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Abstract This paper considers the finite-time stability and

finite-time boundedness problems for switched neural

networks subject to L2-gain disturbances. Sufficient con-

ditions for the switched neural networks to be finite-time

stable and finite-time bounded are derived. These condi-

tions are delay-dependent and are given in terms of linear

matrix inequalities. Average dwell time of switching sig-

nals is also given such that switched neural networks are

finite-time stable or finite-time bounded. By resorting to the

average dwell time approach and Lyapunov–Krasovskii

functional technology, some new delay-dependent criteria

guaranteeing finite-time boundedness and stabilizability

with L2-gain analysis performance are developed. An

illustrative example is given to demonstrate the effective-

ness of the proposed state estimator.

Keywords Finite-time boundedness � Linear matrix

inequality � Lyapunov–Krasovskii method � Switched
neural networks � Time-varying delay

1 Introduction

It is well known that neural networks have become a

popular topic that attracts researchers attention, various

delayed neural networks such as Hopfield neural networks,

Cohen–Grossberg neural networks, cellular neural

networks and bidirectional associative memory neural

networks have been extensively investigated [1–7].

Studying artificial neural networks has been the central

focus of intensive research activities during the last dec-

ades since these networks have found wide applications in

areas like associative memory, pattern classification,

reconstruction of moving images, signal processing, solv-

ing optimization problems (see [8–15]).

In hardware implementation of neural networks, it is well

known that time delay frequently occurs, and the existence of

time delay may cause instability and poor performance.

Therefore, much effort has been devoted to the delay-de-

pendent stability analysis of delayed neural networks, since

delay-dependent stability criteria are generally less conser-

vative than delay-independent ones especially when the size

of the time delay is small (for example, [16–24]).

In recent years, switched neural networks (SNNs),

whose individual subsystems are a set of neural networks,

have attracted significant attention and have been suc-

cessfully applied to many fields such as high-speed signal

processing, artificial intelligence and gene selection in

DNA microarray analysis. Recent researches in SNNs

typically focus on the analysis of dynamic behaviors, such

as stability, controllability, reachability, and observability

aiming to design controllers with guaranteed stability and

performance [25–27]. Besides the aforementioned prob-

lem, designing a controller to achieve tracking for SNNs is

a challenging problem. Thus tracking control problem for

SNNs with many researchers focus on time-varying delays

using average dwell time approach and piecewise Lya-

punov functional methods (see [28–31]).

Over the past few years, many study efforts have been

dedicated to the finite-time stability of SNNs due to its wide

applications [32–35]. To study the transient behavior of sys-

tems, finite-time stability concerns the stability of a system
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over a finite interval of time and plays an important role (for

example, [36–39]). It is important to emphasize the discon-

nection between classical Lyapunov stability and finite-time

stability. The problem about finite-time stability L2-gain

analysis has been widely learned in the literature [40–42]. It is

worth pointing out that there is a difference between finite-

time stability and Lyapunov asymptotic stability, and they are

also independent of each other. Recently, finite-time stability

for SNNs based on the technique of average dwell time, the

problem of finite-time boundedness for the SNNs with time

delays was investigated (see [43–46]).

As an important feature of the switching system, average

dwell time is commonly adopted in finite-time boundedness

analysis of SNNs [47–49]. In [50], the authors studied finite-

time stability of high-order stochastic nonlinear systems in

strict-feedback form. However, the property of the average

dwell time switching signal, which requires the average

interval between two successive switching constants must be

over sa, is independent of the system modes. Therefore,

conservativeness still exists for the minimum admissible

average dwell time. The average dwell time concept, which

can fully use the mode-dependent information, is firstly

taken into account for the general switched linear systems in

[51]. However, to the best of authors’ knowledge, only few

attempts have been made on the study of the finite-time

bounded for the average dwell time approach, especially for

the switched NNs with time-varying delays, which moti-

vates us to undertake this study.

Motivated by the above discussions, we investigate the

finite-time boundedness and finite-time L2-gain analysis for

a SNN problem. The novel features are that a new Lya-

punov–Krasovskii functional is constructed average dwell

time approach is applied firstly to the study of finite-time

boundedness for switched neural networks. By applying

Newton–Leibniz formula and Jensen’s inequality, Schur

complement lemma, a switching rule for finite-time

boundedness of SNNs with interval time-varying delay is

derived delay-dependent finite-time L2-gain analysis for

SNNs with interval time-varying delay are established in

terms of linear matrix inequalities (LMIs), which allow

simultaneous computation of two bounds that characterize

the finite-time boundedness and finite-time L2-gain analy-

sis rate of the solution. The obtained results are conser-

vative than the results in [14–16, 21–24].

The outline of the paper is as follows. Section 2 presents

problem formulation, notations, definitions and a technical

lemma. In Sect. 3, a delay-dependent finite-time bound-

edness for SNNs with interval time-varying delay, a

switching rule for finite-time L2-gain analysis of SNNs

with interval time-varying delay. Numerical examples

show the effectiveness of the result. The paper ends with

conclusions given in Sect. 4 and cited references follow.

2 Problem formulation and preliminaries

Consider the following n-neuron switched neural networks

with time-varying delays,

_xðtÞ ¼ �ArðtÞxðtÞ þ BrðtÞf ðxðtÞÞ þ CrðtÞf ðxðt � sðtÞÞÞ þ D1rðtÞwðtÞ
zðtÞ ¼ ErðtÞxðtÞ þ D2rðtÞwðtÞ;
�xðtÞ ¼ /ðtÞ; t 2 ½�h; 0�;

9
>=

>;

ð1Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . .; xnðtÞ�T 2 Rn is the state,

zðtÞ 2 Rq is the controlled output and wðtÞ 2 L
q
2½0;1)

satisfies the constraint:

Z T

0

wTðtÞwðtÞ� d; d� 0: ð2Þ

f ðxðtÞÞ ¼ ½f1ðx1ðtÞÞ; f2ðx2ðtÞÞ; . . .; fnðxnðtÞÞ�T 2 Rn is the

neuron activation function, ArðtÞ is a positive diagonal

matrix, BrðtÞ; CrðtÞ; D1rðtÞ; ErðtÞ; D2rðtÞ are the weight

connection matrices with appropriate dimensions. sðtÞ is a
time-varying delay function with 0� sðtÞ� h and _sðtÞ� s;
where s is the upper bound of the time-varying delay sðtÞ.
/ðtÞ is a continuous vector-valued initial function on

½�h; 0�. rðtÞ : ½0;1Þ ! N ¼ f1; 2; . . .;Ng is the right

continuous piecewise constant switching signal to be

designed, where N is a finite set.

Corresponding to the switching signal rðtÞ, we get the

following switching sequence:

R ¼ fx0; ði0; t0Þ; . . .; ðik; tkÞ; . . .; j ik 2 N ; k ¼ 0; 1; . . .g;

where t0 is the initial time when tk 2 ½tk; tkþ1Þ; xðt0Þ is

the initial state and rðtÞ ¼ i, ithk subsystem is active.

Throughout this paper, we assume the state of the

switched neural networks does not jump at the

switching instants, that is, the trajectory x(t) is every-

where continuous. Moreover, the switching signal rðtÞ
has finite number of switching on any finite interval

time. It is worth pointing out that almost all results for

switched systems are based on the continuous of the

state and the finite of the switching number on any

finite interval time, which is the elementary assumption.

For the activation function, we make the following

assumptions.

Assumption 1 [53] The activation functions satisfy the

following condition, for any p ¼ 1; 2; . . .; n there exist

constants G�
p , G

þ
p such that

G�
p � fpðx1Þ � fpðx2Þ

x1 � x2
�Gþ

p

forall x1; x2 2 R; x1 6¼ x2:

For presentation convenience, in the following, we denote
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Gt ¼ diag G�
1 G

þ
1 ;G

�
2 G

þ
2 ; . . .;G

�
n G

þ
n

� �
;

Gu ¼ diag
G�

1 þ Gþ
1

2
;
G�

2 þ Gþ
2

2
; . . .;

G�
n þ Gþ

n

2

� �

:

Definition 2.1 [41] For any T2 [ T1 � 0, let NpðT1; T2Þ
denote the switching number of rðtÞ on an interval ðT1; T2Þ.
If

NpðT1; T2Þ�N0 þ
T2 � T1

sa
;

holds for given N0 � 0, sa [ 0, then the constant sa is

called the average dwell time and N0 is the chatter bound.

Without loss of generality, we choose N0 ¼ 0 throughout

this paper.

Definition 2.2 [36] Switch system (1) is said to be finite-

time bounded with respect to ðc1; c2; T;R; dÞ if following

condition holds:

max
�s� t0�0

fxTðt0ÞRxðt0Þ; _xTðt0ÞR _xðt0Þg�c1 ) xTðtÞRxðtÞ\c2;

8t2 ½0;T �;8wðtÞ :
Z T

0

wTðsÞwðsÞds�d;

where c2 [ c1 � 0 and R[ 0 is a positive definite matrix.

Definition 2.3 [32] For c[ 0; d[ 0; T [ 0; g[ 0;

K[ 0, and c1 [ c2 [ 0, system (1) is said to be finite-time

stable with a weighted L2 performance c with respect to

ðc1; c2; T ;R; dÞ, if the following condition holds:
Z T

0

gs� ln
k1c2

Kc1 þ dc2ð1=gÞð1� egTÞ

� �

zTðsÞzðsÞds

� c2e�gT
Z T

0

wTðsÞwðsÞds;

and under zero initial condition, it holds for all nonzero

w :
R T

0
wTðsÞwðsÞds� d.

Lemma 2.4 [52] For any constant matrix

Z 2 Rn�n; Z ¼ ZT [ 0, scalars h[ 0, such that following

integrations are well defined; then

� h

Z t

t�h

xTðsÞZxðsÞds� �
Z t

t�h

xðsÞds
� �T

Z

Z t

t�h

xðsÞds
� �

;

� h2

2

Z 0

�h

Z t

tþh
xTðsÞZxðsÞdsdh� �

Z 0

�h

Z t

tþh
xðsÞdsdh

� �T

� Z

Z 0

�h

Z t

tþh
xðsÞdsdh

� �

:

Lemma 2.5 [52] (Schur complement) Given constant

matrices X, Y, Z, where X ¼ XT and 0\Y ¼ YT , then X þ
ZTY�1Z\0 if and only if

X ZT

� � Y

� �

\0; or
�Y Z

� X

� �

\0:

3 Main results

3.1 Finite-time boundedness analysis

In this section, we focus on finite-time boundedness of

switched neural networks (1). First, consider a switched

neural networks with external disturbance as follows:

_xðtÞ ¼ �ArðtÞxðtÞ þ BrðtÞf ðxðtÞÞ þ CrðtÞf ðxðt � sðtÞÞÞ þ D1rðtÞwðtÞ
�xðtÞ ¼ /ðtÞ; t 2 ½�h; 0�:

�

ð3Þ

Theorem 3.1 System (3) is said to be finite-time bounded

with respect to ðc1; c2;R; d; TÞ if there exist symmetric

positive matrices Pi;Q1i;Q2i; S1i; S2i; Yi and matrices

Nsiðs ¼ 1; 2; 3Þ, U1i [ 0;U2i [ 0 and scalars g� 0; l� 1;

kl [ 0ðl ¼ 1; 2; . . .; 8Þ; d[ 0; h[ 0;K[ 0; s[ 0 such

that 8i; j 2 N , we have that following linear matrix

inequalities hold:

Wi ¼

w11 w12 w13 w14 w15 w16 w17

� w22 w23 w24 w25 w26 w27

� � w33 w34 w35 w36 w37

� � � w44 w45 w46 w47

� � � � w55 w56 w57

� � � � � w66 w67

� � � � � � w77

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

\0;

ð4Þ

Pi\lPj; Q1i\lQ1j; Q2i\lQ2j; S1i\lS1j; S2i\lS2j; Yi\lYj;

ð5Þ

k1c2e
�gT [Kc1 þ dk8

1

g
ð1� e�gTÞ; ð6Þ

with the average dwell time of the switching signal r
satisfying

sa [ s�a ¼
T ln l

lnðk1c2Þ � ln½Kc1 þ dk8ð1=gÞð1� e�gTÞ� � gT
;

ð7Þ

where

w11 ¼ dPi � PiAi � AT
i Pi þ edhQ1i þ

edh � 1

d

� 	

S1i

� S2i

h
� 2Yi � GtU1i; w12 ¼

S2i

h
� AT

i N
T
1i;

w13 ¼ �AT
i N

T
3i; w14 ¼ �Yi � hAT

i N
T
2i; w15 ¼ PiBi þ GtU2i;

w16 ¼ PiCi; w17 ¼ PiD1i;
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w22 ¼ �Q1i �
S2i

h
� GuU1i; w23 ¼ �NT

1i; w24 ¼ 0;

w25 ¼ N1iBi; w26 ¼ N1iCi þ GuU2i; w27 ¼ N1iDi;

w33 ¼
edh � 1

d

� 	

S2i þ
edh � dh� 1

d2

� 	

Yi � N3i � NT
3i;

w34 ¼ �hNT
2i; w35 ¼ N3iBi; w36 ¼ N3iCi;

w37 ¼ N3iD1i; w44 ¼ �hS1i � 2Yi; w45 ¼ hN2iBi;

w46 ¼ hN2iCi; w47 ¼ hN2iD1i; w55 ¼ ehQ2i � Gt;

w56 ¼ 0; w57 ¼ 0; w66 ¼ �ð1� sÞQ2i � Gu;

w67 ¼ 0; w77 ¼ �gHi:

Proof We consider the following Lyapunov–Krasovskii

functional:

VrðtÞðxt; tÞ ¼
X4

l¼1

VlrðtÞðxt; tÞ; ð8Þ

where

V1rðtÞðxt; tÞ ¼ xTðtÞedtPrðtÞxðtÞ;

V2rðtÞðxt; tÞ ¼
Z t

t�h

edðsþhÞxTðsÞQ1rðtÞxðsÞds

þ
Z t

t�sðtÞ
edðsþhÞf TxððsÞÞQ2rðtÞf ðxðsÞÞds;

V3rðtÞðxt; tÞ ¼
Z 0

�h

Z t

tþh
edðs�hÞxTðsÞS1rðtÞxðsÞdsdh

þ
Z 0

�h

Z t

tþh
edðs�hÞ _xTðsÞS2rðtÞ _xðsÞdsdh;

V4rðtÞðxt; tÞ ¼
Z 0

�h

Z 0

h

Z t

tþm
edðs�hÞ _xTðsÞYrðtÞ _xðsÞdsdmdh:

Taking the time derivative of VrðtÞðxt; tÞ along the

trajectory of the system (3) and we define rðtÞ ¼ i,

_V1iðxt; tÞ ¼ edtxTðtÞðdPi � PiAi � AT
i PiÞxðtÞ

þ 2edtxTðtÞPiBif ðxðtÞÞ þ 2edtxTðtÞ

PiCif ðxðt � sðtÞÞÞ þ 2edtxTðtÞPiD1iwðtÞ; ð9Þ

_V2iðxt; tÞ ¼ edtxTðtÞedhQ1ixðtÞ � edtxTðt � hÞQ1ixðt � hÞ
þ edtf TðxðtÞÞedhQ2if ðxðtÞÞ
� ð1� _sðtÞÞedtf Tðxðt � sðtÞÞÞQ2if ðxðt � sðtÞÞÞ;

� edtxTðtÞedhQ1ixðtÞ � edtxTðt � hÞQ1ixðt � hÞ
þ edtf TðxðtÞÞedhQ2if ðxðtÞÞ � ð1� sÞedtf T

ðxðt � sðtÞÞÞQ2if ðxðt � sðtÞÞÞ;
ð10Þ

_V3iðxt; tÞ ¼ edtxTðtÞ edh � 1

d

� 	

S1ixðtÞ

� edt
Z t

t�h

xTðsÞS1ixðsÞdsþ edt _xTðtÞ edh � 1

d

� 	

S2i _xðtÞ

� edt
Z t

t�h

_xTðsÞS2i _xðsÞds;

ð11Þ

_V4iðxt; tÞ ¼ edt _xðtÞ edh � dh� 1

d2

� 	

Yi _xðtÞ

� edt
Z 0

�h

Z t

tþh
_xTðsÞYi _xðsÞdsdh: ð12Þ

From Lemma 2.4, we have

�
Z t

t�h

xTðsÞS1ixðsÞds��1

h

Z t

t�h

xðsÞds
� �T

S1i

Z t

t�h

xðsÞds
� �

;

ð13Þ

�
Z t

t�h

_xTðsÞS2i _xðsÞds��1

h

Z t

t�h

_xðsÞds
� �T

S2i

Z t

t�h

_xðsÞds
� �

;

ð14Þ

�
Z 0

�h

Z t

tþh
_xTðsÞYi _xðsÞdsdh� � 2

h2

Z 0

�h

Z t

tþh
_xðsÞdsdh

� �T

Yi

Z 0

�h

Z t

tþh
_xðsÞdsdh

� �

;

¼ � 2

h2
hxðtÞ �

Z t

t�h

xðsÞds
� �T

Yi hxðtÞ �
Z t

t�h

xðsÞds
� �

;

¼ �2 xðtÞ � 1

h

Z t

t�h

xðsÞds
� �T

Yi xðtÞ � 1

h

Z t

t�h

xðsÞds
� �

:

ð15Þ

Based on Assumption 1 , we obtain

½fqðxqðtÞÞ � G�
q xqðtÞ�½fqðxqðtÞÞ � G�

q xqðtÞ� � 0; q ¼ 1; 2; . . .; n;

½fqðxqðt � sðtÞÞÞ � G�
q xqðt � sðtÞÞ�½fqðxqðt � sðtÞÞÞ

� G�
q xqðt � sðtÞÞ� � 0; q ¼ 1; 2; . . .; n:

can be compactly written as

xðtÞ
f ðxðtÞÞ

� �T
Gt � Gu

� I

� �
xðtÞ

f ðxðtÞÞ

� �

� 0;

xðt � sðtÞÞ
f ðxðt � sðtÞÞÞ

� �T
Gt � Gu

� I

� �
xðt � sðtÞÞ

f ðxðt � sðtÞÞÞ

� �

� 0:

Then for any positive matrices U1i ¼ diagfu1i; u2i;
. . .; unig and U2i ¼ diagfû1i; û2i; . . .; ûnig, the following

inequalities hold true
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xðtÞ
f ðxðtÞÞ

� �T
GtU1i � GuU1i

� U1i

� �
xðtÞ

f ðxðtÞÞ

� �

� 0; ð16Þ

xðt� sðtÞÞ
f ðxðt� sðtÞÞÞ

� �T
GtU2i �GuU2i

� U2i

� �
xðt� sðtÞÞ

f ðxðt� sðtÞÞÞ

� �

�0:

ð17Þ

From the Leibniz–Newton formula, the following

equation is true for any matrices N1i;N2i and N3i with

appropriate dimensions:

2xTðt � hÞN1i þ 2

Z t

t�h

xðsÞdsN2i þ 2 _xTðtÞN3i

� �

� ½� _xðtÞ � AixðtÞ þ Bif ðxðtÞÞ þ Cif ðxðt � sðtÞÞÞ
þ D1iwðtÞ� ¼ 0: ð18Þ

Therefore, for a given g[ 0 and from (9)–(18), one can

obtain that

_Vðxt; tÞ � gwTðtÞHiwðtÞ� edtXTðtÞWiXðtÞ; ð19Þ

where

XTðtÞ¼ xTðtÞ xTðt�hÞ _xðtÞ
R t

t�h
xðsÞds f TðxðtÞÞ f Tðxðt�sðtÞÞ wTðtÞ


 �
:

The inequality (19) is equivalent to (4).

Thus, we obtain

_Viðxt; tÞ � gViðxt; tÞ\gwTðtÞHiwðtÞ: ð20Þ

Notice that

d

dt
ðe�gtViðxt; tÞÞ\ge�gtwTðtÞHiwðtÞ: ð21Þ

Integrating (21) from tk to t, we can get that

Viðxt; tÞ\egðt�tkÞViðxtk ; tkÞ þ g
Z t

tk

egðt�sÞwTðsÞHiwðsÞds:

ð22Þ

Note that (5) and l� 1 yields

VrðtkÞðxtk ; tkÞ� lVrðtk�1Þ ðxtk ; tkÞ ð23Þ

Then, we can easily have

Vrðtk�1Þðxtk ; tkÞ\ egðtk�tk�1ÞVrðtk�1Þðxtk�1
; tk�1Þ

þ g
Z tk

tk�1

egðtk�sÞwTðsÞHiwðsÞds:
ð24Þ

Thus, (22)–(24) yields

VrðtÞðxt; tÞ � egðt�tkÞVrðtkÞðxtk ; tkÞþg
Z t

tk

egðt�sÞwTðsÞHiwðsÞds;

� legðt�tkÞVrðtk�1Þðxtk ; tkÞþg
Z t

tk

egðt�sÞwTðsÞHiwðsÞds;

� legðt�tk�1ÞVrðtk�1Þðxtk�1
; tk�1Þþgl

Z tk

tk�1

egðt�sÞwTðsÞHiwðsÞds

þg
Z t

tk

egðt�sÞwTðsÞHiwðsÞds;� l2egðt�tk�2ÞVrðtk�2Þðxtk�2
; tk�2Þ

þgl2
Z tk�1

tk�2

egðt�sÞwTðsÞHiwðsÞds

þgl
Z tk

tk�1

egðt�sÞwTðsÞHiwðsÞdsþg
Z t

tk

egðt�sÞwTðsÞHiwðsÞds;

� �� � �lNrð0;tÞegtVrð0Þðx0;0Þ

þglNrð0;tÞ
Z t1

0

egðt�sÞwTðsÞHiwðsÞds

þglNrðt1;tÞ
Z t2

t1

egðt�sÞwTðsÞHiwðsÞdsþ�� �

þg
Z t

tk

egðt�sÞwTðsÞHiwðsÞds;

¼ lNrð0;tÞegtVrð0Þðx0;0Þþg
Z t

0

egðt�sÞlNrðs;tÞwTðsÞHiwðsÞds;

�lNrð0;tÞegTVrð0Þðx0;0ÞþglNrð0;tÞdkmaxðHiÞegT
Z t

0

e�gsds;

�lNrð0;TÞegT Vrð0Þðx0;0ÞþdkmaxðHiÞg
Z T

0

e�gsds

� �

;

� l
T
sa egT

�
Vrð0Þðx0;0ÞþdkmaxðHiÞð1�e�gTÞ

�
;

� lNrð0;tÞegT � Vrð0Þðx0;0ÞþdkmaxðHiÞg
Z T

0

e�gsds

� �

;

VrðtÞðxt; tÞ¼ l
T
saegT

�
Vrð0Þðx0;0Þþdk8ð1� e�gTÞ

�
:

ð25Þ

Define �Pi ¼ R�1=2PiR
�1=2, �Q1i ¼ R�1=2Q1iR

�1=2, �Q2i ¼
R�1=2 Q2iR

�1=2, �S1i ¼ R�1=2S1iR
�1=2, �S2i ¼ R�1=2S2iR

�1=2,

�Yi ¼ R�1=2YiR
�1=2.

Note that

Vrð0Þðx0;0Þ ¼max
i2N

kmaxð�PiÞxTð0ÞRxð0Þþmax
i2N

kmax

ð �Q1iÞedh
Z 0

�h

edsxTðsÞRxðsÞds

þmax
i2N

kmaxð �Q2iÞedh½maxðjG�
p ;G

þ
p jÞ�

2

Z 0

�h

edsxTðsÞRxðsÞds

þmax
i2N

kmaxð�S1iÞedh
Z 0

�h

Z 0

h
e�dhxTðsÞRxðsÞdsdh

þmax
i2N

kmaxð�S2iÞedh
Z 0

�h

Z 0

h
e�dh _xTðsÞR _xðsÞdsdh

þmax
i2N

kmaxð �YiÞedh
Z 0

�h

Z 0

h

Z 0

m
e�dm _xTðsÞR _xðsÞdsdhdm;
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�
�

max
i2N

kmaxð�PiÞþhedh
�

max
i2N

kmaxð �Q1iÞ
	

þ hedh
�

max
i2N

kmaxð �Q2iÞ
	

½maxðjG�
p ;G

þ
p jÞ�

2

þ h2edh
�

max
i2N

kmaxð�S1iÞþmax
i2N

kmaxð�S2iÞ
	

þ 1

2
h3edh

�

max
i2N

kmaxð�YiÞ
	�

� sup
�h�s�0

fxTðsÞRxðsÞ; _xTðsÞR _xðsÞg;

�
�

k2þhedhk3þhedhg2k4þh2edhðk5þk6Þþ
1

2
h3edhk7

	

� sup
�h�s�0

fxTðsÞRxðsÞ; _xTðsÞR _xðsÞg;

where g¼maxðjG�
p ;G

þ
p jÞ

Vrð0Þðx0; 0Þ�
�

k2 þ hedhk3 þ hedhg2k4

þ h2edhðk5 þ k6Þ þ
1

2
h3edhk7

	

c1;

¼ Kc1; ð26Þ

where

K ¼ k2 þ hedhk3 þ hedhg2k4 þ h2edhðk5 þ k6Þ þ
1

2
h3edhk7:

Thus,

VrðtÞðxt; tÞ� l
T
saegT

�
Kc1 þ dk8ð1� e�gTÞ

�
;

¼ eðgþln l=saÞT�Kc1 þ dk8ð1� e�gTÞ
�
:

ð27Þ

On the other hand,

VrðtÞðxt; tÞ� kminð �ðPÞiÞxTðtÞRxðtÞ ¼ k1x
TðtÞRxðtÞ: ð28Þ

From (27) and (28), we obtain

xTðtÞRxðtÞ� Kc1 þ dk8ð1� e�gTÞ
k1

eðgþlnl=saÞT : ð29Þ

When l ¼ 1, which is the trivial case, from (6)

xTðtÞRxðtÞ� c2e
�gTegT ¼ c2:

When l� 1, from (6),

lnðk1c2Þ � ln½Kc1 þ dk8ð1� e�gTÞ� � gT [ 0;

we have

T

sa
\

lnðk1c2Þ � ln½Kc1 þ dk8ð1� e�gTÞ� � gT
ln l

;

¼ lnðk1c2e�gT=ðKc1 þ dk8ð1� e�gTÞÞÞ
ln l

: ð30Þ

Substituting (30) into (29) yields

xTðtÞRxðtÞ\c2: ð31Þ

The proof is complete. h

Remark 3.2 The function V(t) in the proof procedure of

Theorem 3.1 belongs to Lyapunov–Krasovskii functionals.

Unlike the classical Lyapunov function for switched sys-

tems in the case of asymptotical stability, there is no

requirement of negative definiteness or negative semi-

definiteness on _VðtÞ: Actually, if the exogenous distur-

bance wðtÞ ¼ 0 and we limit the constants d\0, then _VðtÞ
will be a negative definite function. For this case, we can

obtain the system (1) is asymptotically stable on the infinite

interval ½0;1Þ if the average dwell time.

Remark 3.3 When D1rðtÞ ¼ 0; the system (3) reduces to

_xðtÞ ¼ �ArðtÞxðtÞ þ BrðtÞf ðxðtÞÞ þ CrðtÞf ðxðt � sðtÞÞÞ
�xðtÞ ¼ /ðtÞ; t 2 ½�h; 0�:

�

ð32Þ

Corollary 3.4 Consider the system (32) is said to be

asymptotically stable and if there exist symmetric positive

matrices Pi;Q1i;Q2i; S1i; S2i; Yi and matrices

Nsiðs ¼ 1; 2; 3Þ, U1i [ 0;U2i [ 0 and scalars h[ 0; s[ 0

such that 8i 2 N , we have that following linear matrix

inequalities hold:

Wi ¼

w11 w12 w13 w14 w15 w16

� w22 w23 w24 w25 w26

� � w33 w34 w35 w36

� � � w44 w45 w46

� � � � w55 w56

� � � � � w66

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

\0: ð33Þ

Proof Let rðtÞ ¼ 1: The proof is similar to that of The-

orem 3.1, it is omitted here. h

3.2 Finite-time weighted L2-gain analysis

Theorem 3.5 System (1) is finite-time bounded with

respect to ðc1; c2;R; d; TÞ if there exist symmetric positive

matrices Pi;Q1i;Q2i; S1i; S2i; Yi and matrices Nsiðs ¼
1; 2; 3Þ, U1i [ 0;U2i [ 0 and scalars g� 0; c[ 0; l� 1;

kl [ 0 ðl ¼ 1; 2; . . .; 7Þ; d[ 0; h[ 0;K[ 0; s[ 0 such

that 8i; j 2 N , following linear matrix inequalities holds:

~Wi ¼

w11 w12 w13 w14 w15 w16 w17 ET
i

� w22 w23 w24 w25 w26 w27 0

� � w33 w34 w35 w36 w37 0

� � � w44 w45 w46 w47 0

� � � � w55 w56 w57 0

� � � � � w66 w67 0

� � � � � � � c2I DT
2i

� � � � � � � � I

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

\0;

ð34Þ
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Pi\lPj; Q1i\lQ1j; Q2i\lQ2j; S1i\lS1j; S2i\lS2j; Yi\lYj;

ð35Þ

k1c2e
�gT [Kc1 þ dc2

1

g
ð1� e�gTÞ; ð36Þ

with the average dwell time of the switching signal r
satisfying

sa [ s�a ¼
T lnl

lnðk1c2Þ � ln½Kc1 þ dc2ð1=gÞð1� e�gTÞ� � gT
:

ð37Þ

Proof Choosing the Lyapunov–Krasovskii functional as

in Theorem 3.1, after some mathematical manipulation and

using Schur complement, we can get

_VrðtÞðxt; tÞ þ zTðtÞzðtÞ � c2wTðtÞwðtÞ ¼ XTðtÞ ~WiXðtÞ:
ð38Þ

Define

JðtÞ ¼ zTðtÞzðtÞ � c2wTðtÞwðtÞ:

We obtain,

_VrðtÞðxt; tÞ � gVrðtÞðxt; tÞ þ JðtÞ\0:

When t 2 ½tk; tkþ1�; where tk is the switching instant,

VrðtÞðxt; tÞ\egðt�tkÞVrðtkÞðxtk ; tkÞ �
Z t

tk

egðt�sÞJðsÞds:

Notice that xðtkÞ ¼ xðt�k Þ; then one obtains

VrðtkÞðxðtkÞ; tkÞ� lVrðt�
k
ÞðxðtkÞ; tkÞ:

For any t 2 ½0; T �; one has

VrðtÞðxt; tÞ� egðt�tkÞVrðtkÞðxtk ; tkÞ þ g
Z t

tk

egðt�sÞJðsÞds;

� legðt�tk�1ÞVrðtk�1Þðxtk�1
; tk�1Þ

þ gl
Z tk

tk�1

egðt�sÞJðsÞdsþ g
Z t

tk

egðt�sÞJðsÞds;

� � � � � lNrð0;tÞegtVrð0Þðx0; 0Þ þ glNrð0;tÞ
Z t1

0

egðt�sÞJðsÞds

þ glNrðt1;tÞ
Z t2

t1

egðt�sÞJðsÞdsþ � � � þ g
Z t

tk

egðt�sÞJðsÞds;

� lNrð0;TÞegTVrð0Þðx0; 0Þ þ g
Z T

0

egðT�sÞlNrðs;TÞJðsÞds:

Under zero initial condition, we have
Z T

0

e�gslNrðs;TÞJðsÞds\0;

which implies that

Z T

0

e�gslNrðs;TÞzTðsÞzðsÞds\
Z T

0

e�gslNrðs;TÞc2wTðsÞwðsÞds:

ð39Þ

Multiplying both sides of (39) by l�Nrð0;TÞ yields
Z T

0

e�gsl�Nrð0;sÞzTðsÞzðsÞds\
Z T

0

e�gsl�Nrð0;sÞc2wTðsÞwðsÞds:

It is easy to deduce from (37) that

Nrð0; sÞ�
s

sa
� lnðk1c2Þ=ðKc1 þ dc2ð1=gÞð1� e�gTÞÞ � gs

ln l
:

Since l� 1, we have
Z T

0

llnððgs�lnðk1c2=ðk1c2Þ=ðKc1þdc2ð1=gÞð1�e�gT ÞÞÞÞ= lnlÞzTðsÞzðsÞds

�
Z T

0

e�gsl�Nrð0;sÞzTðsÞzðsÞds;

�
Z T

0

e�gsl�Nrð0;sÞc2wTðsÞwðsÞds;

� e�gT
Z T

0

c2wTðsÞwðsÞds:

Therefore, we can obtain
Z T

0

gs� ln
k1c2

Kc1 þ dc2ð1=gÞð1� egTÞ

� �

zTðsÞzðsÞds

� c2e�gT
Z T

0

wTðsÞwðsÞds:
ð40Þ

This completes the proof by Definition 2.3. h

Remark 3.6 Note that for finite-time switched neural

networks (1), finite-time boundedness can be considered as

the extension concept of energy value or peak value per-

formance of the system (1). It should be pointed out that

the switching signals of the results in this paper pays more

attention to the time-varying delays appearing in switched

neural networks and the stability analysis with respect to

the finite-time interval, the main results in this paper is

more general.

Remark 3.7 In this paper finite-time boundedness condi-

tion is derived for the switched neural networks (3). We

also discussed finite-time boundedness with L2-gain anal-

ysis for switched neural networks (1) with noise attenuation

c2 is designed. In the analysis process, Lyapunov-function

method and average dwell time technique are used to

achieve our main results.

Remark 3.8 In the Theorem 3.1, a new Lyapunov–Kra-

sovskii functional is constructed and we utilized expo-

nential functions which gives convergence rate. The

obtained results are compared with the existing results to

show the conservativeness. The results in this paper are

conservative than the results in [14–16, 21–24].

Remark 3.9 In this paper, the influence of disturbance

signals on the system dynamics cannot be ignored, so the
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concept of finite-time boundedness explains the stable char-

acteristics when considering external disturbances.

4 Numerical examples

In this section, numerical examples are provided to illus-

trate the validity and the advantage of the proposed finite-

time boundedness and finite-time L2-gain analysis results.

Example 4.1 Consider a switched neural networks with

time-varying delay, as

_xðtÞ ¼ �ArðtÞxðtÞ þ BrðtÞf ðxðtÞÞ þ CrðtÞf ðxðt � sðtÞÞÞ
þ D1rðtÞwðtÞ;

with

A1 ¼
0:012 0

0 0:016

� �

; B1 ¼
�0:06 0:03

0:06 � 0:09

� �

;

C1 ¼
0:144 0:096

�0:072 0:120

� �

; D11 ¼
�0:6 0

0 � 0:2

� �

;

A2 ¼
0:008 0

0 0:014

� �

; B2 ¼
0:12 0:09

�0:06 0:12

� �

;

C2 ¼
0:024 0:264

0 0:048

� �

; D12 ¼
0:03 0

0 0:04

� �

:

The activation function is chosen as Gt ¼ diag

f0; 0g; Gu ¼ diagf1; 1g, the values of c1; c2; T ; d are given

as follows:

h ¼ 2:01; s ¼ 4:2; c1 ¼ 0:1; T ¼ 3; d ¼ 0:02;

d ¼ 0:002; g ¼ 0:075; l ¼ 1:5:

When c2 ¼ 77:59, we see that the admissible maximum

bound of h is 2.01.By using the Matlab LMI Toolbox, solve

LMI (3)–(6) the feasible solutions are

P¼
5:7050 � 3:8607

�3:8607 14:2400

� �

; Q1 ¼
6:2042 1:2420

1:2420 13:3789

� �

;

Q2 ¼
0:0018 0:0005

0:0005 0:0026

� �

;

S1 ¼
0:0210 0:0113

0:0113 0:0418

� �

; S2 ¼
0:0103 0:0066

0:0066 0:0226

� �

;

Y1 ¼
7:9948 0:4678

0:4678 15:0397

� �

:

Example 4.2 Consider the following neural networks

with time-varying delays (32) with following parameters

given in [14–16, 21–24]:

~A ¼
2 0

0 2

� �

; ~B ¼
1 1

�1 � 1

� �

; ~Bd ¼
0:88 1

1 1

� �

;

and

Gt ¼
0 0

0 0

� �

; Gu ¼
0:4 0

0 0:8

� �

;

with d ¼ 0. By solving Example 4.2 using LMI in Corol-

lary 3.4, we obtain maximum admissible upper bounds

(MAUB) of s for different h as shown in Table 1. The

results obtained in this paper are significantly better than

those in [14–16, 21–24], which clearly shows the effec-

tiveness of our work. The time responses of the state

variables are shown in Table 1.

The admissible upper bounds of s are listed in Table 1.

Example 4.3 Consider a switched neural networks with

time-varying delay,

_xðtÞ ¼ �ArðtÞxðtÞ þ BrðtÞf ðxðtÞÞ þ CrðtÞf ðxðt � sðtÞÞÞ þ D1rðtÞwðtÞ;
zðtÞ ¼ ErðtÞxðtÞ þ D2rðtÞwðtÞ

with

A1 ¼
0:012 0

0 0:016

� �

; B1 ¼
�0:06 0:03

0:06 � 0:09

� �

;

C1 ¼
0:144 � 0:096

�0:072 0:120

� �

;

D11 ¼
�0:6 0

0 � 0:2

� �

; D21 ¼
0:03 0

0 � 0:06

� �

;

E1 ¼
�0:2 0:1

0:5 0:6

� �

;

A2 ¼
0:04 0

0 0:026

� �

; B2 ¼
�0:02 0:1

0:05 � 0:07

� �

;

C2 ¼
0:21 � 0:087

�0:046 0:14

� �

;

D12 ¼
�0:2 0

0 � 0:1

� �

; D22 ¼
0:05 0

0 � 0:08

� �

;

E2 ¼
�0:02 0:4

0:7 0:05

� �

:

The values of c1; c2; T ; d are given as follows:

Table 1 Maximum allowable bound s for different values h in

Example 4.2

h 0.8 0.9

[14] 1.7347 1.1662

[15] 2.8794 1.9562

[16] 2.8980 1.9562

[21] 2.8991 2.0087

[22] 2.9541 1.9654

[23] 3.1409 1.6375

[24] 3.1965 2.0178

s of our result 8.6065 6.3200
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h ¼ 2:08; s ¼ 3:2; c1 ¼ 0:5; c2 ¼ 74:1; T ¼ 4;

d ¼ 0:01; d ¼ 0:005; l ¼ 1:5; g ¼ 0:01;

and Gt ¼ diagf0:5; 0:5g; Gu ¼ diagf1; 1g: By solving LMI

(31)–(34) we get, c ¼ 1:362, the average dwell time sa is

calculated by sa ¼ ln l=d ¼ 81:0930.

P¼
135:8562 130:0932

130:0932 546:5661

� �

;

Q1 ¼
93:6944 31:5529

31:5529 176:4013

� �

;

Q2 ¼
0:9631 1:2826

1:2826 2:6091

� �

;

S1 ¼
9:0007 13:6910

13:6910 26:1974

� �

; S2 ¼
3:8250 5:8198

5:8198 12:2462

� �

;

Y1 ¼
147:3103 139:0956

139:0956 335:9485

� �

:

5 Conclusion

In this paper, finite-time boundedness and finite-time

weighted L2-gain analysis for a SNN with time-varying

delay have been investigated. Based on linear matrix

techniques Lyapunov–Krasovskii function method and

average dwell time approach, sufficient conditions are

derived. Numerical examples are given to demonstrate the

effectiveness of the proposed approach. In future work, we

extend our results to study finite-time stability analysis of

Markovian jumping switched neural networks with time-

varying delays.
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