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Abstract A type-2 fuzzy set, which is characterized by a
fuzzy membership function, involves more uncertainties
than the type-1 fuzzy set. As the most widely used type-2
fuzzy set, interval type-2 fuzzy set is a very useful tool to
model the uncertainty in the process of decision making.
As a special case of interval type-2 fuzzy set, trapezoidal
interval type-2 fuzzy set can express linguistic assessments
by transforming them into numerical variables objectively.
The aim of this paper is to investigate the multiple attribute
group decision-making problems in which the attribute
values and the weights take the form of trapezoidal interval
type-2 fuzzy sets. First, we introduce the concept of
trapezoidal interval type-2 fuzzy sets and some arithmetic
operations between them. Then, we develop several
trapezoidal interval type-2 fuzzy aggregation operators for
aggregating trapezoidal interval type-2 fuzzy sets and
examine several useful properties of the developed opera-
tors. Furthermore, based on the proposed operators, we
develop two approaches to multiple attribute group deci-
sion making with linguistic information. Finally, a practical
example is given to illustrate the feasibility and effective-
ness of the developed approach.
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1 Introduction

The purpose of multiple attribute group decision making
(MAGDM) is to choose the most desirable candi-
date(s) from a set of alternatives according to the decision
information about attribute weights and attribute values
provided by a group of decision makers [1, 2]. Considering
that the information about attribute values is usually
uncertain or fuzzy due to the increasing complexity of the
socio-economic environment and the vagueness of inherent
subjective nature of human thinking [2]; fuzzy set theory
[3] has been utilized to model the uncertainty and vague-
ness in the process of decision making. In recent years, a
lot of methods [4-17] have been developed for dealing
with fuzzy multiple attributes group decision-making
problems based on type-1 fuzzy sets [3]. It is worth noting
that the above fuzzy multiple attribute group decision-
making methods are based on type-1 fuzzy sets. If we apply
interval type-2 fuzzy sets instead of type-1 fuzzy sets to
handle fuzzy group decision-making problems, then there
is room for more flexibility due to the fact that interval
type-2 fuzzy sets provide more flexibility to present
uncertainties than type-1 fuzzy sets [1, 18, 19].

The concept of a type-2 fuzzy set, initially introduced by
Zadeh [3], can be regarded as an extension of the concept
of a type-1 fuzzy set. Different from a type-1 fuzzy set in
which the membership degree is a crisp number in [0, 1]
[20], the membership degree of a type-2 fuzzy set is a type-
1 fuzzy set in [0, 1]. Type-2 fuzzy sets can therefore pro-
vide us with more degrees of freedom to represent the
uncertainty and the vagueness of the real world than type-1
fuzzy sets. Interval type-2 fuzzy sets [21] are the most
widely used of the higher order fuzzy sets owing to the
high computational complexity of using general type-2
fuzzy sets. Interval type-2 fuzzy sets are more capable than
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ordinary fuzzy sets of handling imprecision and imperfect
information in real-world applications. Interval type-2
fuzzy sets have been applied productively in many practi-
cal fields [20, 22-28], especially in the decision-making
field, and numerous useful methods have been developed to
address MAGDM problems with trapezoidal interval type-
2 fuzzy sets [19, 29—48]. For example, Wu and Mendel
[49, 50] presented a method using the linguistic weighted
average and interval type-2 fuzzy sets for handling fuzzy
multiple criteria hierarchical group decision-making prob-
lems. Chen and Lee [18, 51] presented a method for fuzzy
multiple attributes group decision-making based on rank-
ing values and the arithmetic operations of interval type-2
fuzzy sets. Chen and Lee [1, 51] presented a fuzzy multiple
attributes group decision-making method based on the
interval type-2 TOPSIS method. Chen et al. [19] presented
a new method to deal with fuzzy multiple attributes group
decision-making problems based on ranking interval type-2
fuzzy sets. Chen and Lee [52] presented a new method for
handling fuzzy multiple criteria hierarchical GDM prob-
lems based on arithmetic operations and fuzzy preference
relations of trapezoidal interval type-2 fuzzy sets. Wang
et al. [2, 53] investigated the MAGDM problems under
trapezoidal interval type-2 fuzzy set environment, and
developed an approach to handling the situations where the
attribute values are characterized by trapezoidal interval
type-2 fuzzy sets, and the information about attribute
weights is partially known.

Uncertain and imprecise assessment information is
usually present in practical MAGDM problems because
decision makers are not always certain of their given
decision or preference information and often use a certain
degree of uncertainty to express their subjective judgments
[54]. In such cases, decision makers commonly use lin-
guistic variables to evaluate the importance weights of
criteria and the ratings of alternatives with respect to var-
ious criteria [21]. In particular, the concept of linguistic
variables is useful in the case of complex or ill-defined
situations. The linguistic values generally can be repre-
sented with ordinary fuzzy numbers. Nevertheless, interval
type-2 fuzzy sets have a better ability to address linguistic
uncertainties by modeling the vagueness and unreliability
of information [30]. To address linguistic or numerical
uncertainties associated with a subjective environment, the
ratings of alternatives with respect to each criterion and the
weights of criteria used in MAGDM can be appropriately
expressed as trapezoidal interval type-2 fuzzy sets using a
linguistic rating system. Most of the trapezoidal interval
type-2 fuzzy sets corresponding to linguistic terms are non-
negative. Thus, the trapezoidal interval type-2 fuzzy data
required in the MAGDM problem can be established by
employing the linguistic scales with the corresponding
trapezoidal interval type-2 fuzzy sets. In the interval type-2
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fuzzy context, several useful linguistic rating systems have
been presented to transform the linguistic values into
appropriate IT2TrF numbers, i.e., three-point scales [52],
four-point scales [52], five-point scales [46, 52], seven-
point scales [2, 18, 19, 55], and nine-point scales
[33, 37, 38]. Using these linguistic rating systems, decision
makers or analysts can conveniently convert the linguistic
responses into trapezoidal interval type-2 fuzzy sets.
Consequently, the current paper primarily focuses on the
development of a new interval type-2 fuzzy MAGDM
method within the trapezoidal interval type-2 fuzzy
environment.

In a MAGDM problem under interval type-2 fuzzy
environment, how to combine the individual interval type-2
fuzzy information into the collective one is an important
topic. In order to do this, some aggregation operators
should be developed. However, it is worthwhile to mention
that the existing interval type-2 fuzzy MAGDM methods
do not develop some aggregation operators for aggregating
interval type-2 fuzzy information. To overcome this limi-
tation, in Sect. 3 of this paper, we develop some trape-
zoidal interval type-2 fuzzy aggregation operators for
aggregating trapezoidal interval type-2 fuzzy sets, includ-
ing the trapezoidal interval type-2 fuzzy weighted aver-
aging (TIT2FWA) operator, generalized trapezoidal
interval type-2 fuzzy weighted averaging (GTIT2FWA)
operator, trapezoidal interval type-2 fuzzy ordered weigh-
ted averaging (TIT2FOWA) operator, generalized trape-
zoidal interval type-2 fuzzy ordered weighted averaging
(GTIT2FOWA) operator, trapezoidal interval type-2 fuzzy
hybrid averaging (TIT2FHA) operator, and generalized
trapezoidal interval type-2 fuzzy hybrid averaging
(GTIT2FHA) operator. Then, we investigate some funda-
mental properties of the developed operators, such as
commutativity, idempotency, boundedness, and mono-
tonicity. Next, in Sect. 4, we present an approach based on
the developed operators to MAGDM problems under
interval type-2 fuzzy environment. Moreover, Sect. 5
provides a numerical example to illustrate the application
of the proposed approach. Finally, we conclude the paper
in Sect. 6.

2 Preliminaries

In this section, we will briefly introduce the basic concepts
and operations of trapezoidal interval type-2 fuzzy sets.
More details about type-2 fuzzy sets can be found in
“Appendix 1”.

Let A be an interval type-2 fuzzy set. If the upper
membership function and lower membership function of A
are two trapezoidal type-1 fuzzy sets, then A is referred to
as a trapezoidal interval type-2 fuzzy set.
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Fig. 1 A trapezoidal interval type-2 fuzzy set

Let Q be the set of all trapezoidal interval type-2 fuzzy
sets.

We use the reference points in the universe of discourse
and the heights of the upper and the lower membership
functions of trapezoidal interval type-2 fuzzy sets to
characterize trapezoidal interval type-2 fuzzy sets. For
example, Fig. 1 shows a trapezoidal interval type-2 fuzzy

set A= (AU,AL) = ((ai/,ag,ag/,af;Hl (AU), HZ(AU)),
(ak, ab, db, ak; Hy (AY), Hy (AF))), where H;(AY) denotes
the membership value of the element a,; in the upper
trapezoidal membership function AU, 1<i<?2, H; (AL)
denotes the membership value of the element ar,; in the
lower trapezoidal membership function AL, 1 <i<?2,
Hy(AY) € [0,1], Hy(AY) €[0,1], H(A") €0,1], and
H,(AY) € [0,1] [1, 18, 19].

Let A = (AY, A") be a trapezoidal interval type-2 fuzzy
set. If AV = AL, then the trapezoidal interval type-2 fuzzy
number A becomes a trapezoidal type-1 fuzzy set. Let A be
a trapezoidal type-1 fuzzy set, where A = (a1, az,
as,aq; Hy (A),Hz (A)) Then, the trapezoidal type-1 fuzzy
set A also can be extended into the trapezoidal interval
type-2 fuzzy set representation, i.e., A = (a1, az,as, ag;
Hi(A), Hy(A)), (a1, a2, a3,as;Hi (A), Ha (A))) [1, 18, 19].

In the real decision making, it is difficult for the decision
makers to directly adopt the form of trapezoidal interval

type-2 fuzzy sets to give the attribute values and weights. We
usually adopt the form of linguistic terms. Because the upper
membership functions and lower membership functions of
trapezoidal interval type-2 fuzzy sets are piecewise linear
and trapezoidal, we can utilize trapezoidal interval type-2
fuzzy sets to capture the vagueness of some linguistic terms.
Table 1 shows the linguistic terms “very low,” (VL) “low,”
(L) “medium low,” (ML) “medium,” (M) “medium high,”
(MH) “high,” (H) “very high,” (VH) and their corre-
sponding trapezoidal interval type-2 fuzzy sets, respectively
[55]. The membership function curves of the trapezoidal
interval type-2 fuzzy sets in Table 1 are shown in Fig. 2 [55].

Some operational laws and comparison laws about
trapezoidal interval type-2 fuzzy sets can be founded in
“Appendix 2”.

3 Trapezoidal interval type-2 fuzzy aggregation
operators

In this section, we will develop several trapezoidal interval
type-2 fuzzy aggregation operators for aggregating trape-
zoidal interval type-2 fuzzy sets.

Definition 3.1 Let A; = (AIU,AIL) = ((af{,ag,ag,a%;Hl
(AY) Ha(A)), (a . . s Hi (AD), Ha(A1))) GG = 1.
2, ...,n) be a collection of trapezoidal interval type-2
fuzzy sets, and let w = (W, W,,...,Ww,)" be the weight
vector of/i,- (i=1,2, .., n) withw; = (WIV,VT/[L) = ((wil{7
Wiga Wg7 WZ;HI (WiU)’HZ (W:U))v (WiLU WiLZa WiL3’ W,‘L4§H1 (WiL)v
H, (WIL))) (i =1, 2, ..., n). Then, a generalized trapezoidal
interval type-2 fuzzy weighted averaging (GTIT2FWA)
operator is a mapping Q" — Q, where

i=1

1/7
GTIT2FWA;; ; (A1, As, .., A,) = (@(fvi@fi;})) (1)

with 4 > 0.

Especially, if w = (1,1, .../ 1)", then the GTIT2FWA
operator reduces to the generalized trapezoidal interval
type-2 fuzzy averaging (GTIT2FA) operator:

Table 1 Linguistic terms and

. . . Linguistic terms
their corresponding trapezoidal £

Trapezoidal interval type-2 fuzzy sets

interval type-2 fuzzy sets Very low (VL)

Low (L)

Medium low (ML)
Medium (M)
Medium high (MH)
High (H)

Very high (VH)

((0, 0, 0.1, 0.2; 1, 1), (0, 0, 0.05, 0.15; 1, 1))
((0.05, 0.15, 0.25, 0.35; 1, 1), (0.1, 0.2, 0.2, 0.3; 0.8, 0.8))
(0.2, 0.3, 0.4, 0.5; 1, 1), (0.25, 0.35, 0.35, 0.45; 0.8, 0.8))
((0.35, 0.45, 0.55, 0.65; 1, 1), (0.4, 0.5, 0.5, 0.6; 0.8, 0.8))
(0.5, 0.6, 0.7, 0.8; 1, 1), (0.55, 0.65, 0.65, 0.75; 0.8, 0.8))
((0.65, 0.75, 0.85, 0.95; 1, 1), (0.7, 0.8, 0.8, 0.9; 0.8, 0.8))
((0.8,09, 1, 1; 1, 1), (0.85, 0.95, 1, 1; 1, 1))
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Theorem 3.1 Let A; = (AiU,Af) = ((af{,alg,ag,a%;Hl
(AV), Hy (AY)), (b, ay, ay, abys H, (AL, Ha(AL))) G = 1,
2, ..., n) be a collection of trapezoidal interval type-2 fuzzy

0.8

sets, and let w; (i = 1, 2, ..., n) be real numbers. Then, the
following properties hold.

Theorem 3.2 Let A; = (AU A~L) = (( U4y, al,a%; Hy

(AY), Ha(AY)), (afy, afy, afy, afy; Hy (A}), Hy (A}))) (i = 1,
2, ..., n) be a collection of trapezoidal interval type-2 fuzzy
sets, and let w; (i = 1, 2, ..., n) be real numbers, and let

0 0.1 02 03

Fig. 2 Membership functions of the linguistic terms

)

By the operational laws given in “Appendix 2”, Eq. (2)
can be transformed into the following form:

GTIT2FA; (A1, As, .., A,) = (
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A > 0. Then, the following properties hold.
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1. Idempotency: ifA —A= ((a{],ag,agj,af{;Hl (AU)7
H>(AY)), (ak,ab, a5, ab; Hi (AY), Hy (A"))) for all i,
then
(2) GTIT2FWA,; ; (A1, Ay, ..
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(3)
where
(e i ) i ) i ) i, 0GR i, () )

1<i<n

<1r<nln<1n{all} mln {alz} min {aﬂ} 1r<mg {a4} mln {Hl( f)},lrglljgn{Hz(AiL)}>
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and

(max {a,l} max {alz} max {al3} max {al4} max {H](

1<i<n 1<i<n 1<i<n 1<i<n

1<i<n

i) max, (10},

Amax =
(lrgai(n{all} max {a,z} max {al3} max {014} max {Hl(AL)} max {Hz( )})

3. Monotonicity: let A; = (AU AL) = ((af{,ag,ag, ay;
H, (Al) ( )) (zlﬂ isz 1L3 147 Hl(A) H,
(AIL))) (i=1,2,...,n) and B; = (BiU,BiL) = ((bf{7
bgvbg’b%; H, (BzU)’HZ(EzU))’ (b{‘l’b{é’b%’bl{z‘; H,
(BY), Hy(BY))) (i=1,2,...,n) be two collectionv
of trapezoidal interval type- 2 fuzzy sets. If a < bfjj ,
afi < b, Hi(AY) <H,(BY), H,(AY )<H2(BU), H,
(Allf)ng(BiL), and Hz( )<H2(BL) for all i=
1,2,...,nand j =1, 2, 3, 4, then
GTIT2FWA,; ; (A1, As, ..., A,)

< GTIT2FWA;;;(B1, B>, ..., B,). (6)

Theorem 3.3 For the given arguments A; € Q (i =

1, 2, ..., n) and the weight vector w = (W1, Ws, .. .,W,,)T,

GTIT2FOWA,, (A1, As, . .., A, )

(5 (et e

1<3<,,{mm{H1<@f”>v i (#5)}}, i fmin{map). m(35,)})

fuzzy sets, A (i) be the ith largest of them, & = (&1, @,

.,wn) be the aggregation-associated vector such that

o = (of o) = ((0f, 0F, 0F, 0l Hy (@), Hy(af)),
(0h, o, 0k, ofiH (0F),H(0F)) (=12, ..., n),

then, a generalized trapezoidal interval type-2 fuzzy
ordered weighted averaging (GTIT2FOWA) operator is a
mapping Q" — Q, where

o 5 . 1/2
GTIT2FOWA, (A1, Ay, . ., A,) = (@ (w ®A‘<)>>
i=1
(7)
with 4 > 0.
By the operational laws given in “Appendix 27,

Eq. (7) can be transformed into the following forms,
respectively:

(B (o)) (E (o)) B E))) " (& (o))
i ({8, (320) )}, it (1)
(8)
the GTIT2FWA operator is monotonically increasing with In Definition 3.2. if & = (l o l)T then the
’ n’n’ ‘n)

respect to the parameter .
Proof See “Appendix 2”.
Definition 3.2 Let A; = (AU AL) = ((dY,a%,a%, al; Hy

(AU) Hz(AU>) (a117azLZ? agz, 147H1 (AL) HZ(AL))) (l = l,
2, ...,n) be a collection of trapezoidal interval type-2

GTIT2FOWA operator reduces to the generalized trape-
zoidal interval type-2 fuzzy averaging (GTIT2FA) opera-
tor. If 2 = 1, then the GTIT2FOWA operator reduces to
the TIT2FOWA operator:

TIT2FOWA, (A1, Az, .. Ar) = & (01 Aoy). 9)

@ Springer
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The TIT2FWA and GTIT2FWA operators weight only
the trapezoidal interval type-2 fuzzy sets. However, by
Definition 3.2, the GTIT2FOWA operator weights the
ordered positions of the trapezoidal interval type-2 fuzzy
sets instead of weighting the trapezoidal interval type-2

1<i<n <i<n 1<i<n <i<n

3. Boundedness:

Amin < GTIT2FOWA; ; (A1, As, .

o Ay) <Amax, (12)

where

<i<n <i<n

- ( min {af{},lmin {ai’é}, min {ag},lmin {aﬂ};lmjn {Hl(fif])},lmin {Hz(fif/)})

( min {a4}, min {a5}, min {ak}, min {a{;‘};llgnljlgln{Hl (/iiL)},lmin {H2(AIL)}>

1<i<n 1<i<n 1<i<n 1<i<n

<i<n

and

i (max {alf}. max (a4}, max {a}, max {all}; max {H1(AY)}, max {#) (A,.U)}),

1<i<n 1<i<n 1<i<r 1<i<n
max —
(121?;(”{615 b max {ai}, max {aj}, max {af}; max {H (A7)}, max {H>(A]) }>

fuzzy sets themselves. The prominent characteristic of the
GTIT2FOWA operator is that the input arguments are
rearranged in descending order, in particular, a trapezoidal
interval type-2 fuzzy set A; is not associated with a par-
ticular weight @; but rather a weight @; is associated with a
particular ordered position i of the trapezoidal interval
type-2 fuzzy sets.

Theorem 3.4 Let A; = (A~IU,A~IL) = ((aﬁ,ag,a%,aﬁ; H,
(RY). Ha(32), (ah s by, als £ (A) Ha (A1) GG = 1,
2, ..., n) be a collection of trapezoidal interval type-2 fuzzy
sets, and let & = (&, @y, .. .7d)n)T be real numbers, and
let 7. > 0. Then, the following properties hold.

1. Commutativity: if (A},AS, ..
of (AI,A2, .. .,A,l), then

GTIT2FOWA; , (A1, As, . . ., A,)
= GTIT2FOWA,; ; (A}, A,, ..

+AL) is any permutation

LAL). (10)

2. Idempotency: if A;=A= ((a?,ag,agj,af{;Hl (fiU)7
Hy(AY)), (ak, db, ab, ak; Hi (AY), Hy (AY))) for all i,
then

GTIT2FOWA; ; (A1, As, . .

LA,) = A. (11)

@ Springer

4. Monotonicity: let A; = (AlU,/ilL) = ((aY,a%,dy, a4;
Hy (A7), Hy(AY)), (af;, s, afy, afy; Hy (AY), Ha(A7)))
(i=1,2 ..,n) and B;= (BY,B*) = ((b¥,b%,bY,
biiHy (BY), Ha(BY)), (i, bis, by, bly; H (BY),  Ha
(éf))) (i=1,2,...,n) be two collections of trape-
zoidal interval type-2 fuzzy sets. Ifa,-lf < bg, af} < bf},
Hy (A7) <H\(BY), H>(AY) <H>(BY), Hi(A}) <

H;(BY), and H,(AF) <H,(B}), for all i=1,2, ...,

nandj=1,2,3,4, then

GTIT2FOWA; ; (A1, 45, .. ., A,)

< GTIT2FOWA, ;(B1,B., ..., B,). (13)

Similar to Theorem 3.3, we have the following result.

Theorem 3.5 For the given arguments AieQ
(i=1,2,...,n) and the aggregation-associated vector
o = (dy,d,.. . d),,)T, the GTIT2FOWA operator is
monotonically increasing with respect to the parameter A.

By Definitions 3.1 and 3.2, it is worth noting that all the
operators mentioned above have some inherent limitations.
Concretely, the GTIT2FWA only weight the trapezoidal
interval type-2 fuzzy set itself, but ignore the importance of
the ordered position of the arguments, whereas the
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GTIT2FOWA operators only weight the ordered position
of each given argument, but ignore the importance of the
argument. To overcome this drawback, we next present
two hybrid aggregation operators for aggregating trape-
zoidal interval type-2 fuzzy sets, which weight not only all
the given arguments but also their ordered positions.

Definition 3.3 For a collection of trapezoidal interval
type-2 fuzzy sets A; = (AY,Al) = ((aY,a%,a%,al; Hy
(A7), Ha (A7), (ai, @, af, afy; Hi (AF), Ha (A7) G = 1,
2, ..,n), w= (Wi, Wy,...,Ww,) is the weight vector of
them with w; = (WY, wk) = ((wH,wY, w¥, wi; Hi (wY),
H2 (WIU)) ( 117W[‘2,W13,W14,H1( ) HZ( ))) (l = 1, 2,

., n), n is the balancing coefficient which plays a role of
balance, then we define the following aggregation opera-
tors, which are all based on the mapping Q" — Q with an

aggregation-associated vector & = (@1, @s, . ..,@,)" such
that o = (of,af) = ((wf{,wg,wﬁ,mel( Y), H,
(0351))7 ((1)5‘176()14‘27(,0137 ,47H1( )7H2( ,))) (l = 17 2, cees

GTIT2FHA, 5 (A1, Ay, ..
2
( <wﬁ’ X <n x WaU(i)l X %U(m)

min
1<i<n

n y 1/;~ n

(; (wlL1 X <n X wﬁ(l.)l X aﬁ(m> )) , ('71 (w,Lz X
n y: 2

(Z (wlL3 X (n X Wﬁ(i)3 X aﬁ(m) )) > (

|r§n}2n{min{H' (@), min{H. (W(LT(;J, H, (~§([.)) }} ,

LA

M=

1

M=

AN /4 . i
(wll{ X (n X W(l"/(i)3 X ag(i)3> )) , (Z ol x (n X WfT/(l.)4 X af,/([)4)
U

Especially, if A = 1, then GTIT2FHA operator reduces
the trapezoidal interval type-2 fuzzy hybrid averaging
(TIT2FHA) operator:
TIT2FHA; (A1, As, ..

wAn) = ‘E:,él (d)l & Bo’(i));

1

(15)

where Ba(i) is the ith largest of Ek:n(ﬂzk ®Ak)
k=1,2, ..., n).

Especially, if w = (1,1,..., )", then the TIT2FHA
operator reduces to the TIT2FOWA operator and the
GTIT2FHA operator reduces to the GTIT2FOWA opera-

tor; if = (%7%,...,%)T, then the TIT2FHA operator
reduces to the TIT2FWA operator and the GTIT2FHA
operator reduces to the GTIT2FWA operator; if 4 = 1,
then the GTIT2FHA operator reduces to the TIT2FHA
operator.

By the operational laws given in “Appendix 27,
Eq. (14) can be transformed into the following forms,

respectively:

“oz)
“on)
.?égn{min{ﬂzw min{#: (). H2(A50) 1}

)
)
1@,12,,{““{%( 2
)
)

(16)

n). Then, a generalized trapezoidal interval type-2 fuzzy
hybrid averaging (GTIT2FHA) operator is a mapping

Q" — Q, such that
. B 1/
(@ (d)l ®BQ<,)>> )
i=1

(14)

GTIT2FHA; ;; (A1, Ay, .., A,) =

where 4 > 0 and B o(i) is the ith largest of Bk = n(wk ®Ak)
k=1,2, ..., n).

Similar to Theorems 3.3 and 3.5, we have the following
result.

Theorem 3.6 For A eQ
(i=1,2, ..., n), the weight vector w = (W, ws, .. .,vT/n)T,
and the aggregation-associated vector @ = (@, @y,

the given arguments

. c?)n)T, the GTIT2FHA operator is monotonically
increasing with respect to the parameter .
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4 An approach to multiple attribute group
decision making with linguistic information

In this section, we shall utilize the proposed trapezoidal
interval type-2 fuzzy aggregation operators to develop an
approach to multiple attribute group decision making with
linguistic information.

A multiple attribute group decision-making problem with
linguistic information can be summarized as follows: let

X = {x1, xp, ..., x,,} be a set of m alternatives, C = {cy,
Ca, ..., C,} be a collection of n attributes, and D = {d;,
d,, ..., d;} beasetof [ decision makers whose weight vector is
w= ((Z)l,cbz,...,cbl)T, where o (k =1, 2, ..., ) are the
linguistic terms. Assume that each decision maker d;
(k=1,2, ..., 1) uses the linguistic terms to represent the
weights of n attributes and provides the weight vector
0 = (), .,wg@)T,wherew}k) G=12. ... nis

the weight of the attribute ¢; and W is a linguistic term.

J
Suppose that each decision maker d; (k =1, 2, ..., [) pro-

vides his/her own linguistic decision matrix A¥) = (Af-k)>
(k=1,2, ..., ),where A"
the form of linguistic term, given by the decision maker d, -
D, for the alternative x; € X with respect to the attribute
c ' e C.

is a preference value, which takes

Table 2 The complementary relations

A VL L ML M MH H VH

A€ VH H MH M ML L VL
i (k) ;

~ Ai' ) J S Cla

RY =3 e (17)
(AY), jec,

where (Ag()) is the complement of AEJ@.

Table 2 shows complementary relations about the lin-
guistic terms shown in Table 1.

In the following, we utilize the proposed operators to
develop an approach to multiple attribute group decision
making with linguistic information, which involves the
following steps:

Algorithm 4.1 Step I. Transform the linguistic decision
matrices A® = (Agc)) (k=1,2,...,]) into the nor-

mxn

malized linguistic decision matrices R®) = (15(.'“))
mxn

ij
(k=1,2,..., 1) using Eq. (17).
Step 2. Convert the normalized linguistic decision matrices

RM = (Iég()) into the trapezoidal interval type-2 fuzzy
mxn

decision matrices

mxn

In general, attributes can be classified into two types:
benefit attributes and cost attributes. In other words, the
attribute set C can be divided into two subsets: C; and C,,
which are the subset of benefit attributes and cost attri-
butes, respectively. Furthermore, we have C; U C, = C
and C, N C, = &, where J is an empty set. The linguistic
decision matrices A®) need to be normalized unless all the
attributes ¢; G = 1, 2, ..., n) are of the same type. In this

paper, we transform the linguistic decision matrices A% =
(Al(lk )) into the normalized linguistic decision matrices
’ mxn

X
RW) = Rf]k)) by the following method given in [2]:

mxn

@ Springer

Convert the weight vector & = (@, @y, .. .,d)l)T of
decision makers to the trapezoidal interval type-2 fuzzy

weight vector @& = (@y, @, ...,a;)", where @) = (af,
dji) = ((wlglvwlgz’wl%awlgﬁl{l (03121)71_12(0313))7 (wén wézv
oy, oy Hy (0F), Hy(0F))) (k=1,2, ..., ]) is the trape-
zoidal interval type-2 fuzzy sets.

T

Convert the weight vector wik) = (wﬁ“,w(zk), ey W,(qk))
(k=1,2,...,]) of attributes to the trapezoidal interval
T

type-2 fuzzy weight vector wik) = (w(,k),w(zk), .. .,Wﬁ“)

(k=1,2, ..., 1), where
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k=1,2,...,1;j=1,2, ..., n) is the trapezoidal interval of the alternative x; (corresponding to d; € D), where

type-2 fuzzy set. y ~ (k) (~(k) = (k) ~(k))T : ;
L€ 0, + o0), W0 = (W0 @® the weight
Step 3. Utilize the GTIT2FHA operator (Eq. (16)): € 0.4 00 W= (W0 ) S the welg

RY = GTIT2FHA 1 (Rﬁf),kfz”, . A,E,?,f))

A

amin {mind e (at), min{an ((515)"). o0 ((R2,)") b} e i fomind s (). min{ s (55)°). 2 (%2,)) } }}

i=1,2,...m, k=1,2,..,1L

’fel(r’f)) inthe vector of attributes provided by d, € D, and @& =
(ﬁl,zﬁz,...,tﬁn)T is the associated weighting vector of
the GTIT2FHA operator with

to aggregate the attribute values (I?Sf) , Rg‘), ...

ith line of R, and then get the comprehensive attribute
value

&= ()" (1)) () GE)% () ()5 m(()7), e ((5)))
T () () () () m((®)). m(()))

@ Springer



1048

Neural Comput & Applic (2018) 29:1039-1054

&
I
—
Q:
\.Q
!
.

I

U U
/) ((wjl’wﬂ’ D)3, @ /47H1< /)
~U L L L .
HZ(wj )7 (wj]awjzawj37 ]47 ( )

H2<df))) G=1,2,...n).

Step 4. Utilize the GTIT2FWA operator (Eq. (3)):

R = GTIT2FWA,;, (Iéf”,kfz) . .Jéﬁ”)

(é <w£’1 x <(rlglk>)u>,;>> /
<

mm {mm{Hl a)k H,; (RE

5 Illustrative example
In this section, we use an example from [2, 54] to illustrate
the proposed methods.

Example 5.1 Assume that the problem discussed here is
concerned with a manufacturing company, searching the

(19)

to aggregate Ié,(k) (k=1,2, ..., 1) corresponding to the
alternative x;, and then get the collective value
R = (RY.RY
_ ((r,-”m o e ras Hi(RY),
B (riLl, r,.Lz, riL3, r[.L4; H, (ﬁf),

Hz(l?f’)%)

H ()

of the alternative x;, where A€ (0, + o0), and @ =

~ o~ ~\T . . . .
(&1, @a,...,0;) is the weight vector of decision makers

with @ = (of ,0f) = ((of), of, oY, o H
(d)lg)7 H2(d’1£/))’ (wil’ Ofy O, O Hl(d’é)v

Hy(af))) k=1,2, ..., D).
Step 5. Calculate the ranking value RV(ﬁi) (i=1,
2, ..., m) of the collective value R,- i=12,...,
the following formula given by Chen et al. [57] :
[rif +ria] | (1 (RY) + Ha(RY) + i (RE) + Ha (R))
2 4

m) using

RV(R) =

Uy U U U L L L L
X[ril+ri2+ri3+ri4+ril+ri2+ri3+ri4}

8
(20)
and then rank all of the collective value Ri (i=1,
2, ..., m) using the comparison laws defined by Chen et al.
[57].

Step 6. Rank all the alternatives x; (i = 1, 2, ..., m) and

then select the best alternative(s) according to R;
(i=1,2, ..., m). The larger R, is the better the alternatives
x;(i=1,2,...,m) will be.

Step 7. End.

@ Springer

best global supplier for one of its most critical parts used in
assembling process (adapted from [2, 54]). There are three
potential global suppliers x; (i = 1, 2, 3) to be evaluated
with four attributes: (1) c¢;: quality of the product, (2) c,: risk
factor, (3) cj3: service performance of supplier, and (4) cy4:
supplier’s profile. Assume that the three decision makers d|,
d,, and d; use the linguistic terms shown in Table 1 to rep-
resent the weights of the four attributes, respectively, as
shown in Table 3. Assume that the weight vector of decision
makers is @ = (@, @y, @3) = (H,ML, VH)". Assume that
the three decision makers d;, d,, and d3 use the linguistic
terms shown in Table 1 to represent the characteristics of the
potential global suppliers x; (i = 1, 2, 3) with respect to
different attributes ¢; (j = 1, 2, 3, 4), respectively, as shown
in Tables 4, 5 and 6.

Step 1. Among four attributes, c; is the cost attribute, and ¢;
(G = 1, 3, 4) are the benefit attributes. Therefore, based on

Table 3 Weights of the attri-
butes evaluated by the decision

makers dgd H VH VH M
& VH H MH VH
&, MH VH H MH

[&5] (&) C3 Cq

Table 4 The linguistic decision

matrix A provided by the

decision maker d; x MH VH H M
x, VH ML VH H
x; H VH ML VH

Cq Co C3 Cy
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Table 5 The linguistic decision
matrix A® provided by the
decision maker d, xx MH ML VH M

C Co C3 Cy

x3; ML H H VH

Table 6 The linguistic decision
matrix A®) provided by the
decision maker d; x H VH ML VH

[&5] Co C3 Cq

xs VH L MH MH

Table 7 The normalized
weights of the attributes
evaluated by the decision d H VL VH M
makers

Cq (&) C3 Cq

d, VH L MH VH
ds MH VL H MH

Table 8 The normalized
linguistic decision matrix R()
provided by the decision maker x MH VL H M
a x» VH MH VH H
x3 H VL ML VH

C (&) C3 Cq

Table 9 The normalized
linguistic decision matrix R

provided by the decision maker xy MH MH VH M
dy

[&5] Co C3 Cq

xs ML L H VH

Table 10 The normalized

linguistic decision matrix R
provided by the decision maker x, H VL ML VH
d3

Cq (&) C3 Cq

Tables 1 and 2, the weight vectors of the four attributes can
be transformed into the normalized weight vectors, as

shown in Table 7. Linguistic decision matrices A® =

~(k))
A
( Y ) 3x4

normalized linguistic decision matrices R%) = (Ié@)3 A
X

ij
(k =1, 2, 3), as shown in Tables 8, 9 and 10.

(k=1,2,3) can be transformed into the

Step 2. Convert the weight vector @& = (@1,@2,@3)T:

(H, ML,VH)T of decision makers to the trapezoidal
interval type-2 fuzzy weight vector

&= (HML,VH)"
((0.65,0.75,0.85,0.95;1,1), (0.7,0.8,0.8,0.9;0.8,0.8)),
=1 ((02,0.3,0.4,0.5;1,1), (0.25,0.35,0.35,0.45;0.8,0.8)),
((0.8,0.9,1,1;1,1), (0.85,0.95,1,1;1,1))

T

_ wgk)7 wgk)7 wgk)7

vDEP)T (k =1, 2,3) of the attributes to the trapezoidal

interval type-2 fuzzy weight vectors wk) = (Wﬁk),fvgk),

Convert the weight vectors w®*)

) T (k =1, 2, 3), as shown in Table 11. Convert
the normalized linguistic decision matrices R®)
(k =1, 2, 3) into the trapezoidal interval type-2 fuzzy
decision matrices R®) (k =1, 2, 3), as shown in Tables 12,
13 and 14.

Step 3. Let A= 2. Utilize the GTIT2FHA operator
(Eq. (18)) (whose associated weighting vector is

&= (H,VH,M,MH)"

((0.65,0.75,0.85,0.95;1,1), (0.7,0.8,0.8,0.9;0.8,0.8)),\ "
((0.8,0.9,1,1;1,1), (0.85,0.95,1,1;1,1)),
((0.35,0.45,0.55,0.65;1,1), (0.4,0.5,0.5,0.6;0.8,0.8)),
((0.5,0.6,0.7,0.8;1,1), (0.55,0.65,0.65,0.75;0.8,0.8))

)

to aggregate the attribute values (Iégf),ﬁl(?,]ég),ﬂf)) in
the ith line of R®), and then get the comprehensive attribute

value ﬁfk) of the alternative x;. We obtain the aggregation
results shown in Table 15.
Step 4. Let A= 2. Utlize the GTIT2FWA operator

(Eq. (19)) to aggregate RE” (k =1, 2, 3) corresponding
to the alternative x;, and then get the collective value 15,- of
the alternative x;:

Ri = ((2.4660, 3.9113, 5.8483, 7.5904; 1, 1),
(3.1319, 4.8135, 5.0791, 6.6842; 0.8, 0.8)),

Ry = ((3.1969, 4.8791, 7.0742, 8.5633; 1, 1),
(3.9789, 5.9066, 6.3985, 7.7938; 0.8, 0.8)),

Ry = ((2.4075, 3.8758, 5.8442, 7.6145; 1, 1),
(3.0847, 4.7902, 5.0696, 6.6908; 0.8, 0.8)).

Step 5. Utilize Eq. (20) to calculate the ranking value
RV(I%,-) (i=1,2,3) of the collective value R; (i =
1, 2, 3):

RV(R) = 29.2886,
RV (R3) = 29.0950,

RV(R,) = 40.5039,

and then rank all of the collective value I§,~ (i=1,2,3)as
follows:

Rz >R1 >1§3.

Step 6. Rank all the alternatives x; (i = 1, 2, 3) as follows:
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Table 11 The trapezoidal interval type-2 fuzzy weight vectors of the attributes

Cq (&)

C3

Cy

d, ((0.65,0.75, 0.85, 0.95; 1, 1),
(0.7, 0.8, 0.8, 0.9; 0.8, 0.8))

d (08,09, 1, 1; 1, 1), (0.85, 0.95,
I, 1; 1, 1)

ds ((0.5,0.6,07,08; 1, 1), (0.55,
0.65, 0.65, 0.75; 0.8, 0.8))

(0,0, 0.1,0.2; 1, 1), (0, 0, 0.05,
0.15; 1, 1))

((0.05, 0.15, 0.25, 0.35; 1, 1),
(0.1,0.2, 0.2, 0.3; 0.8, 0.8))
(0, 0,0.1,0.2; 1, 1), (0, 0, 0.05,

0.15; 1, 1))

((0.8,0.9, 1, 1; 1, 1), (0.85, 0.95,
1,1;1, 1)

(0.5, 0.6,0.7, 0.8; 1, 1), (0.55,
0.65, 0.65, 0.75; 0.8, 0.8))

((0.65, 0.75, 0.85, 0.95; 1, 1),
(0.7, 0.8, 0.8, 0.9; 0.8, 0.8))

((0.35, 0.45, 0.55, 0.65; 1, 1),
(0.4, 0.5, 0.5, 0.6; 0.8, 0.8))
((0.8,09,1,1; 1, 1), (0.85, 0.95,

L L L)
(0.5, 0.6, 0.7, 0.8; 1, 1), (0.55,
0.65, 0.65, 0.75; 0.8, 0.8))

Table 12 The trapezoidal interval type-2 fuzzy decision matrix R()

C1 2

€3

Cq

% ((0.5,0.6,07,08; 1, 1), (0.55,
0.65, 0.65, 0.75; 0.8, 0.8))

x, ((0.8,09,1,1;1,1),(0.85,0.95,
1, 1;1,1)

x; ((0.65, 0.75, 0.85, 0.95; 1, 1),
(0.7, 0.8, 0.8, 0.9; 0.8, 0.8))

(0, 0,0.1,0.2; 1, 1), (0, 0, 0.05,
0.15; 1, 1))

(0.5, 0.6, 0.7, 0.8; 1, 1), (0.55,
0.65, 0.65, 0.75; 0.8, 0.8))

(0, 0,0.1,0.2; 1, 1), (0, 0, 0.05,
0.15; 1, 1))

((0.65, 0.75, 0.85, 0.95; 1, 1),
(0.7, 0.8, 0.8, 0.9; 0.8, 0.8))
((0.8,0.9, 1, 1; 1, 1), (0.85, 0.95,

L 1;1,1)
(0.2, 0.3, 0.4, 0.5; 1, 1), (0.25,
0.35, 0.35, 0.45; 0.8, 0.8))

((0.35, 0.45, 0.55, 0.65; 1, 1),
(0.4, 0.5, 0.5, 0.6; 0.8, 0.8))

((0.65, 0.75, 0.85, 0.95; 1, 1),
(0.7, 0.8, 0.8, 0.9; 0.8, 0.8))

(08,09, 1, 1; 1, 1), (0.85, 0.95,
1, 1; 1, 1))

Table 13 The trapezoidal interval type-2 fuzzy decision matrix R

C1 (6]

C3

Cq

x; (0.5, 0.6, 0.7, 0.8; 1, 1), (0.55,
0.65, 0.65, 0.75; 0.8, 0.8))

xy  ((0.65, 0.75, 0.85, 0.95; 1, 1),
(0.7, 0.8, 0.8, 0.9; 0.8, 0.8))

x3 ((0.2,03,04,05; 1, 1), (0.25,
0.35, 0.35, 0.45; 0.8, 0.8))

(0.5, 0.6, 0.7, 0.8; 1, 1), (0.55,
0.65, 0.65, 0.75; 0.8, 0.8))

(0, 0,0.1,0.2; 1, 1), (0, 0, 0.05,
0.15; 1, 1))

((0.05, 0.15, 0.25, 0.35; 1, 1),
(0.1, 0.2, 0.2, 0.3; 0.8, 0.8))

((0.8,0.9,1, 1; 1, 1), (0.85, 0.95,
1, 1;1, 1)

((0.05, 0.15, 0.25, 0.35; 1, 1),
(0.1, 0.2, 0.2, 0.3; 0.8, 0.8))

((0.65, 0.75, 0.85, 0.95; 1, 1),
(0.7, 0.8, 0.8, 0.9; 0.8, 0.8))

((0.35, 0.45, 0.55, 0.65; 1, 1),
(0.4, 0.5, 0.5, 0.6; 0.8, 0.8))
((0.8,0.9, 1, 15 1, 1), (0.85, 0.95,

L 1,1, D)
((0.8,0.9,1, 15 1, 1), (0.85, 0.95,
L 11, 1)

Table 14 The trapezoidal interval type-2 fuzzy decision matrix R®)

C1 (%]

C3

Cy

x1 ((0.65, 0.75, 0.85, 0.95; 1, 1),
(0.7, 0.8, 0.8, 0.9; 0.8, 0.8))

X ((0.35, 045, 0.55, 0.65; 1, 1),
(0.4, 0.5, 0.5, 0.6; 0.8, 0.8))

x; ((0.8,09, 1, 1; 1, 1), (0.85, 0.95,
1,1;1, 1)

(0,0, 0.1, 0.2; 1, 1), (0, 0, 0.05,
0.15; 1, 1))

((0.05, 0.15, 0.25, 0.35; 1, 1),
(0.1, 0.2, 0.2, 0.3; 0.8, 0.8))

((0.65, 0.75, 0.85, 0.95; 1, 1),
(0.7, 0.8, 0.8, 0.9; 0.8, 0.8))

(0.2, 0.3, 0.4, 0.5; 1, 1), (0.25,
0.35, 0.35, 0.45; 0.8, 0.8))

((0.8,0.9, 1, 1; 1, 1), (0.85, 0.95,
L 1,1, 1)

(0.5, 0.6, 0.7, 0.8; 1, 1), (0.55,
0.65, 0.65, 0.75; 0.8, 0.8))

((0.8,0.9, 1, 1; 1, 1), (0.85, 0.95,
L1, 1)

((0.65, 0.75, 0.85, 0.95; 1, 1),
(0.7, 0.8, 0.8, 0.9; 0.8, 0.8))
(0.5, 0.6, 0.7, 0.8; 1, 1), (0.55,

0.65, 0.65, 0.75; 0.8, 0.8))

(k)

i

Table 15 The comprehensive attribute value R

d 1 d2

d;

x; ((2.0611, 2.9460, 4.0369, 4.9836; 1, 1),
(2.4789, 3.4646, 3.6081, 4.4949; 0.8, 0.8))

xz  ((2.8303, 3.9057, 5.2094, 5.8252; 1, 1),
(3.3411, 4.5261, 4.9326, 5.5056; 0.8, 0.8))

x5 ((1.7330, 2.5853, 3.6535, 4.6649; 1, 1),
(2.1331, 3.0914, 3.1973, 4.1422; 0.8, 0.8))

((2.0386, 2.9928, 4.1844, 5.0364; 1, 1),
(2.4873, 3.5577, 3.7873, 4.6004; 0.8, 0.8))

((2.7793, 3.8069, 5.0435, 5.5243; 1, 1),
(3.2681, 4.3978, 4.8142, 5.2792; 0.8, 0.8))

((2.3990, 3.3644, 4.5515, 5.2186; 1, 1),
(2.8552, 3.9290, 4.2571, 4.8715; 0.8, 0.8))

((1.7637, 2.6038, 3.6533, 4.6192; 1, 1),
(2.1586, 3.1013, 3.2190, 4.1196; 0.8, 0.8))

((2.0822, 2.9847, 4.0990, 5.0828; 1, 1),
(2.5081, 3.5140, 3.6557, 4.5741; 0.8, 0.8))

((1.8347, 2.7108, 3.8108, 4.8674; 1, 1),
(22471, 3.2278, 3.3435, 4.3181; 0.8, 0.8))
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Table 16 The ranking values =03 =1 i=9 J =16 =15 i =130
RV(R,-) and the rankings of
alternatives X1 8.2579 x 10° 137.2341 11.6559 11.2591 11.3126 11.3542
X 1.1280 x 10° 185.4541 16.1989 15.1778 14.9041 14.8508
X3 9.4737 x 10°  140.0859 12.6447 13.0882 13.5770 13.7527
Ranking x> x3 > X X2 > X3>X] Xo>X3>X| Xp> X3 > X Xp > X3 X Xo > X3 > X

Xy > X1 > X3.

Thus, the most desirable global supplier is x,.

When we change the parameter 4, we can obtain dif-
ferent results (see Table 16). The decision makers can
choose values of A according to their preferences.

6 Conclusions

In this paper, we have developed several trapezoidal
interval type-2 fuzzy aggregation operators, such as the
TIT2FWA, GTIT2FWA, TIT2FOWA, GTIT2FOWA,
TIT2FHA, and GTIT2FHA operators. We have studied
some basic properties of the developed operators, including
commutativity, idempotency, boundedness, and mono-
tonicity. Furthermore, we have utilized the proposed
operators to develop an approach to multiple attribute
group decision making with linguistic information. Finally,
a numerical example is provided to illustrate the developed
approach.

In the current study, some basic properties of the
TIT2FHA and GTIT2FHA operators do not be investigated
in detail. In addition, the develop operators are a weighted-
average aggregation tool, and they are unsuitable to deal with
the arguments taking the forms of multiplicative preference
information. In the future, we will pay attention to addressing
these problems. We will examine some desirable properties
of the TIT2FHA and GTIT2FHA operators, and develop
some new geometric aggregation operators, including the
trapezoidal interval type-2 fuzzy weighted geometric
(TIT2FWG) operator, the generalized trapezoidal interval
type-2 fuzzy weighted geometric (GTIT2FWG) operator,
the trapezoidal interval type-2 fuzzy ordered weighted geo-
metric (TIT2FOWG) operator, the generalized trapezoidal
interval type-2 fuzzy ordered weighted geometric (GTIT2-
FOWG) operator, the trapezoidal interval type-2 fuzzy
hybrid geometric (TIT2FHG) operator, and the generalized
trapezoidal interval type-2 fuzzy hybrid geometric

(GTIT2FHG) operator, and apply them to group decision
making based on multiplicative preference information.
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Appendix 1: type-2 fuzzy sets

A type-2 fuzzy set A in the universe of discourse X can be
represented by a type-2 membership function 5, shown as
follows [20, 21, 56]:

A= {((v,u), pi (e ) ¥x € X, Vued, C[0,1]},

where 0 < u;(x,u) < 1. The type-2 fuzzy set A also can be
represented as follows:

= [LLL ]

where x is the primary variable, J, < [0, 1] is the primary
membership of x, u is the secondary variable, and
Joe g, i (x, u) /u is the secondary membership function

(MF) at x. j denotes union among all admissible x and
u. For discrete universe of discourse, f is replaced by Z.

Let A be a type-2 fuzzy set in the universe of discourse X
represented by the type-2 membership function iz (x, u). If

all pi;(x,u) = 1, then A is called an interval type-2 fuzzy

set. An interval type-2 fuzzy set A can be regarded as a
special case of a type-2 fuzzy set, shown as follows [21]:

A= L= L/
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where x is the primary variable, J, < [0, 1] is the primary
membership of x, u is the secondary variable, and fL e, 1/u
is the secondary membership function (MF) at x. 4

Uncertainty about an interval type-2 fuzzy set A is
conveyed by the union of all of the primary memberships,
which is called the footprint of uncertainty (FOU) of A, ie.,
FOU(A) =) ./

xex

The upper membership function and lower membership

function of A are two type-1 membership functions that
bound the FOU. The upper membership function is asso-

ciated with the upper bound of FOU(A) and is denoted by

AU, and the lower membership function is associated with

Ao dy = (AV.A%) o (3L,4%)
U

0<H,(A) < 1.Ifa, = a, then the trapezoidal type-1 fuzzy set
A becomes a triangular type-1 fuzzy set.

Appendix 2: some operational laws
and comparison law

The operation between the trapezoidal interval type-2
fuzzy sets A} = (A?,Af) = ((aﬁ,a{jz,a%,aﬂ;Hl (fﬁ]%
Hy(AY)), (b, dby,dby, abys Hy (L), Ha(AD))) and A, =
(AT, A%) = ((a,abh, a%s, bl Hy (AY), Ha(AY))),  (aby,
by, aby, ab; Hi(A%),Hy(A%))) is defined as follows
[1, 18, 19]:

1.

1
_ (a” + a8, a¥ +d,,a¥y + a5, a¥, + al; min{Hl (A?),Hl (Ag)}, min{Hz(A?),Hz(Ag)}),
(af) + b, at, + by, aly + ds, aby + aby; min{H, (A}), H\(A5) }, min{H, (A}), Ha(A)})

Al ®A2 = (A~€1,AI]‘) ® (Ag,sz‘)

_ (a¥y x ¥}, a¥, x aly,a¥y x a%;,a¥, x a¥,; min{H, (AV), H, (AY)}, min{H,(AY), H,(AY)}),
(aby x dby, aky x ab,, aky x aby, aby x d5,; min{H, (A}), H, (A%)}, min{H, (A}), H,(A%)})

the lower bound of FOU (A) and is denoted by A

Let A be a trapezoidal type-1 fuzzy set, A = (a1,
ay,as,aq; H (A~),H2 (A)), as shown in Fig. 3, where H, (A)
denotes the membership value of the element a,, H; (A) denotes
the membership value of the element a3, 0 < H; (A) <1 and

N

a, a, a, X

0 a

Fig. 3 A trapezoidal type-1 fuzzy set

@ Springer

3.

kA, = (KAY kAY)

((k x a¥ kxat kxall kxal); Hy (A?),Hz(Ag)),)
(k x aky ke x aby, ko x aby ke x akys Hy (A), Ha (A5)) )

where k>0

4.
A= (@), @)

(@), (@), (@), (ah)'s 1 (AY), 1a(AY) ).

() () () () (A (A1) )

where k>0

Let A=(AY.A")=((aV.al,a¥ al;H, (A),Hy(AY)),
(ak.ab,ak,ak;Hi (AF),Hy(A"))) be a trapezoidal interval
type-2 fuzzy set. Chen et al. [57] defined the ranking value
RV(A) of A as follows:
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o (@] +K) + (af +K)]

(Hi (AY) + Ha (AV) + Hy (AL) + H (L))

RV(A) 5 + 1
L@l +K) + (a5 +K) + (af + K) + (ai +K) + (af +K) + (a3 + K) + (a5 + K) + (af + K)]
8
0 if aij >0, 16. Wang Y-M, Parkan C (2005) Multiple attribute decision making
where K = - based on fuzzy preference information on alternatives: ranking
|la¥|, if a} <O0. and weighting. Fuzzy Sets Syst 153(3):331-346
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