PCA are illustrated in Table 8.

Table 8 illustrates that in all aspects of sequencing, there

are large differences between the MNSF compared to the

FDA, SVM and PCA. For 10-million DNA dataset, the

MNSF finds 140 codes out of 140, while both the FDA and

SVM find only 137 each and the PCA finds 123 codes.

There are about 5 % prediction improvements for mapping

achieved with the MNSF. For 20-million DNA base pair,

the MNSF measures 9 % better than the SVM and 11 %

better than PCA. For next data lengths of Table 8, the

difference is continued the same performance for the

MNSF. Moreover, for 50-million DNA base pair, there are

about 15 % higher codes for the MNSF than SVM and

22 % differences than PCA. These distinctions are con-

tinued till the last DNA base pair is reached. The large

differences are noticed for the last DNA base pair in

Table 8. There are about 55 % differences between the

PCA and MNSF and 40 % differences between the SVM

and MNSF and 25 % differences between the MNSF and

FDA. The significance of the current work is that FDA and

MNSF are superior to both the PCA and SVM. However,

Table 8 Outcomes of four methods used here as PCA, SVM, FDA

and MNSF

Data size (bp) PCA SVM FDA MNSF

10,000,000 123 137 137 140

20,000,000 246 267 267 300

30,000,000 376 412 412 480

40,000,000 512 601 601 700

50,000,000 678 765 765 880

60,000,000 821 901 1020 1209

70,000,000 981 1123 1453 1786

80,000,000 1132 1421 1765 2023

90,000,000 1324 1678 2098 2321

100000000 1523 1874 2452 2653

110,000,000 1743 2098 2786 2908

120,000,000 2013 2345 3198 3442

130,000,000 2212 2674 3578 3896

140,000,000 2451 2905 3999 4432

150,000,000 2678 3345 4564 5098

160,000,000 2901 3601 5012 5754

170,000,000 3263 4012 5563 6432

180,000,000 3576 4521 6109 7432
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the MNSF is the best prediction method due to its mapping

facilities as demonstrated in Fig. 12. The 3-D view enables

clear sketching of the outcomes.

Figure 12 establishes that the MNSF representing the

codes finding outcomes of mapping neural skyline filtering

outperforms the other techniques. Due to the gradual

improvements in the MNSF than all other methods over the

all DNA dataset, thus, the specificity, accuracy, sensitivity

and F-measures are not required for the MNSF.

4.4 The time differences comparison of the four

techniques

Since the MNSF maintains mapping facilities, it takes very

less time compared to the other three methods as illustrated

in Table 9.

Table 9 shows that the MNSF consumed less time

compared to the other three methods. For 10-million DNA

base pair, the MNSF consumes 498 nanoseconds (ns),

whereas the SVM and FDA consume 981 and 988 ns,

respectively. Conversely, the PCA consumes only 723 ns

that are smaller than that of the SVM and FDA. Thus, the

MNSF is (723 - 498 = 225/723 = 32 %) faster than PCA,

49 % faster than SVM and 49.5 % faster than FDA. So, for

small length DNA sequences, the MNSF process is quicker

than other methods only for its mapping capabilities. The

time differences are gradually increased for all remaining

data lengths. For 50-million DNA nucleotides, the

differences with PCA are about 34 %, with SVM it is about

51 %, and with FDA the differences are about 55 %. The

FDA takes more time than all techniques used due to its

validity checking criteria. For 100-million DNA sequences,

Table 9 Time consumed for codes finding by PCA, SVM, FDA and

MNSF

Data size (bp) PCA SVM FDA MNSF

10,000,000 723 981 988 498

20,000,000 1054 1563 1590 900

30,000,000 1686 2452 2489 1280

40,000,000 2154 2954 2987 1564

50,000,000 2567 3532 3590 2078

60000000 3245 4100 4109 2456

70,000,000 3678 4658 4695 2767

80,000,000 4211 5400 5432 3098

90,000,000 4654 6123 6198 3200

100,000,000 5432 7600 7654 3456

110,000,000 5908 8176 8286 3665

120,000,000 6892 9123 9234 4042

130,000,000 7643 10,123 11,002 4496

140,000,000 8123 11,232 12,121 4709

150,000,000 8654 12,098 13,121 5143

160,000,000 9012 13,095 14,098 5422

170,000,000 9456 14,777 15,098 5809

180,000,000 9765 15,643 16,543 6241

Fig. 12 Comparative

demonstrations among PCA,

SVM, FDA and MNSF
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these difference are 40, 54 and 58 %, respectively, for

PCA, SVM and FDA. For 18-million DNA base pairs,

these timing differences reach at 45 % for PCA, 58 % for

SVM and 63 % for FDA.

Consequently, the PCA takes less time than SVM to

check the codes; however, its predictions are poorer than

the SVM. The PCA investigates only some part of the

sequences that are matched with their conditions, while the

SVM and FDA confirm their checking with confidence.

Moreover, PCA takes less memory space than SVM and

FDA. For small DNA sequences, PCA performs better than

FDA and SVM; however, for very big DNA dataset MNSF

outperforms other three methods. Figure 13 represents

graphically the differences obtained in Table 9. However,

in codes predictions, FDA and SVM are clearly ahead than

PCA. This is the prime concentration of the current work.

Figure 13 establishes that the SVM and FDA consume

double time than the MNSF, while the PCA consumes

average time among all four methods.

4.5 The ER-MNSF versus MNSF

Reduction is a new phenomenon to arrange big dataset into

small area. Recently, reduction processes are frequently

applied in each and every parallel data processing. Reduc-

tion phase compressed similar data that are not related to the

codes for initial consideration. When the iteration receives

the same data again, it simply ignores these data and moves

forward. This skipping process helps to cover entire DNA

sequences within shorter periods of time. Due to repeated

patterns in DNA sequences, more than half of the patterns

do not matches with the codes and they are considered as

valueless dataset. Sometimes, redundant data are also being

removed from the training data. Moreover, irregular data

such as un- expected characters, symbols and digits are

removed from training and testing data. Hence, the con-

sumed time by ER-MNSF is less than MNSF. In the case of

increased data lengths, the differences are also getting as

shown in Table 10. All the testing time is checked for ten

times and then stored to Table 9. For each and every

checking, the results are same and ER-MNSF is better than

all other methods in all respect.

Table 10 represents that for ten-megabyte DNA sequen-

ces, the time for MNSF is 498 ns, while it is only 200 ns for

the ER-MNSF. Thus, the ER-MNSF is faster by about 60 %

than the MNSF. For the next data size, the differences are

61 %, i.e., evidential reasoning made the processing quicker

and efficient. For all other lengths, there are gradual

improvements in time for ER-MNSF over MNSF. The line

graph in Fig. 14 represents the timing outcomes for evi-

dential reasoning-based analysis and the MNSF.

Figure 14 depicts that the starting point to ending point,

the timing differences are increasing gradually between the

methods. As time progresses, ER-MNSF performs better

and better, whereas the timing is increasing for MNSF over

the whole data lengths. Therefore, the evidential reasoning

Fig. 13 Timing comparisons

among four methods principal

component analysis, support

vector machine, Fisher’s

discriminant analysis and

mapping-based neural skyline

filter
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(ER)-centric MNSF outperforms all four methods used in

the current work. Consequently, the proposed approach

proves its efficiency to find the DNA codes. It provides a

significant scope in biological data processing laboratories

for reducing large datasets, drugs design, agriculture and

medicine. However, there are some other factors that are

also responsible for cancer, such as proteins–proteins

interactions and RNA synthesis. These protein–protein

interactions are not measured in this work. The RNA

synthesizes can also be considered in the future work.

Since proteins interactions are also critical for cancer, this

analysis is also recommended in the further future work.

Moreover, in the future, proteins interactions and RNA

mechanism can be simulated by imposing machine learn-

ing and advanced data mining algorithms.

5 Conclusion

Cancer is a precarious disease; thus, cancer data analysis is

significant. Small datasets can lead to erratic rate estima-

tion, sensitivity to missing data and other data errors. The

current work finds out the key parts from cancer DNA data.

These key components are the coding regions of the DNA

that control set of factors in the human body. It helps to

detect the mutations, damages and changes in long DNA

sequences. Genes induct the mistakes occur when cell

divide. These mistakes are called the mutations. Coding

areas plays vital role to detect and repair these mutations.

These mutations are caused by various natural and man-

made regions, such as smoke, radiation, chemical mixed

environments, ultraviolet radiations from the sun and bad

substances in food. Biological processes are very expensive

to detect the codes from DNA.

Simulation and computational analysis reduces cost and

the required processes by scaling down the very large data.

Four different machine learning techniques, namely the

PCA, SVM, FDA and the MNSF, are used to measure the

codes. Different outcomes are found as codes by applying

these four methods to the used cancer dataset. For some

special criteria, these techniques differ from each other.

Sensitivity, specificity, accuracy and F-measures reflect

their performances with proper mathematics. Due to large-

scale cancer infected DNA data, mapping-based Neural

Skyline filter outperforms all other three factors. The key

point of this work is that mapping enables the coding area

findings to be more accurate and faster. Evidential reasoning

is used as a mapping orientation mathematical approach.
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