
ORIGINAL ARTICLE

A computational approach for nuclear export signals
identification using spiking neural P systems

Zhihua Chen1 • Pan Zhang1 • Xun Wang2 • Xiaolong Shi1 •

Tingfang Wu1 • Pan Zheng3

Received: 12 April 2016 / Accepted: 12 July 2016 / Published online: 19 July 2016

� The Natural Computing Applications Forum 2016

Abstract Nuclear export signal (NES) is a nuclear tar-

geting signal within cargo proteins, which is involved in

signal transduction and cell cycle regulation. NES is

believed to be ‘‘born to be weak’’; hence, it is a challenge

in computational biology to identify it from high-

throughput data of amino acid sequences. This work

endeavors to tackle the challenge by proposing a compu-

tational approach to identifying NES using spiking neural P

(SN P) systems. Specifically, secondary structure elements

of 30 experimentally verified NES are randomly selected

for training an SN P system, and then 1224 amino acid

sequences (containing 1015 regular amino acid sequences

and 209 experimentally verified NES) abstracted from 221

NES-containing protein sequences randomly in NESdb are

selected to test our method. Experimental results show that

our method achieves a precision rate 75.41 %, better than

NES-REBS 47.2 %, Wregex 25.4 %, ELM, and NetNES

37.4 %. The results of this study are promising in terms of

the fact that it is the first feasible attempt to use SN P

systems in computational biology after many theoretical

advancements.

Keywords Nuclear export signal � Bio-inspired computing

model � Spiking neural P system

1 Introduction

Dynamic trafficking of proteins from cell nucleus to

cytoplasm mostly depends on transport factors in the

Karyopherin-b family, which are named importins and

exportins [1–3]. The direction of nuclear–cytoplasmic

transport is mainly mediated by the targeting cell signal

within cargo proteins, that is, nuclear localization signal

and nuclear export signal [4, 5]. Nuclear export signals

(NESs) are nuclear targeting signals within the cargo pro-

teins, which is composed of four main hydrophobic resi-

dues that targets it for export from cell nucleus to

cytoplasm through nuclear pore complex [6]. Since NESs

were first identified in proteins HIV-1 Rev and cyclical

AMP-dependent protein kinase inhibitor, many other NESs

have been experimentally identified in more than 200

proteins, such as translation factors [7], cell cycle regula-

tors [8], transcription factors [9] and viral proteins [10]. A

well-known NES is the leucine-rich NES, which mediates

binding to the receptor of the karyopherin exportin

1/chromosomal region maintenance 1 (CRM1), which has

important application in replication of plenty of viruses that

might cause human diseases [11–13].

Finding NES in cellular proteins is a challenging but

important problem, and many efforts in cellular biology

have been made to detect NESs. Experimental identifica-

tion of NES-containing proteins has been an effective

method to find NESs, but it is likely to take a lot of

Electronic supplementary material The online version of this
article (doi:10.1007/s00521-016-2489-z) contains supplementary
material, which is available to authorized users.

& Xun Wang

wangsyun@upc.edu.cn

1 School of Automation, Huazhong University of Science and

Technology, Wuhan 430074, Hubei, China

2 College of Computer and Communication Engineering,

China University of Petroleum (Eastern China),

Qingdao 266580, Shandong, China

3 Faculty of Engineering, Computing and Science, Swinburne

University of Technology Sarawak Campus, 93350 Kuching,

Malaysia

123

Neural Comput & Applic (2018) 29:695–705

https://doi.org/10.1007/s00521-016-2489-z

http://dx.doi.org/10.1007/s00521-016-2489-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2489-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2489-z&domain=pdf
https://doi.org/10.1007/s00521-016-2489-z

resources, time and effort to perform experiments on false

NES from large-scale candidate protein sequences. In

experiments for identifying NES-containing proteins, it is

necessary to do cell culture and treatments, plasmid con-

struction and some other tedious steps. It needs about 3

days in laboratory to determine whether an amino acid

sequence is a NES or not. If a large number of NESs are

planned to be detected experimentally, the cost of the

experimental resources becomes huge, which is also very

time-consuming [14, 15]. A possible way to solve this

problem is developing computational approaches to pre-

dicting or identifying NES from protein sequences, which

paves the way for a hot and promising research branch in

Bioinformatics [16–18]. Among computational approa-

ches, a general way is to construct prediction or identifi-

cation models from particular biological features of NESs,

including secondary structure [19], inner disorder [6], a-

helical structure [20], a-helix-loop or all-loop structures

binding in a hydrophobic groove on the convex surface

[21, 22] and regular expressions [23]. In recent research, it

is found that intelligent computing methods, such as

machine learning-based strategy [24] and position-specific

scoring matrix (PSSM [25]), performed well in predicting

NESs from high-throughput data of amino acid sequences,

with prediction rate around 60 %.

Neural networks are well-known computational models

inspired by the central nervous system of animals. Spiking

neural P systems are spiking neural-like computing models,

which are inspired from the way the neurons’ spiking and

communicating by means of spikes [26]. These systems are

named SN P systems, for shortly. As a new candidate of

spiking neural network models [27], SN P systems perform

well in doing computation, that is, the systems and almost all

of their variants can achieve Turing completeness. Notably, it

is proved that SN P systems can generate and accept the set of

Turing computable natural numbers [26], generate recursively

enumerable languages [28] and compute the set of Turing

computable functions [29]. Inspired by different biological

phenomena and mathematical motivations, lots of variants of

SN P systems have been proposed, such as SN P systems with

anti-spikes [30, 31], SN P systems working in asynchronous

mode [32], asynchronous SN P systems with local synchro-

nized sets of neurons [33], SN P systems with astrocyte-like

control [34], SN P systems with request rules [35, 36],

homogeneous SN P systems [37, 38], sequential SN P systems

[39, 40] and SN P systems with rules on synapses [41–43]. For

applications, SN P systems are used to design logic gates,

logic circuits [44] and operating systems [45], perform basic

arithmetic operations [46], solve combinatorial optimization

problems [47] and diagnose fault of electric power systems

[48–50]. SN P systems with neuron division, budding or

separation can generate exponential space with space–time

trade-off strategy, thus providing a way to theoretically solve

computationally hard problems in a feasible (polynomial or

linear) time [51–54]. There are some significant simulators for

SN P systems, see, for example, [55–57].

In artificial neural networks, a sigmoid function is used

to imitate biological neuron’s spiking, while in SN P sys-

tems, spiking rules are used, denoted in the form of pro-

duction in grammar of formal languages, to describe the

neuron’s spiking behavior. The applications of spiking

rules are controlled by the number of spikes contained in

the neuron at certain moment, which determine the trig-

gering conditions. A neuron may contain multiple rules, in

the sense of having ability to select spiking conditions, and

can send out different numbers of spikes by consuming

different numbers of spikes.

In this work, we propose a computational approach to

identify NES using SN P systems. Specifically, 30 exper-

imentally verified NES which have the unique biological

feature secondary structure elements are randomly selected

for training the SN P system. Subsequently, 1224 amino

acid sequences, composed of 1015 regular amino acid

sequences and 209 experimentally verified NES, are

selected from 221 NES-containing protein sequences ran-

domly in NESdb [13] to test our method. The experimental

results show that our method achieves a precision rate of

74.18 %, which performs better than NES-REBS with a

precision rate of 47.2 % [58], Wregex with a precision rate

of 25.4 % [59], ELM with a precision rate of 33.5 % [23]

and NetNES with a precision rate of 37.4 % [60]. The

results of this study are promising in terms of the fact that

it is the first feasible attempt to use spiking neural P sys-

tems in computational biology after many theoretical

advancements.

2 Spiking neural P system with Hebbian learning
strategy

It is useful for readers to have some familiarity with basic

concepts and notions in SN P systems [26, 61].

The formal definition of SN P system of degree m� 1 is

a construct of the form from [26]:

P ¼ ðO; r1;r2; . . .; rm; syn; iin; ioutÞ; where

• O ¼ fag is a singleton alphabet and a is called spike;

• r1; r2; . . .; rm are neurons of the form ri ¼ ðni;RiÞ,
with 1� i�m, where ni is initial number of spikes in

neuron ri and Ri is the set of rules in neuron ri:

1. spiking rule: E=ac ! ap, where E is a regular

expression over O, c the number of spikes to be

consumed and c� p� 1;

696 Neural Comput & Applic (2018) 29:695–705

123

2. forgetting rule: as ! k, with the restriction that

as 62 LðEÞ for any spiking rule;

• syn � f1; 2; . . .;mg � f1; 2; . . .;mg with ði; iÞ 62 syn is

the set of synapses between neurons;

• iin indicates the input neuron that reads spikes from the

environment, and iout indicates the output neuron that

can also emit spikes into the environment.

A spiking rule is a rule of the form E=ac ! a. At certain

moment, when neuron ri holds k spikes such that

ak 2 LðEÞ, k� c, then spiking rule E=ac ! a is applied.

This means that c spikes are consumed (k � c spikes

remaining in neuron ri) and neuron ri fires, producing one

spike. This spike will be emitted from neuron ri to each of

its neighboring neurons (a global clock is assumed, mark-

ing the time for the whole system; hence, the functioning of

the neurons is synchronized). The applicability of a rule is

controlled by the total number of spikes accumulated in the

neuron. The work of each neuron is sequential: Only one

rule can be applied in each time unit, but different neurons

work in a parallel manner.

Forgetting rules are of the form as ! k with s� 1 and

are applied only if the neuron contains exactly s spikes. By

applying the forgetting rule, s spikes will be removed from

the neuron and thus out of the system. We have the limi-

tation that when a forgetting rule is used at a computation

step, no spiking rule is enabled. It means that in any neu-

ron, if a spiking rule is applicable, then no forgetting rule is

enabled to use, and vice versa.

The study of incorporating Hebbian learning to SN P

systems was initialed in [62], where a theoretical Hebbian

learning SN P system model was developed. The systems

were designed in a formal way to update their information,

but no application was proposed. We construct here an SN

P system with Hebbian learning strategy to identify nuclear

export signals, where the systems are different from the

ones in [62], but having the common biological facts.

The system will be given graphically by a directed

graph, where rounded rectangles with the initial number of

spikes and rules are used to represent neurons and edges

represent the synapses. Input neurons have inputting

synapses, by which they can read spikes from the envi-

ronment; output neurons have outgoing synapses to emit

spikes into the environment. The system consists of two

modules, the input module and the predict module.

2.1 The input module

The input module is composed of an input neuron (reading

spike trains from the environment), a trigger neuron

(starting the module), 75 ‘‘transmitting’’ neurons labeled

with A1;A2; . . .;A75 and 75 ‘‘gathering’’ neurons labeled

with B1;B2; . . .;B75. The topological structure of the input

module is shown in Fig. 1.

• The input neuron has no initial spike inside and the

unique spiking rule a ! a. With the spiking rule at any

moment, when the nput neuron has one spike inside, it

fires with using spiking rule a ! a, emitting one spike

to its neighboring neurons (the ones having synapses

pointing from the neuron Input). The function of the

input neuron is to read spike trains (in the form of

binary strings) from the environment one by one bit.

The input neuron reads spike train as follows. Let w ¼
w1w2. . .w75 is the spike train to be read with

wi 2 f0; 1g, and at certain moment t the input neuron

starts to read it. In each step, the input neuron reads one

bit of spike train w. At any step t þ p, if wp ¼ 1, then

the input neuron reads one spike from the environment;

otherwise, the input neuron reads no spike.

• The trigger neuron is used to start the computation of

the module. In the input module, all the neurons

initially have no spike inside, with the exception that

the trigger neuron contains one spike. With the spike,

the trigger neuron can fire at the first step of the

computation, consuming the initially contained spike

and emitting one spike to its neighboring neuron.

Neuron rA1
is the unique neighboring neuron of the

trigger neuron.

• The 75 ‘‘transmitting’’ neurons labeled with

A1;A2; . . .;A75 have spiking rule a ! a. For any

2� i� 74, when neuron rAi
receives one spike from

neuron rAi�1
, it fires by using the spiking rule a ! a,

emitting one spike to neuron rAiþ1
. When neuron rA75

fires, it sends one spike to neuron rA1
, and a new circle

is started.

• The 75 ‘‘gathering’’ neurons labeled by B1;B2; . . .;B75

have spiking rule a2 ! a and forgetting rule a ! k.

This means that when neuron rBi
has two spikes, it fires

by using the spiking rule a2 ! a emitting one spike to

neuron rCi
; when neuron rBi

has one spike, the spike is

deleted by using forgetting rule a ! k. Each neuron rBi

has a synapses from the input neuron and ‘‘transmit-

ting’’ neuron rAi
, respectively. This means only when

both of the input neuron and ‘‘transmitting’’ neuron rAi

fire, each of them sends one spike to neuron rBi
.

Neuron rBi
accumulates two spikes and fires by using

spiking rule a2 ! a to send one spike to neuron rCi
.

2.2 The predict module

The predict module consists of 75 ‘‘processing neurons’’,

which are labeled by C1;C2; . . .;C75, and four output

neurons rOutput1 ; rOutput2 ; rOutput3 ; rOutput4 . All the neurons in

Neural Comput & Applic (2018) 29:695–705 697

123

the predict module have a unique spiking rule aa�=a ! a,

and the weights of all the synapses are initially set to be 1.

The spiking rule aa�=a ! a can be used when neuron rCi

has any number of spikes. For each transition step, one

spike is consumed and one spike is emitted out. For

example, if neuron rCi
accumulates k spikes inside, then it

will fire for k times and emits in total k spikes out, one

spike in each time spiking. The 75 ‘‘processing neurons’’

are separated into three layers: the inner layer, hidden layer

and outermost layer. The topological structure of the pre-

dict module is like a ‘‘ripple’’ with three layers as shown in

Fig. 2. The spikes transmit from the inner layer to the

hidden layer and then to the outmost layer.

The inner layer consists of 11 neurons, framed up in a

red dashed line, which have connections to each neuron in

the hidden layer, framed up a blue dashed line. The hidden

layer has four subgroups, named top, bottom, leftward and

rightward subgroups. The top and bottom subgroups have 3

neurons each, while the leftward and rightward subgroups

have 11 neurons. The outermost layer, framed in green

dashed lines, is composed of 36 neurons, which is divided

into four subgroups as well. The top and bottom subgroups

of the outermost layer have 5 neurons each, and the left-

ward and rightward subgroups have 13 neurons. In Fig. 3, it

shows the involved neurons in each layer.

Each neuron in the top (resp. bottom, leftward, right-

ward) subgroup of the hidden layer has a synapse

connection to every neuron in the top (resp. bottom, left-

ward, rightward) subgroup of outermost layer. Four neu-

rons are used to collect information from the neurons from

the four (top, bottom, leftward and rightward) subgroups,

respectively. The result of a computation is a 4-dimen-

sional vector recording the number of spikes emitted into

the environment from the 4 output neurons.

Fig. 1 Input module

Fig. 2 General ‘‘ripple’’-like framework of the SN P system with

three layers

698 Neural Comput & Applic (2018) 29:695–705

123

2.3 The Hebbian learning strategy

Each ‘‘processing’’ neuron rCi
has a synapse connection with

‘‘gathering’’ neuron rBi
. Neuron rCi

can receive spikes from

‘‘gathering’’ neuron rBi
, when the system reads spike trains

through the input neuron one by one bit. With the spikes

inside, neuron rCi
can fire and send spikes to its neighboring

neurons. At any moment, when a neuron sends spikes along

certain synapse, a Hebbian learning strategy is imposed on

the synapse in the predict module, that is, the weight of the

synapse will be increased by an augmenter Dw for each time

passing some spikes. In general, at any moment, if neuronrCi

has fired t times and passed spikes along its synapse for t

times, then the weight of the synapse is 1 þ t � Dw. Note

that, the weights on the synapses among neurons from the

input module are fixed during the computation.

The weight on a synapse is a function which amplifies

the spikes passing along it. Specifically, if at some moment

the weight on certain synapse is w and k spikes pass along

it, then in total w � k spikes are received by the target

neuron. The received spikes will be accumulated in the

neuron. Mathematically, we can use the following Eq. 1 to

calculate the weight at certain moment t þ 1 of the synapse

connecting neuron rCi
and rCj

.

Fig. 3 Predict module, where ‘‘!’’ means each neuron from the former dashed frame has one synapse to every neuron in the latter dashed

frame, and the neurons from the same dashed frame has no synapse among each other

Neural Comput & Applic (2018) 29:695–705 699

123

wtþ1 ¼
1; neuron rCi

remains inactive at step t;

wt þ Dw; neuron rCi
fires at step t:

�

ð1Þ

The weights on synapses connecting each pair of neu-

rons rBi
and rCi

are updated with the Hebbian learning

strategy, while the weights on synapses from the input

module are always 1.

In the computation, the topological structure the input

module does not change during the computation, but the

topological structure of the prediction module can be

modified by the updating strategy of weights on synapses.

3 Identification of NES by the SN P system

In this section, NES identification using the SN P system

with Hebbian learning is presented. It starts by explaining

the way to encode secondary structure of NES into binary

sequences, and then, the training strategy and prediction

processes are elaborated.

3.1 Encoding secondary structure of NES

into binary sequence

The information that the SN P system can read are encoded

in form of spike trains, i.e., binary sequences. Before we

use the SN P system to identify NESs, it is necessary to

encode the secondary structure of NES into a binary

sequence.

The secondary structure of a NES is usually a loop

conformation or helix-loop conformations starting with an

a-helix. We use the secondary structure prediction tool

PSIPRED to calculate the secondary structure of NESs, by

which the secondary structure of a NES can be described

by a string of letters. Each letter has a specific meaning of

the structure, such as H (alpha helix), B (residues in iso-

lated beta-bridge), G (3-helix), S (bend), I (5 helix), T

(hydrogen bonded turn) and E (extend strand). There are in

total 20 letters that are used to describe the secondary

structure of NESs. Each letter is represented by a binary

string of five bits in a disjoint manner. The binary strings

for the letters describing the secondary structure of NESs

are shown in Table 1.

With the encoding method, any NES can be represented

by a binary string. Specifically, a NES is a sequence of

amino acid, whose secondary structure can be obtained by

PSIPRED and represented by a string of letters. With the

encoding strategy in Table 1, the string of letters of sec-

ondary structure can be transformed into a binary string.

An example of encoding NES ‘‘90-L R S E E V H W L H

V D M G V-104’’ into binary string is given in Table 2.

3.2 The general process of identifying NESs

In general, the process of identifying NESs (represented by

binary strings/spike trains) using the SN P system has four

stages: reading stage, training stage, generating standard

output and identifying unknown NESs.

3.2.1 Reading stage

A set of NESs are randomly selected and encoded into

binary strings with their secondary structure. The binary

strings will be read by the input neuron one by one bit.

Since each NESs is of length 15 (having 15 amino acids),

the string encoding a secondary structure has 15 letters.

With the strategy shown in Table 1, each binary string is of

length 75. That is why in the input module 75 ‘‘transmit-

ting’’ neurons and 75 ‘‘gathering’’ neurons are designed.

3.2.2 Training stage

The input neuron reads binary strings one by one bit.

Suppose the input neuron starts to read a binary string at a

certain moment t. When it reads one spike from the envi-

ronment at any step t þ p (1� p� 75), it fires and sends

one spike to the ‘‘gathering’’ neuron rBp
. Meanwhile,

‘‘transmitting’’ neuron rAp
sends one spike to neuron rBp

.

With two spikes inside, neuron rBp
fires by using spiking

rule a2 ! a, sending one spike to neuron rCp
. Having any

number of spikes inside, neuron rCp
fires by using spiking

rule a�=a ! a, emitting one spike to each of its

Table 1 Binary strings for the

letters describing the secondary

structure of NESs

Letter A B C D E F G

Binary string 00001 00010 00011 00100 00101 00110 00111

Letter H I J K L M N

Binary string 01000 01001 01010 01011 01100 01101 01110

Letter O P Q R S T U

Binary string 01111 10000 10001 10010 10011 10100 10101

Letter V W X Y Z

Binary string 10110 10111 11000 11001 11010

700 Neural Comput & Applic (2018) 29:695–705

123

neighboring neurons. Also, the weights on the synapses the

spikes passing along with will be increased by Dw.

If the input neuron reads no spike from the environment

(indicating the bit of the binary string is 0), then the

‘‘gathering’’ neuron rBp
has only one spike from ‘‘trans-

mitting’’ neuron rAp
. In this case, neuron rBp

cannot fire

and sends no spike out. Neuron rCp
cannot receive any

spike, and remains inactive. The weights on synapses

starting from neuron rCp
remain unchanged.

When the system finishes reading one binary string, the

input module returns to its initial configuration and is ready

to read the next binary string. The system can read multiple

binary strings one by one. By reading binary strings from

environment, the ‘‘precessing’’ neuron rCi
may fire and the

weights on the synapses among ‘‘processing’’ neurons are

updated with the Hebbian learning strategy. The four out-

put neurons emit spikes into the environment, but will be

ignored. When the system finishes reading the set of binary

strings of NESs, it forms a specific topological structure by

processing the input information.

3.2.3 Generating standard output

For each NES used in training the SN P system, the binary

string representing its secondary structure is input into the

‘‘trained system.’’ In total, 30 four-dimensional vectors can

be obtained, which record the numbers of spikes emitted by

output neurons routput1 ; routput2 ; routput3 ; routput4 by reading

the 30 NESs. The average vector of the 30 output vectors,

denoted by ðstan1; stan2; stan3; stan4Þ, is called the stan-

dard outputting vector of the letter.

3.2.4 Identifying unknown NESs

The task of identifying NESs is to judge whether an amino

acid sequence is a NES. For any amino acid sequence, its

binary string of the secondary structure is obtained by

PSIPRED and then introduced into the trained SN P sys-

tem. When the system halts, a 4-dimensional vector

ðout1; out2; out3; out4Þ is generated recording the numbers

of spikes emitted by the four output neurons. We calculate

the variance between the outputting vector of the amino

acid sequence and standard outputting vector. The variance

is calculated by

var ¼

ffiX4

i¼1

ðouti � staniÞ2

vuut ;

where ðout1; out2; out3; out4Þ is the outputting vector of the

unknown letter and ðstan1; stan2; stan3; stan4Þ is the stan-

dard outputting vector of a certain letter. If the value of the

variance is lower than a threshold, then the amino acid

sequence is determined as a potential NES.

4 Experimental results

In the experiments, secondary structure elements of 30

experimentally verified NES are randomly selected for

training the SN P system. The 30 selected NESs are shown

in Table 3.

In the process of training the SN P system, we set the

unit increment Dw to be 0.1, that is, when a spike passes

along a synapse from prediction module, its weight will be

increased by Dw ¼ 0:1. The threshold value is set to be

525, which is obtained by calculating the average variance

of each pair of NESs used to train the system. For any

amino acid sequence, if the variance between its output

vector (calculated by the trained SN P system) and the

standard outputting vector is less than 525, then the amino

acid sequence is determined as NES; otherwise, it is

determined as a regular or non-signal amino acid sequence.

To test our method, we use the trained SN P system to

identify 209 experimentally verified NESs from 1224

amino acid sequences, where 1015 regular amino acid

sequences are randomly abstracted from 221 NES-con-

taining protein sequences.

Experimental results show that the SN P system can

identify correctly 114 of the 209 experimentally verified

NESs and can also determine correctly 809 of the 1015

regular amino acid sequences. The distribution of the

variance of the 209 experimentally verified NESs and 1015

regular amino acid sequences are shown in Figs. 4 and 5.

Hence, our method achieves the precision rate
114þ809

209þ1015
	 75:41%. While NES-REBS has a precision rate

of 47.2 % [58], Wregex has a precision rate of 25.4 % [59],

ELM has a precision rate of 33.5 % [23], and NetNES has

a precision rate of 37.4 % [60].

Table 2 An example of

encoding NES into binary string
Protein name FAK1

NESdb ID No. 83

NES sequence 90-L R S E E V H W L H V D M G V-104

Secondary structure C-C-C-C-C-C-E-E-E-C-C-C-C-C-H

Binary string 00011-00011-00011-00011-00011-00011-00101

00101-00101-00011-00011-00011-00011-00011-01000

Neural Comput & Applic (2018) 29:695–705 701

123

For statistic analysis, the proposed method is used to

identify 2530 randomly generated amino acid sequences. It

identifies 1792 sequences as non-NESs, that is, it achieves

a precision rate above 70 %, thus having statistical

significance.

5 Conclusion

In this work, we address the challenge of identifying NESs

from amino acid sequences using SN P system. An SN P

system with Hebbian learning strategy is firstly constructed

Table 3 Thirty randomly

selected NESs for training the

SN P system

NESdb ID NES Secondary structure

6 336-ERFEMFRELNEALEL-350 HHHHHHHHHHHHHHH

7 175-DHAEKVAEKLEALSV-189 CCHHHHHHHHHHCCC

10 81-QLVEELLKIICAFQL-95 HHHHHHHHHHHHHCC

11 28-TNLEALQKKLEELEL-42 CCHHHHHHHHHHCCC

20 337-DVKEEMTSALATMRV-351 HHHHHHHHHHHHHCC

27 395-STNGSLAAEFRHLQL-409 CCCCCEEEECCCCCH

31 455-PSVQELTEQIHRLLM-469 HHHHHHHHHHHHHHC

33 160-MNFKELKDFLKELNI-174 CCHHHHHHHHHHHCC

39 363-ENFEILMKLKESLEL-377 HHHHHHHHHHHHHHH

40 400-FETVYELTKMCTIRM-414 CHHHHHCCCCCEEEE

42 241-SGKASSSLGLQDFDL-251 CCCCCCCCCCCCCCE

45 609-PKYSDIDVDGLCSEL-623 CCCCCCCHHHHHHHH

54 281-VDLACTPTDVRDVDI-295 CCCCCCCCCCCCCCC

56 119-YGEKTTQRDLTELEI-133 CCCCCCCCCCHHHHH

65 56-RRIYDITNVLEGIGL-70 CCCCCCCCCCCCCCH

79 192-AKIIPYSGLLLVITV-206 CCCCCCCCEEEEEEE

83 90-LRSEEVHWLHVDMGV-104 CCCCCCEEECCCCCH

83 511-LQVRKVSLDLASLIL-525 HHHHCCCCCHHHHHH

86 55-AGVEAIIRILQQLLF-69 HHHHHHHHHHHHHHH

92 514-IVLNQLCVRFFGLDL-528 HHHCCEEEEEECCCC

93 88-SLGGFEITPPVVLRL-102 CCCCCCCCCCHHHHH

94 282-EAIQDLCLAVEEVSL-296 HHHHHHHHHHHHHHH

96 133-DELLQVLRMMVGVNI-147 HHHHHHHHHHCCCCC

99 69-SVLMAVQEGIDLLTF-83 HHHHHHHHCCCCCCC

114 70-QSTHVDIRTLEDLLM-84 EECCCCHHHHHHHHE

118 103-EFLSPTHHTVRLIRV-117 EEEECCCCEEEEEEE

120 304-MSSGYYLGEILRLAL-318 HHHHHHHHHHHHHHH

121 1013-DTVLDILRDFFELRL-1027 CCHHHHHHHHHHHHH

121 988-NSVNEILSEFYYVRL-1002 CCCEEECCCCCCCCH

123 84-CAFLSVKKQFEELTL-98 CCHHHHHHHHHHCCC

Fig. 4 Distribution of the numbers of NESs and their variance Fig. 5 Distribution of the numbers of amino acid sequences and their

variance

702 Neural Comput & Applic (2018) 29:695–705

123

with input and predict modules. After that, secondary

structure elements of 30 experimentally verified NES are

randomly selected for training an SN P system. We use

1224 amino acid sequences to test our method, where 1015

regular amino acid sequences and 209 experimentally

verified NESs are abstracted from 221 NES-containing

protein sequences in NESdb randomly. Experimental

results show that our method achieves a precision rate of

74.18 %, which performs better than NES-REBS, Wregex,

ELM and NetNES.

In our method, the secondary structure elements of

experimentally verified NESs is applied to train the SN P

system. Actually, there are some other biochemical prop-

erties shown as follows from [24].

• Secondary structure prediction of the regular expres-

sion match sequences.

• Avg.predicted surface accessibility of the regular

expression sequences.

• Avg.predicted disorder score of the regular expression.

• Hydrophobicity of the regular expression match

sequences of negatively charged residues in the

upstream flank.

• Whether the first two residues are involved in a b-

strand based on secondary structure.

• Prediction of polar residues in the downstream flank.

• Whether the first two residues are involved in a b-

strand based on secondary structure prediction.

• Distance to previous match of the regular expression

divided by the protein length.

It is worth for further research of investigating the per-

formances of other biological properties to train SN P

system and other computing models. For example, bio-

logical networks [63–66] and machine learning methods

[67–70] can be considered in this aspect.

In the SN P system, we use a simple Hebbian learning

strategy to update the weights on synapses among neurons

in predict module. There may be potential further research

of designing complex learning strategy and involving the

recently developed large-scale neural networks training

algorithms, see, for example [71, 72], for the training task.

It would be a quite interesting topic to find the inherent

advantages of SN P systems comparing with some other

models and methods.

Also, some variants of SN P systems, see, for example

[31, 46, 73, 74], can be used to improve the performance of

our method. The architecture of the SN P system in this

work is designed from the biological observation of spiking

a neural network from inside to outside. Specifically, the

outer layer neurons are divided into four groups, and each

neuron of the outer layer connects to some neurons in the

outmost layer. As well, all of the outer layer neurons and

the outmost layer neurons have been divided into four

groups. At this moment, there is no theory to design SN P

systems to do pattern recognition, but it would be an

interesting topic for future research. Artificial intelligent

models and algorithms have been used in solving problems

in practice, see, for example [75–79]. It is of interests to

use SN P systems to solve some other real-life problems.

Acknowledgments This work was supported by National Natural

Science Foundation of China (61272152, 61370105, 61402187,

61502535, 61572522 and 61572523), China Postdoctoral Science

Foundation funded project (2016M592267), Program for New Cen-

tury Excellent Talents in University (NCET-13-1031), 863 Program

(2015AA020925), and Fundamental Research Funds for the Central

Universities (R1607005A).

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

References

1. Görlich D, Kutay U (1999) Transport between the cell nucleus

and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

2. Conti E, Izaurralde E (2001) Nucleocytoplasmic transport enters

the atomic age. Curr Opin Cell Biol 13:310–319

3. Ren X-X, Wang H-B, Li C, Jiang J-F, Xiong S-D, Jin X, Wu L,

Wang J-H (2016) HIV-1 nef-associated factor 1 enhances viral

production by interacting with CRM1 to promote nuclear export

of unspliced HIV-1 gag mRNA. J Biol Chem 291:4580–4588

4. Weis K (2003) Regulating access to the genome: nucleocyto-

plasmic transport throughout the cell cycle. Cell 112:441–451

5. Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear

pore complex: bridging nuclear transport and gene regulation.

Nat Rev Mol Cell Biol 11:490–501

6. La Cour T, Kiemer L, Mølgaard A, Gupta R, Skriver K, Brunak S

(2004) Analysis and prediction of leucine-rich nuclear export

signals. Protein Eng Des Sel 17:527–536

7. Fischer U, Huber J, Boelens WC, Mattajt LW, Lührmann R

(1995) The HIV-1 Rev activation domain is a nuclear export

signal that accesses an export pathway used by specific cellular

RNAs. Cell 82:475–483

8. Fischer U, Meyer S, Teufel M, Heckel C, Lührmann R, Raut-

mann G (1994) Evidence that HIV-1 rev directly promotes the

nuclear export of unspliced RNA. EMBO J 13:4105

9. Ho JH-N, Kallstrom G, Johnson AW (2000) Nmd3p is a crm1p-

dependent adapter protein for nuclear export of the large ribo-

somal subunit. J Cell Biol 151:1057–1066

10. Vissinga CS, Yeo TC, Warren S, Brawley JV, Phillips J,

Cerosaletti K, Concannon P (2009) Nuclear export of NBN is

required for normal cellular responses to radiation. Mol Cell Biol

29:1000–1006

11. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) Crm1 is an

export receptor for leucine-rich nuclear export signals. Cell

90:1051–1060

12. KIrlI K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C,

Urlaub H, Görlich D (2016) A deep proteomics perspective on

crm1-mediated nuclear export and nucleocytoplasmic partition-

ing. eLife e11466. doi:10.7554/eLife.11466

13. Xu D, Grishin NV, Chook YM (2012) NESdb: a database of nes-

containing crm1 cargoes. Mol Biol Cell 23:3673

14. Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP,

Travé G, Gibson TJ (2008) Understanding eukaryotic linear

Neural Comput & Applic (2018) 29:695–705 703

123

http://dx.doi.org/10.7554/eLife.11466

motifs and their role in cell signaling and regulation. Front Biosci

13:6580–6603

15. Iraia G-S, Sonia B, Jose AR (2012) A global survey of crm1-

dependent nuclear export sequences in the human deubiquitinase

family. Biochem J 441:209–217

16. Via A, Gould CM, Gemünd C, Gibson TJ, Helmer-Citterich M

(2009) A structure filter for the eukaryotic linear motif resource.

BMC Bioinform 10:351

17. Lee T-Y, Lin Z-Q, Hsieh S-J, Bretaña NA, Lu C-T (2011)

Exploiting maximal dependence decomposition to identify con-

served motifs from a group of aligned signal sequences. Bioin-

formatics 27:1780–1787

18. Van Berlo RJ, Wessels LF, De Ridder D, Reinders MJ (2007)

Protein complex prediction using an integrative bioinformatics

approach. J Bioinform Comput Biol 5:839–864

19. la Cour T, Gupta R, Rapacki K, Skriver K, Poulsen FM, Brunak S

(2003) NESbase version 1.0: a database of nuclear export signals.

Nucleic Acids Res 31:393–396

20. Xu D, Farmer A, Collett G, Grishin NV, Chook YM (2012)

Sequence and structural analyses of nuclear export signals in the

NESdb database. Mol Biol Cell 23:3677–3693

21. Dong X, Biswas A, Chook YM (2009) Structural basis for

assembly and disassembly of the CRM1 nuclear export complex.

Nat Struct Mol Biol 16:558–560

22. Güttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke

T, Ficner R, Sattler M, Görlich D (2010) NES consensus rede-

fined by structures of PKI-type and Rev-type nuclear export

signals bound to CRM1. Nat Struct Mol Biol 17:1367–1376

23. Gould CM, Diella F, Via A, Puntervoll P, Gemünd C, Chabanis-

Davidson S, Michael S, Sayadi A, Bryne JC, Chica C et al (2009)

ELM: the status of the 2010 eukaryotic linear motif resource.

Nucleic Acids Res. doi:10.1093/nar/gkp1016

24. Fu S-C, Imai K, Horton P (2011) Prediction of leucine-rich

nuclear export signal containing proteins with nessential. Nucleic

Acids Res. doi:10.1093/nar/gkr493

25. Prieto G, Fullaondo A, Rodriguez JA (2014) Prediction of nuclear

export signals using weighted regular expressions (wregex).

Bioinformatics 30(9):1220–1227. doi:10.1093/bioinformatics/

btu016

26. Ionescu M, Păun G, Yokomori T (2006) Spiking neural P sys-

tems. Fundam Inform 71:279–308

27. Maass W (1997) Networks of spiking neurons: the third gener-

ation of neural network models. Neural Networks 10:1659–1671

28. Chen H, Freund R, Ionescu M, Păun G, Pérez-Jiménez MJ (2007)

On string languages generated by spiking neural P systems.

Fundam Inform 75:141–162

29. Păun A, Păun G (2007) Small universal spiking neural P systems.

BioSyst 90:48–60

30. Pan L, Paun G (2009) Spiking neural P systems with anti-spikes.

Int J Comput Commun Control IV(3):273–282

31. Song T, Pan L, Jiang K, Song B, Chen W (2013) Normal forms

for some classes of sequential spiking neural P systems. IEEE

Trans NanoBiosci 12:255–264

32. Cavaliere M, Ibarra OH, Păun G, Egecioglu O, Ionescu M,

Woodworth S (2009) Asynchronous spiking neural P systems.

Theor Comput Sci 410:2352–2364

33. Song T, Pan L, Păun G (2012) Asynchronous spiking neural P

systems with local synchronization. Inf Sci 219:197–207

34. Păun G (2007) Spiking neural P systems with astrocyte-like

control. J Univ Comput Sci 13:1707–1721

35. Song T, Pan L (2016) Spiking neural P systems with request

rules. Neurocomputing 193:193–200

36. Wang J, Peng H (2013) Adaptive fuzzy spiking neural P systems

for fuzzy inference and learning. Int J Comput Math 90:857–868

37. Zeng X, Zhang X, Pan L (2009) Homogeneous spiking neural P

systems. Fundam Inf 97:275–294

38. Song T, Wang X, Zhang Z, Chen Z (2014) Homogenous spiking

neural P systems with anti-spikes. Neural Comput Appl

24(7–8):1833–1841. doi:10.1007/s00521-013-1397-8

39. Ibarra OH, Păun A, Rodrı́guez-Patón A (2009) Sequential SNP
systems based on min/max spike number. Theor Comput Sci

410:2982–2991

40. Song T, Xu J, Pan L (2015) On the universality and non-uni-

versality of spiking neural P systems with rules on synapses.

IEEE Trans NanoBiosci 14:960–966

41. Song T, Pan L, Păun G (2014) Spiking neural P systems with

rules on synapses. Theor Comput Sci 529:82–95

42. Song T, Pan L (2015) Spiking neural P systems with rules on

synapses working in maximum spikes consumption strategy.

IEEE Trans NanoBiosci 1:38–44

43. Song T, Pan L (2015) Spiking neural P systems with rules on

synapses working in maximum spiking strategy. IEEE Trans

NanoBiosci 4:465–477

44. Ionescu M, Sburlan D (2007) Several applications of spiking

neural P systems. In: Fifth brainstorming week on membrane

computing, Sevilla

45. Adl A, Badr A, Farag I (2010) Towards a spiking neural P sys-

tems OS. arXiv preprint arXiv:1012.0326

46. Zeng X, Song T, Zhang X, Pan L (2012) Performing four basic

arithmetic operations with spiking neural P systems. IEEE Trans

NanoBiosci 11:366–374

47. Zhang G, Rong H, Neri F, Pérez-Jiménez MJ (2014) An opti-

mization spiking neural P system for approximately solving

combinatorial optimization problems. Int J Neural Syst

24(5):1440006

48. Wang T, Zhang G, Zhao J, He Z, Wang J, Pérez-Jiménez MJ

(2014) Fault diagnosis of electric power systems based on fuzzy

reasoning spiking neural P systems. IEEE Trans Power Syst

30:1182–1194

49. Peng H, Wang J, Pérez-Jiménez MJ, Wang H, Shao J, Wang T

(2013) Fuzzy reasoning spiking neural P system for fault diag-

nosis. Inf Sci 235:106–116

50. Wang J, Shi P, Peng H, Pérez-Jiménez MJ, Wang T (2013)

Weighted fuzzy spiking neural P systems. IEEE Trans Fuzzy Syst

21:209–220

51. Ishdorj T-O, Leporati A, Pan L, Zeng X, Zhang X (2010) Deter-

ministic solutions to QSAT and Q3SAT by spiking neural P systems

with pre-computed resources. Theor Comput Sci 411:2345–2358

52. Pan L, Păun G, Perez-Jimenez MJ (2011) Spiking neural P sys-

tems with neuron division and budding. Sci China Inform Sci

54:1596–1607

53. Wang X, Song T, Gong F, Zheng P (2016) On the computational

power of spiking neural P systems with self-organization. Sci

Rep. doi:10.1038/srep27624

54. Leporati A, Mauri G, Zandron C, Păun G, Pérez-Jiménez MJ

(2009) Uniform solutions to SAT and subset sum by spiking

neural P systems. Nat Comput 8:681–702

55. Macias-Ramos LF, Perez-Hurtado I, Garcia-Quismondo M,

Valencia-Cabrera L, Perez-Jimenez MJ, Riscos-Nunez A (2012)

A P-lingua based simulator for spiking neural P systems. Lect

Notes Comput Sci 7184:257–281

56. Ramirez-Martinez D, Gutierrez-Naranjo MA (2007) A software

tool for dealing with spiking neural P systems. In: Gutirrez-

Naranjo MA (ed) Proceeding of the 5th brainstorming week on

membrane computing, pp 299–313

57. Macias-Ramos LF, Perez-Jimenez MJ, Song T, Pan L (2015)

Extending simulation of asynchronous spiking neural P systems

in P-Lingua. Fundam Inform 136:253–267

58. Tingfang W, Xun W, Zheng Z, Faming G, Tao S, Zhihua C

(2016) NES-REBS: a novel nuclear export signal prediction

method using regular expressions and biochemical properties.

J Bioinform Comput Biol (in press)

704 Neural Comput & Applic (2018) 29:695–705

123

http://dx.doi.org/10.1093/nar/gkp1016
http://dx.doi.org/10.1093/nar/gkr493
http://dx.doi.org/10.1093/bioinformatics/btu016
http://dx.doi.org/10.1093/bioinformatics/btu016
http://dx.doi.org/10.1007/s00521-013-1397-8
http://arxiv.org/abs/1012.0326
http://dx.doi.org/10.1038/srep27624

59. Prieto G, Fullaondo A, Rodriguez JA (2014) Prediction of nuclear

export signals using weighted regular expressions (wregex).

Bioinformatics 30:1220–1227

60. Carla HV, Chiodi G (2013) Structural characterization of netnes

glycopeptide from Trypanosoma cruzi. Carbohydr Res 373:28–34

61. Păun G, Rozenberg G, Salomaa A (2010) The Oxford handbook

of membrane computing. Oxford University Press, Oxford

62. Gutierrez-Naranjo MA, Perez-Jimenez MJ (2009) Hebbian

learning from spiking neural P systems view. Lect Notes Comput

Sci 5391:217–230

63. Zeng X, Zhang X, Zou Q (2016) Integrative approaches for

predicting microRNA function and prioritizing disease-related

microRNA using biological interaction networks. Brief Bioin-

form 17(2):193–203

64. Zou Q, Li J, Song L, Zeng X, Wang G (2016) Similarity com-

putation strategies in the microRNA disease network: a survey.

Brief Funct Genomics 15(1):55–64

65. Wang X, Song T, Wang Z, Su Y, Liu X (2013) MRPGA: motif

detecting by modified random projection strategy and genetic

algorithm. J Comput Theor Nanosci 10:1209–1214

66. Wang X, Miao Y, Cheng M (2014) Finding motifs in DNA

sequences using low-dispersion sequences. J Comput Biol

21:320–329

67. Zou Q, Hu Q, Guo M, Wang G (2015) HAlign: fast multiple

similar DNA/RNA sequence alignment based on the centre star

strategy. Bioinformatics 31:2475–2481

68. Liu B, Chen J, Wang X (2015) Application of learning to rank to

protein remote homology detection. Bioinformatics 31:3492–3498

69. Liu X, Li Z, Liu J, Liu L, Zeng X (2015) Implementation of

arithmetic operations with time-free spiking neural P systems.

IEEE Trans Nanobioscience 14(6):617–624

70. Zhang X, Pan L, Paun A (2015) On the universality of axon P

systems. IEEE Trans Neural Netw Learn Syst 26:2816–2829

71. Zhang X, Tian Y, Jin Y (2015) A knee point driven evolutionary

algorithm for many-objective optimization. IEEE Trans Evolut

Comput 19(6):761–776

72. Zhang X, Tian Y, Cheng R, Jin Y (2015) An efficient approach to

nondominated sorting for evolutionary multiobjective optimiza-

tion. IEEE Trans Evol Comput 19:201–213

73. Song T, Pan L (2015) Spiking neural P systems with rules on

synapses working in maximum spiking strategy. IEEE Trans

NanoBiosci 14:465–477

74. Zeng X, Zhang X, Song T, Pan L (2014) Spiking neural P sys-

tems with thresholds. Neural Comput 26:1340–1361

75. Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental

support vector learning for ordinal regression. IEEE Trans Neural

Netw Learn Syst 26:1403–1415

76. Gu B, Sun X, Sheng VS (2016) Structural minimax probability

machine. IEEE Trans Neural Netw Learn Syst. doi:10.1109/

TNNLS.2016.2544779

77. Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algo-

rithm for vehicle classification. Inf Sci 295:395–406

78. Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015) Incre-

mental learning for support vector regression. Neural Netw

67:140–150

79. Xia Z, Wang X, Sun X, Wang Q (2016) A secure and dynamic

multi-keyword ranked search scheme over encrypted cloud data.

IEEE Trans Parallel Distrib Syst 27:340–352

Neural Comput & Applic (2018) 29:695–705 705

123

http://dx.doi.org/10.1109/TNNLS.2016.2544779
http://dx.doi.org/10.1109/TNNLS.2016.2544779

	A computational approach for nuclear export signals identification using spiking neural P systems
	Abstract
	Introduction
	Spiking neural P system with Hebbian learning strategy
	The input module
	The predict module
	The Hebbian learning strategy

	Identification of NES by the SN P system
	Encoding secondary structure of NES into binary sequence
	The general process of identifying NESs
	Reading stage
	Training stage
	Generating standard output
	Identifying unknown NESs

	Experimental results
	Conclusion
	Acknowledgments
	References

