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Abstract Welding processes are considered as an essential

component in most of industrial manufacturing and for

structural applications. Among the most widely used

welding processes is the shielded metal arc welding

(SMAW) due to its versatility and simplicity. In fact, the

welding process is predominant procedure in the mainte-

nance and repair industry, construction of steel structures

and also industrial fabrication. The most important physical

characteristics of the weldment are the bead geometry

which includes bead height and width and the penetration.

Different methods and approaches have been developed to

achieve the acceptable values of bead geometry parame-

ters. This study presents artificial intelligence techniques

(AIT): For example, radial basis function neural network

(RBF-NN) and multilayer perceptron neural network

(MLP-NN) models were developed to predict the weld

bead geometry. A number of 33 plates of mild steel

specimens that have undergone SMAW process are ana-

lyzed for their weld bead geometry. The input parameters

of the SMAW consist of welding current (A), arc length

(mm), welding speed (mm/min), diameter of electrode

(mm) and welding gap (mm). The outputs of the AIT

models include property parameters, namely penetration,

bead width and reinforcement. The results showed out-

standing level of accuracy utilizing RBF-NN in simulating

the weld geometry and very satisfactorily to predict all

parameters in comparison with the MLP-NN model.

Keywords Artificial neural network � RBF-NN �
Prediction model � Welding process

1 Introduction

1.1 Background

In fact, the welding process is an essential process in the

majority of the manufacturing procedures in industrial and

structural practices [15, 20]. According to Kumar et al. [19],

the welding process is to join two different or similar metals

under heating by way of pressurized procedure and through

using filler rod; however, in some cases, it does not neces-

sary to use filler rod. In several branches of industries mainly

mechanical and structural industries, the welding process is

utilized. The sources of energy are an essential parameter in

the welding process. Such sources are selected based on the

type of application and environment surrounding. Regarding

the energy sources, it could be gas flame, gas flame, an

electric arc, a laser, ultrasound or an electron beam. On the

other hand, with respect to the environment, it could be

applied in open air, under water and in outer space. It can

also be done in vacuum as well. With the help of welding

technology, we can get strength up to 100 %. It is very easy

to weld most of the material at any direction, and welding

equipment can be transported to the work place easily.

The most known method for welding process is shielded

metal arc welding (SMAW). According to Yousif et al. [32],
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SMAW is considered as the most prevalent welding pro-

cess that is used in several activities. Actually, in several

countries SMAW methods are used in more than 50 % of

welding process activities. For its adaptability and

straightforwardness, the SMAW is the most suit-

able method utilized for particularly in the maintenance

and repair industry and considered as dominant method for

construction of steel structures and also industrial fabrica-

tion. In recent years, once a new method, namely flux-

cored arc welding (FCAW) had been initiated, SMAW has

been relatively degenerated and become widespread used

in industrial environments [28]. However, due to the low-

cost equipment and extensive applicability, the SMAW is

still considered as widespread method and more suit-

able for amateurs and small businesses.

1.2 Problem statement

In fact, the welding process is influenced by the bead

geometry which consists of bead height and bead width

which are essential physical properties of a weldment.

Bradstreet [6] reported that weld cross-sectional area and

the arc travel rate are vital parameters on the welding

process and could be utilized to predict the cooling rate of a

weld. The total shrinkage while cooling is prejudiced by

the dimensional properties of the bead cross-sectional area,

which determines largely the residual stresses and thus the

distortion. Cary [7] refers to two types of penetration which

is weld penetration (fusion) and heat penetration. In fusion

welding, the depth of weld penetration or fusion is gener-

ally recognized as the distance below the original surface

of the work to which the molten metal progresses.

According to Singh et al. [29], there are different input

parameters before starting the welding process which is

generally selected by the professional welders and profes-

sional engineers due to their expertise and working expe-

rience. However, the selection procedure is still performed

by trial and error technique. After performing particular

trial, the welds should be investigated in order to examine

the welding performance to figure out whether it fulfils the

joint requirement or there is a need to change the input

again. This kind of way is taking time, money, and effort

[21].

By developing a mathematical model, a prediction can

be made to produce the desired response factor. The suc-

cessfulness of the SMAW is measured by detecting the

value of weld bead. Indeed, with the expertise of the pro-

fessional welders, the most significant input parameters

that have a vital influence on the performance of SMAW

process are welding current, welding voltage and welding

speed. The operative range of input parameters should be

decided according to the exterior appearance of weld bead

by visual inspection such as smooth-continuous bead,

nonappearance of faults and undercut. Actually, it is

essential to reflect and utilize all the welding process

parameters while reviewing and understanding the char-

acteristics of the welding performance. It should be noticed

that different welding conditions would result in difference

significant characteristics of welding. Modeling such

interrelationship between the inputs and the outputs is very

difficult and time-consuming to be developed numerically.

Radial basis function neural network (RBF-NN)-based

approaches could be used to figure out the interrelationship

between several input–output variables and to model and

predict any patterns that extracted and obtained from dif-

ferent conditions of the experiments. RBF-NN is a type of

artificial neural network ANN’s methods. In the recent

years, the applications of RBF-NN model have been widely

used in several engineering pattern recognition problems

and its ability has been proved for most of these applica-

tions. There are several advantages of the RBF-NN that

make it as one of the first choice for researchers to use for

any further prediction applications in engineering. The fact

that RBF-NN model is simply to structure and its capability

to mimic the input–output pattern and time consumption

for training and avoiding the local minimum lead the

researchers to utilize it in several applications, Singh et al.

[29].

1.3 Objective

The main objective of this study is to investigate the

potential of utilizing artificial intelligence techniques

(AIT), namely RBF-NN and multilayer perceptron neural

network (MLP-NN) to predict the welding features. In

more details, this study proposed two different AIT models

with supervised learning which have been utilized to pre-

dict the bead geometry and depth of penetration affected

zone for different welding conditions. In the top of that, the

study has been extended to examine and evaluate how

sensitive each input parameter on the accuracy level of the

targeted output.

2 Methods and materials

2.1 Experimental work

In order to investigate the weld characteristics, weld bead

was obtained by welding two ABS marine grade-A mild

steel plates of (190 9 80 9 6) mm dimensions. A square

butt edge joint and flat position (1G) welder technique was

selected. Mild steel plate was chosen as a sample to be

welded because it is the most common form of steel as its

price is relatively low while it provides material properties

which are acceptable for many applications.
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Weld bead geometry which includes bead height and

bead width is important physical property of weldment.

Since the weld bead quality depends more on the input

process parameters, it is essential to study the effects of

input process parameters on weld quality. Among the input

process parameters are welding speed, welding current, arc

length, joint gap and electrode diameter which were con-

sidered as significant parameters in SMAW process

[17, 26], while output parameters were bead width, bead

height and depth of penetrations shown in Fig. 1. Different

combinations of input parameters were used to observe the

effect on desired response. The working range was decided

by inspecting the bead for smooth appearance and the

absences of any visible defects. The upper limit of a factor

was coded as (?1) and lower limit as (-1). Meanwhile, the

normal limit (which is the working limit used by the

welders in shipyard) was coded as (0). The selected process

parameters with their limits and units are given in Table 1.

The two-level full factorial design method was followed

to create design matrix for this experiment. With two levels

and five parameters, a total of 32 experiments were con-

ducted. An addition set of experiment using level (0) was

also carried out as a reference. A total of 33 combinations

of input process parameters were considered in this study.

In order to study the bead geometry, each welded sample

was sectioned transversely. To get the macrostructure

image, these sectioned beads were ground with emery

papers and then polished with disk polishing machine.

Etching was done with a mixture of 2 % nitric acid and

98 % ethyl alcohol solution. The average values of weld

bead characteristic (as Fig. 2) were measured under optical

microscope. The measurement of weld penetration, width

and reinforcement was taken by using digital Vernier

caliper. The image of weld bead is shown in Fig. 1.

2.2 Multilayer perceptron neural network

(MLP-ANN)

Multilayer perceptron neural network (MLP-NN) is a feed-

forward network that consists of a number of layers of

neurons, with the output from each neuron propagating to

the input of each neuron of the next layer. A MLP-NN is

shown in Fig. 3. In MLP-NN, the nodes of the input layer

just propagate the input values to the nodes of the first

hidden layer [13, 14, 23]. The input–output relationship of

each node of the hidden layers can be defined as follows:

y ¼ f
X

j

wjxj þ b

 !
ð1Þ

where xj is the output from j node of the previous layer, wj

is the weight of the connection between j node and the

current node, b is the bias of the current node, and f is a

Fig. 1 Weld bead geometry

Table 1 Working limits of parameters

Parameters Units Level (-1) Level (0) Level (?1)

Welding current A 60 80 90

Arc length mm 1.2 1.5 3.0

Welding speed mm/min 86 75 120

Electrode diameter mm 2.6 3.2 4.0

Joint gap mm 1.0 2.0 3.0

Fig. 2 Geometry of weld bead
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Fig. 3 Multilayer perceptron neural network architecture
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nonlinear transfer function typically of the sigmoid form as

presented in Eq. (2):

f ðzÞ ¼ 1

1þ expðzÞ ð2Þ

where z represents the weighted sum of the input to the

neuron and f(z) is the neuron output. The input–output

relationship of the output nodes is similar to that defined by

Eq. (2), except that in case the network is utilized for

function approximation, the function f can be a different

type (e.g., linear function).

A MLP-NN architecture is based on units, which com-

pute a nonlinear function of the scalar product of the input

vector and weight vector. In general, the performance of

MLP-NN models depends on the inherent architecture of

the network. This does not only include the number of

hidden layers and the number of neurons in each layer, but

also the type of computation performed at each neuron.

2.3 Radial basis function neural network (RBF-NN)

The network model of the multilayer perceptron architec-

ture is based on units, which compute a nonlinear function

of the scalar product of the input vector and the weight

vector. An alternative architecture of ANN is one in which

the distance between the input vector and a certain proto-

type vector determines the activation of a hidden unit. This

architecture is known as RBF-NN. RBF-NN is composed

of receptive units (neurons) that act as the operator pro-

viding the information about the class to which the input

signal belongs [1, 10, 11, 31].

RBF-NN gives an approximation of any input/output

relationship as a linear combination of the radial basis

functions (RBF). RBFs are a special class of functions with

their characteristic feature that their response decreases (or

increases) monotonically with distance from a central

point. Although the architectural view of a RBF-NN is very

similar to that of a multilayer perceptron network, the

hidden neurons possess basis functions to characterize the

partitions of the input space. Each neuron in the hidden

layer provides a degree of membership value for the input

pattern with respect to the basis vector of the respective

hidden unit itself. The output layer is comprised of linear

neurons [8].

The structure of a RBF-NN consists of an input layer,

one hidden layer and an output layer, see Fig. 4. The input

layer connects the inputs to the network. The hidden layer

applies a nonlinear transformation from the input space to

the hidden space. The output layer applies a linear trans-

formation from the hidden space to the output space. The

radial basis functions u1, u2, …, uN are known as hidden

functions while fuiðXÞgNi is called the hidden space. The

number of basis functions (N) is typically less than the

number of data points available for the input data set.

Among several radial basis functions, the most commonly

used is the Gaussian, which in its one-dimensional repre-

sentation takes the following form:

uðx; lÞ ¼ e
� x�lj jj j2

2d2 ð3Þ

where l is the center of the Gaussian function (mean value

of x) and d is the distance (radius) from the center of u(x,
l), which gives a measure of the spread of the Gaussian

curve. The hidden units use the radial basis function. If a

Gaussian function is used, the output of each hidden unit

depends on the distance of the input x from the center l.
During the training procedure, the center l and the

spread d are the parameters to be determined. It can be

Fig. 4 Architecture of radial

basis function neural network
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deduced from the Gaussian radial function that a hidden

unit is more sensitive to data points near the center. This

sensitivity can be tuned (adjusted) by controlling the spread

d. Figure 5 shows an example of a Gaussian radial func-

tion. It can be observed that the larger the spread, the less

the sensitivity of the radial basis function to the input data.

The number of radial basis functions inside the hidden

layer depends on the complexity of the mapping to be

modeled and not on the size of the data set, which is the

case when utilizing multilayer perceptron ANN. The

unique architecture of RBF-NNs makes their training

procedure substantially faster than the methods used to

train multilayer perceptron ANN. The interpretation given

to the hidden units of RBF-NN leads to a two-stage training

procedure. In the first stage, the parameters governing the

basis functions (l and d) are determined using fast un-

supervised training methods that utilize only the input data.

The second stage involves the determination of the output

layer weight vector wj. Since these weights are defined in a

linear problem, the second stage of training is also fast. It

should be highlighted that the basis functions are kept fixed

while the weights of the output layer are computed. Several

learning algorithms have been proposed for training RBF-

NN, and they can be reviewed in [9].

The advantages of Using RBF-NN are:

1. MLP-NN can have many layers of weights with a

relatively complex pattern of connectivity. Several

activation functions can be used within the same

network. However, RBF-NN has a more simple

architecture that consists of two layers of weights in

which the first layer contains the parameters of the

basis functions and the second layer forms linear

combinations of these basis functions to generate water

quality parameter in the output. The unique architec-

ture of the RBF-NN has the advantage of a fast training

procedure when compared to multilayer perceptron

ANN.

2. The parameters of the multilayer perceptron ANN

(biases and weights) are determined simultaneously

during the training procedure with supervised training

techniques. On the other hand, RBF-NN is typically

trained in two stages with the parameters of the basis

functions being first determined by unsupervised

learning techniques using the input data alone. The

weights at the second layer are found by fast linear

supervised methods.

3. The interference and cross-coupling between the

different hidden units of a multilayer perceptron

ANN may result in a highly nonlinear training process

in addition to problems of local minima. This can lead

to very slow convergence even with advanced opti-

mization strategies. By contrast, RBF-NN would not

face this problem due to their localized basis functions,

which are local with respect to the input space. Thus,

for a given input vector, only a few hidden units will

have significant activation.

2.3.1 Select appropriate inputs

One of the major steps in developing AIT model for any

engineering application is to select the appropriate input

variables. In fact, the effective and efficient structure of the

AIT model basically depends on how strong the interrela-

tionship between the input variable and pattern on the

desired output variable is [2, 4, 12, 18, 24]. The most

widely procedure for betterment selection of the input

variable is based pre-statistical analysis for input–output

patterns [22], whereas the close values of correlation

between particular input variable and the output to 1 are

chosen for the best accuracy level to predict the output. The

drawback of cross-correlation is its weakness to detect the

nonlinearity interrelationship between the input variable

and the targeted output. The fact that cross-correction

could distinguish the linear component of the input–output

relation. Consequently, relying only on the cross-correla-

tion analysis could lead to neglect important input

parameters that have highly nonlinear relation with output

parameter and then has a vital influence on the performance

Fig. 5 Radial basis function with different levels of spread. a Normal spread, b small spread, c large spread
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of the model. Two different preprocessing methods have

been used to examine the effect of input parameters on the

model performance. First, a priori knowledge [3, 27, 29] is

supported by statistical correlation analysis [9]. On the

other hand, the second method is the assessment process

based on the level of prediction accuracy of the desired

output variables.

In the light of previous research, the available monitored

values and pre-statistical analyses, the following five input

variables have been selected for the AIT modeling in this

study, namely current, arc length, speed, diameter and gap.

Table 2 shows the input parameters used in this study. On the

other hand, the study focused on important three output vari-

ables on the welding process, namely penetration, width and

reinforcement. Table 3 shows the output parameter of this

study. The optimal AIT model and a model general procedure

(flowchart) including the position of the input variable, the

algorithm-based selection for the model performance for the

output variables accuracy are illustrated in Fig. 5.

There are two different approaches which have been

acclaimed by many researches in order to determine the

optimal parameters for learning process. The first approach

by Benyounis and Olabi [5] utilized particular optimization

algorithm such as Genetic algorithm, while [16] suggested

trial and error procedure to tackle such process. Actually, it

was reported that utilizing the optimization algorithm with

AIT methods has the drawback of being computationally

extension [9], especially in case the application experi-

enced high nonlinearity behavior. Therefore, in this study it

was preferable to use trial and error approach due to its

advantage of yielding the desired accuracy of the model in

low time consumption while training. In addition, the

trial and error procedure outperformed the optimization

approach due to its potential of having lower probability of

over fitting the training data set.

2.3.2 Data preprocessing

Inputs data are generally on widely different scale.

Therefore, all the data must be normalized to get an

equivalent data. All data need to divide with the highest

value of every part of input parameter. The range is

between -1 and 1.

2.3.3 Model performance indicators

In general, one of the important steps in developing pre-

diction model is to evaluate its performance throughout

examining model performance indicators. The proposed

prediction model for welding process would be examined

utilizing three different statistical indexes. The first index is

coefficient of efficiency (CE) which is usually used to

examine the trend performance of the model. This index

first has been introduced by Nash and Sutcliffe [25] as

presented in Eq. (4).

CE ¼ 1�
Pn

i¼1ðm� pÞ2
Pn

i¼1ðm� �mÞ2
ð4Þ

where n is the number of (data set) observations, p and

m are the predicted and monitored data, respectively, and �m
is the average of monitored data (Fig. 6).

The second index is the mean square error (MSE) which

is used to determine how the proposed model output fits

with the desired (actual output). Generally, the smaller the

values of MSE mean, the model achieved well perfor-

mance. It is defined as follows:

MSE ¼ 1

n

Xn

i¼1

ðm� pÞ2 ð5Þ

Finally, the third index is the coefficient of correlation

(CC) which is often used to evaluate the linear relationship

between the predicted and measured of data. It is defined as

follows:

CC ¼
Pn

i¼1ðm� �mÞ p� �pð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðm� �mÞ2

Pn
i¼1 m� �pÞ2

q ð6Þ

It is common practice to divide the available data into

subsets which is a training set and testing set. For this,

researcher suggested that the length of data can be divided

into 80 % for the training set and 20 % for the test set.

Lastly, the stopping criteria of this study suggested that

stopping after a certain number of runs through all of the

training data. The training data should be stopped when the

target error reaches some low level. Then, the values

between actual and predicted were compared. The per-

centage of error was calculated. The model was accepted to

be adequate if the percentage of error was still in the range

Table 2 Input parameter used in previous studies for the AIT model

Parameters Units Notations

Current A C

Arc length mm A

Speed mm/min S

Diameter mm D

Gap mm G

Table 3 Output parameter used in previous studies for the RBF-NN

model

Parameters Units Notations

Penetration mm P

Width mm W

Reinforcement mm R
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of acceptance. In general, an error range of (5–35 %) was

acceptable, (0–5 %) being exceptionally good and (over

35 %) means that the data were unreliable or chaotic. The

scatter diagram between actual and predicted values was

plotted. The pattern of their intersecting points could

graphically show relationship patterns. The scatter diagram

was used to prove or disprove cause and affect relation-

ships. Using scatter diagram, we could observe the corre-

lation between actual and predicted values. This further

supported the validity of the model. Scatter diagram gen-

erally showed one of six possible correlations between the

variables.

3 Result and discussion

3.1 Multilayer perceptron neural network

(MLP-NN)

In this study, we use different transfer functions and dif-

ferent numbers of neurons. Other than that, we use the

different input to compare the correlation between input

parameter and output parameter.

This is the result that we get when we do for the dif-

ferent transfer functions on three output parameters. For

penetration, the purelin transfer function shows the best

performance between actual and predicted simulations. For

reinforcement, the log-sigmoid transfer function shows the

best performance between actual and predicted

simulations. Lastly, again for the bead width, the best

performance falls to purelin transfer function. That means

the purelin transfer function is the best for prediction of

weld bead geometry in shielded arc welding using artificial

neural network.

First, we select the proper input parameter that we

should use for this project. To gain the lowest MSE and the

best performance, we should normalize the value of the

input welding parameter. The range value between each

parameter is 0 and 1. According to Table 4, for the depth of

penetration, the best R value is 0.96967 and the MSE is

0.008786 while for bead width, the best R is 0.96478 and

the MSE is 0.0006262. Lastly, for the reinforcement, the

best R is 0.96884 and the MSE is 0.006792.

Table 5 shows the best number of neurons for penetra-

tion is 10, while the best number of neurons for rein-

forcement is 6 and lastly the best number of neurons for

bead width is 2. Other than that, we compare the best

performance of different input parameters with the three

output parameters. So, the result that we get for the 5 input

produces the best performance among three outputs which

have depth of penetration (0.96967), bead width (0.96884)

and reinforcement (0.96478) (Tables 6, 7; Figs. 7, 8).

3.2 Radial basis function neural network (RBF-NN)

In this study, the predictions use five different internal

parameters of spread constant as shown in Table 8. These

spread constants are suggested by many researchers. For

Fig. 6 Optimal architecture of AIT and flowchart of algorithm procedure
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each output parameter which is penetration, width and

reinforcement will be train at every spread constant.

Reaching the optimized solution was achieved by

applying several trial and error processes in which the

internal parameters of RBF-NN were adjusted to attain the

optimal values to reach the near optimal result that pro-

vides the lowest error. Then, the relationship between

spread constant and MSE is compared between five dif-

ferent spread constants. Table 9 shows the result of com-

parison between MSE and spread constant (Fig. 9).

From the Table 9, it shown that the best result for the

penetration (P) is 1.0 of spread constant. Next for the width

(W), the best result has shown from the 1.0 of spread con-

stant too. Lastly, the best result for reinforcement is 2.0 of

spread constant. The best results indicated the lowest MSE

of the prediction result which is close to zero. A scatter

diagrams are the visual presentation of two different vari-

ables (in our study, the model output vs. the actual data) in

order to examine the trend and interrelationships between

two variables. In this study, the variable on x-axis was the

actual value. Meanwhile, the variable on y-axis was the

predicted value. In this way, visualizing the pattern of their

intersecting points might graphically provide information

about how strong or weak relationship between both patterns

is. The scatter diagram was used to prove or disprove cause

Table 4 Value for three

outputs with different activation

functions

Penetration Width Reinforcement

MSE R MSE R MSE R

Purelin 0.008786 0.96967 0.018837 0.80269 0.006792 0.96884

Logsig 0.022718 0.84168 0.006262 0.96478 0.083454 0.24769

Tansig 0.017237 0.73782 0.022679 0.79942 0.00745 0.7993

Table 5 Value for three outputs with different numbers of neurons

N P R W

2 0.59734 0.52309 0.96478

4 0.5432 0.34326 0.70952

6 0.54495 0.96884 0.26853

8 0.84459 0.60206 0.00272

10 0.96967 0.68954 0.75562

Table 6 Best value for three

outputs according to mean

square error and performance

MSE R

P 0.008786 0.96967

W 0.006262 0.96478

R 0.006792 0.96884

Table 7 Value of different inputs with the three outputs

P R W

ASDG 0.054578 0.008814 0.010586

CADG 0.014601 0.02985 0.00936

CASD 0.039218 0.047997 0.002724

CASG 0.023845 0.09194 0.021526

CSDG 0.009035 0.030909 0.001677

5 input 0.008786 0.006792 0.006262

P

R

W

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

P R W

Fig. 7 Value for three outputs with the different numbers of neurons

P
R

W

0

0.05

0.1

ASDGCADG
CASD

CASG
CSDG

5 input

P R W

Fig. 8 Mean square error of the different input for three outputs

Table 8 Spread constant
No Spread constant

1 1.0

2 2.0

3 4.0

4 6.0

5 8.0
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and effect relationship. On the top of that, using scatter

diagram, we could observe the correlation between actual

and predicted values. This further supported the validity of

the model. The scatter diagram between predicted and actual

values of penetration, width and reinforcement is shown in

Fig. 10. Based on the graph, we could categorize the cor-

relation between actual and predicted values of penetration

model as strong positive correlation. The value of CC, R for

penetration is close to 1 which is 0.95, for width is 0.96 and

for reinforcement 0.97. The percentage of error for this

graph shown is within 10 %.

Sensitivity analysis is the study of how the uncertainty

in the output of a mathematical model can be apportioned

to different sources of uncertainty in its inputs. Therefore,

in this study, the five different variables of four input

parameters are tested for the sensitivity of the model as

shown in Fig. 11. Firstly, ASDG which is used arc length

parameter, speed parameter, diameter parameter and gap

parameters. The correlation of ASDG is below than 0.9.

Secondly, CADG model is developed based on four input

parameters, namely; current parameter, arc length param-

eter, diameter parameter and gap parameter. The correla-

tion of CADG is below than 0.9. Next, CASD is used

current parameter, arc length parameter, speed parameter

and diameter parameter. The correlation of CASD is below

than 0.9. Then, CASG is used current parameter, arc length

parameter, speed parameter and gap parameter. The cor-

relation of CASG is below than 0.8. Lastly, CSDG is used

current parameter, speed parameter, diameter parameter

and gap parameter. The correlation of CSDG is below than

0.9. The best value of correlation is used for five input

parameter which is among all the parameters. The corre-

lation is close to 1 (Table 10).

Table 9 Relationship between spread constant and MSE

Spread constant MSE

P W R

1.0 5.55E-10 7.15E-08 2.18E-03

2.0 6.88E-07 3.12E-07 2.80E-06

4.0 7.35E-04 0.0002 5.15E-03

6.0 1.66E-02 0.0176 4.40E-01

8.0 5.90E-01 0.2403 9.10E?00

Scatter diagram of penetration Scatter diagram for reinforcement

Scatter diagram for bead width
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4 Conclusion

The procedure proposed in this research was implemented

in order to optimize the prediction model for weld bead

geometry in SMAW process. Since, the interrelationships

between features of the weld bead geometry and welding

output variables are nonlinear and complicated; an artificial

intelligent technique (AIT)-based model has been

employed to model such process. Two different AIT

models have been developed, namely MLP-NN and RBF-

NN. RBF-NN used for modeling the weld bead geometry

and penetration and the analysis carried out for this confirm

that RBF-NN is powerful tool for analysis and modeling.

Comparisons were made between actual and prediction

values, in term of accuracy in prediction of the outputs for

the test cases. The best prediction of penetration and width

is from spread constant 1.0; meanwhile, the best of pre-

diction for the reinforcement is 2.0. Scatter diagram

between actual and predicted values was plotted. The

percentage of error for each model was 10 % for penetra-

Scatter diagram of penetration Scatter diagram of width

Scatter diagram of reinforcement
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Fig. 11 Sensitivity analysis of the model

Table 10 Best value among different inputs for three outputs

P R W

ASDG 0.008875 0.664735 0.3637

CADG 0.71993 0.87331 0.019178

CASD 0.60422 0.42248 0.85771

CASG 0.61148 0.42045 0.29464

CSDG 0.77461 0.6006 0.7091

5 input 0.96967 0.96884 0.96478
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tion, width and reinforcement. The results indicate that

RBF-NN was able to achieve a high level of accuracy in

simulating the weld geometry and very satisfactorily to

predict all parameters in comparison with the MLP-NN

model.
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