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Abstract This paper presents iterative reproducing kernel

algorithm for obtaining the numerical solutions of Bagley–

Torvik and Painlevé equations of fractional order. The

representation of the exact and the numerical solutions is

given in the Ŵ3
2 0; 1½ �, W3

2 0; 1½ �, and W1
2 0; 1½ � inner product

spaces. The computation of the required grid points is

relying on the R̂
3f g

t sð Þ, R
3f g
t sð Þ, and R

1f g
t sð Þ reproducing

kernel functions. An efficient construction is given to

obtain the numerical solutions for the equations together

with an existence proof of the exact solutions based upon

the reproducing kernel theory. Numerical solutions of such

fractional equations are acquired by interrupting the n-term

of the exact solutions. In this approach, numerical exam-

ples were analyzed to illustrate the design procedure and

confirm the performance of the proposed algorithm in the

form of tabulate data, numerical comparisons, and graph-

ical results. Finally, the utilized results show the significant

improvement in the algorithm while saving the conver-

gence accuracy and time.

Keywords Reproducing kernel algorithm � Fourier series

expansion � Fractional-order derivative � Bagley–Torvik

equation � Painlevé equation
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1 Introduction

Fractional calculus theory is a branch of the mathematical

analysis that studies the possibility of taking real number

powers of the differentiation and the integration operators. This

generalized calculus is one of the most valuable and suit-

able tools to refine the description of numerous physical phe-

nomena in science and engineering, which are indeed nonlinear.

In mechanics, for example, fractional-order derivatives have

been successfully used to model damping forces with memory

effect or to describe state feedback controllers [1–5]. In par-

ticular, the 1=2-order derivative or 3=2-order derivative

describe the frequency-dependent damping materials quite

satisfactorily, and the Bagley–Torvik equation with 1=2-order

derivative or 3=2-order derivative describes motion of real

physical systems, an immersed plate in a Newtonian fluid and a

gas in a fluid, respectively [6, 7]. In fact, many physical phe-

nomena can be modeled by fractional differentia equations

(FDEs), which have different applications in various areas of

science and engineering such as thermal systems, turbulence,

image processing, fluid flow, mechanics, and viscoelastic [1–5].

In this paper, iterative form of the reproducing kernel

algorithm (RKA) has been investigated systematically for

the development, analysis, and implementation of an

accurate algorithm for the use of some form of concurrent

processing technique for solving Bagley–Torvik and

Painlevé equations of fractional order. More precisely, we

consider the following set of FDEs:

• The fractional Bagley–Torvik equation:

a1 tð Þy00 tð Þþa2 tð ÞD1:5y tð Þþa3 tð Þy0 tð Þ
þa4 tð ÞD0:5y tð Þþa5 tð Þy tð Þ¼ f tð Þ;

y 0ð Þ¼ c0;y
0 0ð Þ¼ c1;

y 0ð Þ¼ c0;y 1ð Þ¼ c1:

8
>><

>>:

ð1Þ
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• The first fractional Painlevé equation:

Day tð Þ ¼ 6y2 tð Þ þ t;

y 0ð Þ ¼ c0; y
0 0ð Þ ¼ c1:

�

ð2Þ

• The second fractional Painlevé equation:

Day tð Þ ¼ 2y3 tð Þ þ ty tð Þ þ k;
y 0ð Þ ¼ c0; y

0 0ð Þ ¼ c1:

�

ð3Þ

Here, 0� t�1, 1\a�2, ai tð Þ; f tð Þ2C 0;1½ �, c0;c1;k2R,

and y2 W3
2 0;1½ �;Ŵ3

2 0;1½ �
� �

are unknown functions to be

determined while Da denotes the Caputo fractional

derivative operator of order m�1\a\m of a function y tð Þ
and defined as

DayðtÞ ¼ 1

Cðm� aÞ

Z t

0

ðt � sÞm�1�a
yðmÞðsÞdt: ð4Þ

In general, fractional form of Bagley–Torvik and Pain-

levé equations do not always have solutions which we can

obtain using analytical methods. In fact, many of real

physical phenomena encountered are almost impossible to

solve by this technique. Due to this, some authors have

proposed numerical methods to approximate the solutions

of such FDEs. The reader is request to go through [8–25] in

order to know more details and descriptions about these

methods and analyze.

The reproducing kernel theory has developed into an

important tool in many areas, especially statistics and

machine learning, and they play a valuable role in complex

analysis, probability, group representation theory, finance,

and the theory of differential and integral operators

[26–29]. The RKA is a useful framework for constructing

numerical solutions of great interest to applied sciences. In

the recent years, based on this theory, extensive work has

been proposed and discussed for the numerical solutions of

several integral and differential operators side by side with

their theories. The reader is kindly requested to go through

[30–44] in order to know more details about the RKA,

including its modification and scientific applications, its

characteristics and key features, and others.

The structure of the present paper is as follows. In the

next section, three inner product spaces and three

reproducing kernel functions are constructed. In Sect. 3,

some essential theoretical results are presented based

upon the reproducing kernel theory. In Sect. 4, an effi-

cient iterative technique for the solutions is described,

while convergent theorem of the solutions is also pre-

sented. In order to capture the behavior of the numerical

solutions, error estimations and error bounds are derived

in Sect. 5. Numerical algorithm and numerical outcomes

are discussed as utilized in Sect. 6. Finally, in Sect. 7,

some concluding remarks and brief conclusions are

provided.

2 Constructing of reproducing kernel spaces

In linear algebra, an inner product space is a vector space with

an additional structure called an inner product. This additional

structure associates each pair of vectors in the space with a

scalar quantity known as the inner product of the vectors. Inner

products allow the rigorous introduction of intuitive geomet-

rical notions such as the length of a vector or the means of

defining orthogonality between vectors. In this section, sev-

eral inner product spaces and several reproducing kernel

functions are constructed on the finite domain [0, 1].

Let H be a Hilbert space of function h : X ! H on a set

X. A function R : X� X ! C is a reproducing kernel of H

if the following conditions are met. Firstly, R �; tð Þ 2 H for

each t 2 X. Secondly, hh �ð Þ;R �; tð Þi ¼ h tð Þ for each h 2 H

and each t 2 X. The condition hh �ð Þ;R �; tð Þi ¼ h tð Þ is

called the reproducing property, which means that the

value of h at the point t is reproducing by the inner product

of h with R �; tð Þ. Indeed, a Hilbert space which possesses a

reproducing kernel is called a reproducing kernel Hilbert

space (RKHS).

Definition 1 ([30]) The space W1
2 0; 1½ � is defined as

W1
2 0; 1½ � ¼ fz : z is absolutely continuous function on 0; 1½ �

and z0 2 L2½0; 1�g while the inner product and the norm of

W1
2 0; 1½ � are given as

hz1 tð Þ; z2 tð ÞiW1
2
¼ z1 0ð Þz2 0ð Þ þ

Z 1

0

z01 tð Þz02 tð Þdt;

z1k k2
W1

2
¼ hz1 tð Þ; z1 tð ÞiW1

2
:

8
><

>:
ð5Þ

Definition 2 ([31]) The space W3
2 0; 1½ � is defined as

W3
2 0; 1½ � ¼ fz : z; z0; z00 are absolutely continuous functions

on 0; 1½ �, z000 2 L2 0; 1½ �, and z 0ð Þ ¼ 0; z0 0ð Þ ¼ 0g while the

inner product and the norm of W3
2 0; 1½ � are given as

hz1 tð Þ; z2 tð ÞiW3
2
¼
P2

i¼0

z
ið Þ

1 0ð Þz ið Þ
2 0ð Þþ

Z 1

0

z0001 tð Þz0002 tð Þdt;

z1k k2
W3

2
¼ z1 tð Þ; z1 tð ÞW3

2
:

8
><

>:
ð6Þ

Definition 3 ([31]) The space Ŵ3
2 0; 1½ � is defined as

Ŵ3
2 0; 1½ � ¼ fz : z; z0; z00 are absolutely continuous functions

on 0; 1½ �, z000 2 L2 0; 1½ �, and z 0ð Þ ¼ 0; z 1ð Þ ¼ 0g while the

inner product and the norm of Ŵ3
2 0; 1½ � are given as

hz1 tð Þ;z2 tð ÞiŴ3
2
¼
P1

i¼0

z
ið Þ

1 0ð Þz ið Þ
2 0ð Þþz1 1ð Þz2 1ð Þþ

Z 1

0

z0001 tð Þz0002 tð Þdt;

z1k k2
Ŵ3

2
¼hz1 tð Þ;z1 tð ÞiŴ3

2
:

8
><

>:

ð7Þ

Next, before any further discussion, we need to obtain

the reproducing kernels functions of the spaces W1
2 0; 1½ �,
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W2
2 0; 1½ �, and Ŵ3

2 0; 1½ �. Those functions are symmetric,

positive definite and have unique representations in the

mentioned spaces [26–29].

Theorem 1 ([30]) The Hilbert space W1
2 0; 1½ � is a com-

plete reproducing kernel with the reproducing kernel

function

R
1f g

t sð Þ ¼ 1 þ s; s� t;
1 þ t; s[ t:

�

ð8Þ

Theorem 2 ([31])TheHilbert spaceW3
2 0; 1½ � is a complete

reproducing kernel with the reproducing kernel function

R
3f g

t sð Þ ¼

1

120
s2 s3 � 5s2t þ 10t2 sþ 3ð Þ
� �

; s� t;

1

120
t2 t3 � 5t2sþ 10s2 t þ 3ð Þ
� �

; s[ t:

8
>><

>>:

ð9Þ

Theorem 3 ([31]) The Hilbert space Ŵ3
2 0; 1½ � is a com-

plete reproducing kernel with the reproducing kernel

function

R̂
3f g

t sð Þ ¼

1

120
1 � tð Þs st4 � 4st3 þ 6st2

�

þ s4 � 5s3 � 120sþ 120ð Þt þ s4�; s� t;
1

120
1 � sð Þt ts4 � 4ts3 þ 6ts2

�

þ t4 � 5t3 � 120t þ 120ð Þsþ t4�; s[ t:

8
>>>>><

>>>>>:

ð10Þ

Throughout this paper and without the loss of generality,

we are focusing on the construction proof by using W3
2 0; 1½ �

as the domain space. Actually, in the same manner, we can

employ our construction if Ŵ3
2 0; 1½ � is the domain space.

3 Representation of the numerical solutions

In this section, we will show how to solve the fractional

form of Bagley–Torvik and Painlevé equations subject to

the given constraint conditions by using the RKA in detail

and we will see what the influence choice of the continuous

linear operator. Anyhow, the formulation and the imple-

mentation algorithm of the solutions are given in W1
2 0; 1½ �,

W3
2 0; 1½ �, and Ŵ3

2 0; 1½ �.
Let us consider the following general form of the FDE

that described completely Eqs. (1)–(3):

a1 tð ÞDay tð Þ þ a2 tð ÞD1:5y tð Þ þ a3 tð Þy0 tð Þ þ a4D
0:5y tð Þ

þa5 tð Þy tð Þ ¼ f t; y tð Þð Þ;
y 0ð Þ ¼ y0; y

0 0ð Þ ¼ y1;

y 0ð Þ ¼ c0; y 1ð Þ ¼ c1;

8
>><

>>:

ð11Þ

where 1\a� 2, 0� t� 1, and y0; y1 2 R. Note that, for

example, when a1 tð Þ ¼ 1, a2 tð Þ ¼ a3 tð Þ ¼ a4 tð Þ ¼ 0,

a5 tð Þ ¼ �t, and f t; y tð Þð Þ ¼ 2y3 tð Þ þ k, then the second

fractional Painlevé equation well be obtained.

In order to put the constraint conditions in Eq. (11) into the

space W3
2 0; 1½ � or Ŵ3

2 0; 1½ �, we must homogenize the men-

tioned initial or boundary conditions, for the convenience, we

still denote the solution of the new equation by y tð Þ. So, let

y tð Þ :!
y tð Þ � c1t þ c0ð Þ; y 0ð Þ ¼ c0; y

0 0ð Þ ¼ c1;

y tð Þ � c1 � c0ð Þt þ c0ð Þ; y 0ð Þ ¼ c0; y 1ð Þ ¼ c1:

(

ð12Þ

Throughout remainder sections, we will focusing our

constructions and results on the initial conditions type only in

order not to increase the length of the paper without the loss

of generality for the remaining boundary conditions type and

its results. Actually, in the same manner, we can employ the

RKA to construct the exact and the numerical solutions.

Now, to apply the RKA, we will define the following

fractional differential linear operator:

L : W3
2 0; 1½ � ! W1

2 0; 1½ �;
Ly tð Þ ¼ a1 tð ÞDay tð Þ þ a2 tð ÞD1:5y tð Þ þ a3 tð Þy0 tð Þ

þa4 tð ÞD0:5y tð Þ þ a5 tð Þy tð Þ:

8
><

>:
ð13Þ

Thus, based on this, the fractional form of Bagley–

Torvik and Painlevé equations can be converted into the

following equivalent form:

Ly tð Þ ¼ f t; y tð Þð Þ;
y 0ð Þ ¼ 0; y0 0ð Þ ¼ 0;

�

ð14Þ

in which y 2 W3
2 0; 1½ � and f 2 W1

2 0; 1½ �. Here, f t; y tð Þð Þ :!
f t; y tð Þ � c1t þ c0ð Þð Þ þ g tð Þ, where g tð Þ ¼ c1 a1 tð ÞDatþð
a2 tð ÞD1:5t þ a3 tð Þ þ a4 tð ÞD0:5t þ ta5 tð ÞÞ þ c0a5 tð Þ.

Lemma 1 The operator L : W3
2 0; 1½ � ! W1

2 0; 1½ � is boun-
ded and linear.

Proof It is enough to show that Luk k2
W1

2
�M uk k2

W3
2
. From

the definition of the inner product and the norm of W1
2 0; 1½ �,

we have Lyk k2
W1

2
¼ hLy tð Þ; Ly tð ÞiW1

2
¼ Ly 0ð Þ½ �2þ

R 1

0
½ðLyÞ0

ðtÞ�2dt. By the reproducing property of R
3f g
t sð Þ, we have

y tð Þ ¼ hy sð Þ;R 3f g
t sð ÞiW3

2
and Lyð Þ ið Þ

tð Þ ¼ hy sð Þ; ðLR 3f g
t Þ ið Þ

sð ÞiW3
2
, i ¼ 0; 1. Again, by the Schwarz inequality, one can

write

Lyð Þ ið Þ
tð Þ

�
�
�

�
�
� ¼ y tð Þ; LR

2f g
t

	 
 ið Þ
tð Þ

� �

W3
2

�
�
�
�
�

�
�
�
�
�

� LR
2f g

t

	 
 ið Þ
tð Þ










W1

2

yk kW3
2

�M if g yk kW3
2
; i ¼ 0; 1: ð15Þ
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Thus, Lyk k2
W1

2
� Mf0g� �2þ

R1

0

Mf1g� �2
dt

� �

yk k2
W3

2
or

Lyk kW1
2
�M yk kW3

2
, where M2 ¼ M 0f g� �2þ M 1f g� �2

.

Next, we construct an orthogonal function systems of

W3
2 0; 1½ � as follows: put ui tð Þ ¼ rti tð Þ and wi tð Þ ¼ L�ui tð Þ,

where L� is the adjoint operator of L, R
1f g

t sð Þ is the

reproducing kernel function of W1
2 0; 1½ �, and tif g1i¼1 is

dense on 0; 1½ �.

Algorithm 1 The orthonormal function systems
�wi tð Þ
� �1

i¼1
of W3

2 0; 1½ � can be derived from the Gram-

Schmidt orthogonalization process of wi tð Þf g1i¼1 as

follows.

Step 1 For i ¼ 1; 2; . . . and k ¼ 1; 2; . . .; i set

lik ¼

w1k k�1
W3

2
; i¼ k ¼ 1;

wik k2
W3

2
�
Pi�1

p¼1

wi tð Þ; �wp tð Þ
� �2

W3
2

 !�0:5

; i¼ k 6¼ 1;

wik k2
W3

2
�
Pi�1

p¼1

wi tð Þ; �wp tð Þ
� �2

W3
2

 !�0:5

Pi�1

p¼k

� wi tð Þ; �wp tð Þ
� �

W3
2

lpk; i[k;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð16Þ

Step 2 For i ¼ 1; 2; . . . set

�wi tð Þ ¼
Xi

k¼1

likwk tð Þ: ð17Þ

The subscript s by the operator L, denoted by Ls, indi-

cates that the operator L applies to the function of s. Indeed,

it is easy to see that, wi tð Þ ¼ L�ui tð Þ ¼ hL�ui sð Þ;R 3f g
t

sð ÞiW3
2
¼ hui sð Þ; LsR 3f g

t sð ÞiW1
2

¼ LsR
3f g

t sð Þ
�
�
�
s¼ti

2 W3
2 0; 1½ �.

Thus, wi tð Þ can be expressed in the form of wi tð Þ ¼
LsR

3f g
t sð Þ

�
�
�
s¼ti

.

Theorem 4 For Eq. (14), if tif g1i¼1 is dense on 0; 1½ �, then
wi tð Þf g1i¼1 is the complete function systems of W3

2 0; 1½ �.

Proof Similar to the proof of Theorem 2 in [32].

Theorem 5 If tif g1i¼1 is dense on 0; 1½ � and the solution of

Eq. (14) is unique, then its exact solution satisfies

y tð Þ ¼
P1

i¼1

Ai
�wi tð Þ;

Ai ¼
Pi

k¼1

likf tk; y tkð Þð Þ:

8
>><

>>:

ð18Þ

Proof Applying Theorem 4, it is easy to see that
�wi tð Þ
� �1

i¼1
is the complete orthonormal basis of W3

2 0; 1½ �.

Since, hy tð Þ;ui tð ÞiW3
2
¼ y tið Þ for each y 2 W3

2 0; 1½ �, while
P1

i¼1 hy tð Þ; �wi tð ÞiW3
2

�wi tð Þ is the Fourier series expansion

about �wi tð Þ
� �1

i¼1
. Then

P1
i¼1 hy tð Þ; �wi tð ÞiW3

2

�wi tð Þ is con-

vergent in the sense of �k kW3
2
. Thus, using Eq. (17), we

have

y tð Þ ¼
X1

i¼1

hy tð Þ; �wiðtÞiW3
2

�wiðtÞ

¼
X1

i¼1

hyðtÞ;
Xi

k¼1

likwkðtÞiW3
2

�wiðtÞ

¼
X1

i¼1

Xi

k¼1

likhyðtÞ; L�ukðtÞiW3
2

�wiðtÞ

¼
X1

i¼1

Xi

k¼1

likhLyðtÞ;ukðtÞiW1
2

�wiðtÞ

¼
X1

i¼1

Xi

k¼1

likhf t; yðtÞð Þ;ukðtÞiW1
2

�wiðtÞ

¼
X1

i¼1

Xi

k¼1

likf tk; yðtÞð ÞiðtÞ: ð19Þ

Therefore, the form of Eq. (18) is the exact solution of

Eq. (14). So, the proof of the theorem is complete.

Anyhow, since W3
2 0; 1½ � is a Hilbert space, it is clear that

P1
i¼1 Ai

�wi tð Þ\1. Therefore,

yn tð Þ ¼
Xn

i¼1

Ai
�wi tð Þ; ð20Þ

is convergent in the sense of the norm of W3
2 0; 1½ �, and

the numerical solution yn tð Þ can be calculated by

Eq. (20).

4 Convergence analysis of the algorithm

In this section, we consider Eq. (14) and construct an

iterative technique to find its solution for linear and non-

linear case simultaneously. Further, the numerical solutions

of the same equation, obtained using proposed algorithm

with existing initial conditions are proved to converge to

the exact solution.

The basis of our RKA for solving Eq. (14) is summa-

rized below. Firstly, we shall make use of the following

facts about the linear and the nonlinear case depending on

the internal structure of the function f .

Case 1 If f is linear, then the exact and the numerical

solutions can be obtained directly from Eqs. (18) and (20),

respectively.
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Case 2 If f is nonlinear, then the exact and the numerical

solutions can be obtained by using the following iterative

process.

According to Eq. (18), the representation form of the

exact solution of Eq. (14) can be written as

y tð Þ ¼
X1

i¼1

Ai
�wi tð Þ: ð21Þ

For numerical computations, we define the n-term

numerical solution of y tð Þ and its coefficients Bi as:

yn tð Þ ¼
Pn

i¼1

Bi
�wi tð Þ;

Bi ¼
Pi

k¼1

likf tk; yk�1 tkð Þð Þ:

8
>><

>>:

ð22Þ

In the iterative process of Eq. (22), we can guarantee

that the numerical solution yn tð Þ satisfies the initial con-

ditions of Eq. (14). Now, we will proof that the numerical

solution yn tð Þ is converge to the exact solution y tð Þ.

Theorem 6 If y 2 W3
2 0; 1½ �, then y tð Þj j � 7

2
yk kW3

2
,

y0 tð Þj j � 3 yk kW3
2
, and y00 tð Þj j � 2 yk kW3

2
.

Proof Noting that y00ðtÞ � y00ð0Þ ¼
R t

0
y000ðpÞdp, where

y00 tð Þ is absolute continuous on 0; 1½ �. If this is integrated

again from 0 to t, the result is y0 tð Þ itself as; y0ðtÞ�
y0ð0Þ � y00ð0Þt ¼

R t
0

R z
0
y000ðpÞdp

� �
dz. Again, integrated from

0 to t, yield that y tð Þ � y 0ð Þ � y0 0ð Þt � 1
2
y00 0ð Þt2 ¼

R t
0

R w
0

R z
0
y000ðpÞdp

� �
dz

� �
dw. So, y tð Þj j � y 0ð Þj j þ y0 0ð Þj j tj jþ

1
2
y00 0ð Þj j tj j2þ

R 1

0
y000ðpÞj jdp or y tð Þj j � y 0ð Þj j þ y0 0ð Þj jþ

1
2
y00 0ð Þj j þ

R 1

0
y000ðpÞj jdp. By using the Holder’s inequality

and Eq. (6), we can note the following relation inequalities:

y 0ð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffi
y2 0ð Þ

p
� yk kW3

2
;

y0 0ð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 0ð Þð Þ2
q

� yk kW3
2
;

y00 0ð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y00 0ð Þð Þ2
q

� yk kW3
2
;

R 1

0
y000ðpÞj jdp�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z 1

0

y000ðpÞð Þ2
dp

s

� yk kW3
2
:

8
>>>>>>>>><

>>>>>>>>>:

ð23Þ

Thus, y tð Þj j � 7
2

yk kW3
2
, y0 tð Þj j � 3 yk kW3

2
, and y00 tð Þj j �

2 yk kW3
2
. This completes the proof.

Corollary 1 If yn � yk kW3
2
! 0 as n ! 1, then the

numerical solution yn tð Þ and its derivatives y ið Þ
n tð Þ, i ¼ 1; 2

are converging uniformly to the exact solution y tð Þ and all

their derivatives up to order two as n ! 1.

Theorem 7 If yn�1 � yk kW3
2
! 0, tn ! s as n ! 1,

yn�1k kW3
2
is bounded, and f t; y tð Þð Þ is continuous, then

f tn; yn�1 tnð Þð Þ ! f s; y sð Þð Þ as n ! 1.

Proof Firstly, we will prove that yn�1 tnð Þ ! y sð Þ.
Clearly,

yn�1 tnð Þ � y sð Þj j ¼ yn�1 tnð Þ � yg�1 sð Þ þ yn�1 sð Þ � y sð Þ
�
�

�
�

� yn�1 tnð Þ � yn�1 sð Þj j þ yn�1 sð Þ � y sð Þj j

� yn�1ð Þ
0
nð Þ

�
�
�

�
�
� tn � sj j þ yn�1 sð Þ � y sð Þj j;

ð24Þ

where n lies between tn and s. From Theorem 6, it follows

that yn�1 sð Þ � y sð Þj j � 7
2

yn�1 � yk kW3
2

which gives

yn�1 sð Þ � y sð Þj j ! 0 as n ! 1, while yn�1ð Þ0 nð Þ
�
�

�
�

� 3 yn�1k kW3
2
. In terms of the boundedness of yn�1k kW3

2
and

the fact that tn ! s, one can obtains that

yn�1 tnð Þ � yn�1 sð Þj j ! 0 as n ! 1. As a result, by the

means of the continuation of f , it is implies that

f tn; un�1 tnð Þð Þ ! f s; u sð Þð Þ as g ! 1. So, the proof of the

theorem is complete.

Theorem 8 Suppose that ynk kW3
2
is bounded in Eq. (22),

tif g1i¼1 is dense on 0; 1½ �, and Eq. (14) has a unique solu-

tion. Then the n-term numerical solution yn tð Þ converges to
the exact solution y tð Þ with y tð Þ ¼

Pn
i¼1 Ai

�wi tð Þ.

Proof Similar to the proof of Theorem 5 in [32].

5 Error estimations and error bounds

Considerable errors of measurement become inadmissi-

ble in solving complicated mathematical, physical, and

engineering problems. The reliability of the numerical

result will depend on an error estimate or bound;

therefore, the analysis of error and the sources of error in

numerical methods are also a critically important part of

the study of numerical technique. In this section, we

derive an error bounds for the present algorithm and

problems.

In the next results, we suppose that T ¼ t1; t2; . . .; tnf g �
0; 1ð Þ such that 0\t1 � t2 � � � � � tn\1 be the selected

points for generating the basis functions �wi tð Þ
� �1

i¼1
, h ¼

max0� i� n tiþ1 � tij j is the fill distance for the uniform

partition of 0; 1½ � such that t0 ¼ 0 and tnþ1 ¼ 1,

gk k1¼ maxti � t� tiþ1
g tð Þj j, and L�1





 ¼ sup06¼y2W3

2
0;1½ �

L�1k k
W3

2

yk k
W1

2

.

Lemma 2 Let y tð Þ and yn tð Þ are given by Eqs. (18) and

(20), respectively. Then, Lyn tj
� �

¼ Ly tj
� �

, tj 2 T .

Proof Define the projective operator Pn : W
3
2 0; 1½ � !

Pn
j¼1 cjwj tð Þ; cj 2 R

n o
. Then, we have
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Lyn tj
� �

¼ yn tð Þ; LtkR
3f g
tk tð Þ

D E

W3
2

¼ hyn tð Þ;wk tð ÞiW3
2

¼ hPny tð Þ;wj tð ÞiW3
2
¼ hy tð Þ;Pnwj tð ÞiW3

2

¼ hy tð Þ;wj tð ÞiW3
2
¼ y tð Þ; LtjR

3f g
tj tð Þ

D E

W3
2

¼ Ltj y tð Þ;R 3f g
tj tð Þ

D E

W3
2

¼ Ltjy tj
� �

¼ Ly tj
� �

: ð25Þ

Lemma 3 Suppose that g 2 Cm 0; 1½ � and g mþ1ð Þ 2
L2 0; 1½ � for some m	 1. If g vanishes at T with n	mþ 1,

then g 2 W1
2 0; 1½ � and there is a constant A such that

gk kW1
2
�Ahm max

0� t� 1
g mþ1ð Þ tð Þ
�
�

�
�: ð26Þ

Proof Since g 2 Cm 0; 1½ � and g mþ1ð Þ 2 L2 0; 1½ � for some

m	 1, it is easy to see that g 2 W1
2 0; 1½ �. Now, for each

fixed t 2 ti; tiþ1½ �, i ¼ 1; 2; . . .n, one can write

g tð Þj j ¼ g tð Þ � g tið Þj j ¼
Z t

si

g0ðsÞds
�
�
�
�

�
�
�
�

� t � tij j max
ti � t� tiþ1

g0 tð Þj j � h g0k k1: ð27Þ

Again, on ti; tiþ1½ �, the application of the Roll’s theorem

to g yields that g0 sið Þ ¼ 0, where si 2 ti; tiþ1ð Þ,
i ¼ 1; 2; � � � n� 1. Thus, for fixed t there exist si such that

t � sij j\2h. Similarly, one can write

g0 tð Þj j ¼ g0 tð Þ � g0 sið Þj j ¼
Z t

si

g00ðsÞds
�
�
�
�

�
�
�
�

� t � sij j max
ti � t� tiþ1

g00 tð Þj j � 2h g00k k1: ð28Þ

Thus, we get g tð Þj j � 2h2 g00k k1. In a similar manner,

there exists a constant C1 such that g tð Þj j �
C1h

mþ1 g mþ1ð Þ




1 and g0 tð Þj j �C1h

m g mþ1ð Þ




1. Using

these results, clearly

gk kW1
2
¼ gð0Þð Þ2þ

Z 1

0

g0ðsÞð Þ2
ds

� �1
2

�Ahm max
0� t� 1

g mþ1ð Þ tð Þ
�
�

�
�; ð29Þ

where A ¼ C1

ffiffiffiffiffiffiffiffiffiffiffi
hþ 1

p
on 0; 1½ �.

Theorem 9 Let y tð Þ and yn tð Þ are given by Eqs. (18) and

(20), respectively. If Rn tð Þ ¼ Lyn tð Þ � f t; y tð Þð Þ is the

residual error at t 2 0; 1½ �, then there is a constant E such

that

y ið Þ � y ið Þ
n






1 �Ehm max

0� t� 1
R mþ1ð Þ
n tð Þ

�
�

�
�; i ¼ 0; 1; 2: ð30Þ

Proof The proof will be obtained by mathematical

induction as follows: from Eq. (20) for j� n, we see that

Lun tj
� �

¼
Xn

i¼1

AiL �wi tj
� �

¼
Xn

i¼1

AihL �wi tð Þ;uj tð ÞiW1
2

¼
Xn

i¼1

Aih �wi tð Þ; L�j u tð ÞiW3
2

¼
Xn

i¼1

Aih �wi tð Þ;wj tð ÞiW3
2
: ð31Þ

Using the orthogonality of �wi tð Þ
� �1

i¼1
, yields that

Xj

l¼1

ljlLun tlð Þ ¼
Xn

i¼1

Ai
�wi tð Þ;

Xj

l¼1

ljlwl tð Þ
* +

W3
2

¼
Xn

i¼1

Aih �wi tð Þ; �wj tð ÞiW3
2
¼ Aj: ð32Þ

Now, if j ¼ 1, then Lyn t1ð Þ ¼ f t1; y0 t1ð Þð Þ. Again, if

j ¼ 2, then b21Lyn t1ð Þ þ b22Lyn t2ð Þ ¼ b21f t1; y0 t1ð Þð Þ þ
b22f t2; y1 t2ð Þð Þ. Thus, Lyn t2ð Þ ¼ f t2; y1 t2ð Þð Þ, while on the

other hand, it is easy to obtain the general pattern form

Lyn tj
� �

¼ f tj; yj�1 tj
� �� �

, j ¼ 1; 2; . . .; n. For the conduct of

proceedings in the proof, clearly Rn 2 Cm 0; 1½ � and

R mþ1ð Þ
n 2 L2 0; 1½ �. Thus, from Lemma 3, it is follows that:

Rnk kW1
2
�Ahm max

0� t� 1
R mþ1ð Þ
n tð Þ

�
�

�
�: ð33Þ

Remember that Rn tð Þ ¼ Lyn tð Þ � f t; y tð Þð Þ ¼ Lyn tð Þ �
Ly tð Þ ¼ L yn tð Þ � y tð Þð Þ. Hence, y� yn ¼ L�1Rn, then there

exists a constant C such that

y� ynk kW3
2
¼ L�1Rn






W3

2

� L�1




 Rnk kW1

2

�AChm max
0� t� 1

R mþ1ð Þ
n tð Þ

�
�

�
�: ð34Þ

Finally, from Theorem 6, one can find that

y ið Þ � y ið Þ
n

�
�

�
��D y� ynk kW3

2

�ACDhm max
0� t� 1

R mþ1ð Þ
n tð Þ

�
�

�
�; i ¼ 0; 1; 2;

ð35Þ

or in terms of the 1 th norm, y ið Þ � y ið Þ
n






1 �

Ehmmax0� t� 1 R mþ1ð Þ
n tð Þ

�
�

�
�, i ¼ 0; 1; 2, where E ¼ ACD.

This completes the proof.

Corollary 2 Let y tð Þ and yn tð Þ are given by Eqs. (18) and

(20), respectively. If en tð Þ ¼ yn tð Þ � y tð Þ is the nature error
at t 2 0; 1½ �, then there is a constant F such that

y ið Þ � y ið Þ
n






1 �Fh; i ¼ 0; 1; 2: ð36Þ

Proof From Lemma 2 and Theorem 9, we obtain that

Lyn tj
� �

¼ Ly tj
� �

, j ¼ 1; 2; � � � ; n. Therefore, Lyn tj
� �

is the

interpolating function of Ly tj
� �

, where tj are the
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interpolation nodes in 0; 1½ �. By means of the value theorem

for differentials, we have

Ly tð Þ�Lyn tð Þ ¼ Ly tð Þ�Ly tj
� �

þLyn tj
� �

�Lyn tð Þ
¼ Ly n1ð Þð Þ0 t� tj

� �
þ Lyn n2ð Þð Þ0 tj� t

� �

¼ tjþ1 � tj
� �

Ly n1ð Þð Þ0 t� tj

tjþ1 � tj
þ Lyn n2ð Þð Þ0 tj� t

tjþ1 � tj

� �

¼ hd tð Þ;
ð37Þ

where n1 lies between t; tj with respect to y and n2 lies

between tj; t with respect to yn. Here, d tð Þ ¼ Ly n1ð Þð Þ0 t�tj
tjþ1�tj

þ Lyn n2ð Þð Þ0 tj�t

tjþ1�tj
. Clearly, d tð Þ;L�1d tð Þ 2 L2 0;1½ � and

L�1 dð Þ




 is bounded. So, it follows that:

y ið Þ � y ið Þ
n

�
�

�
��D y� ynk kW3

2

¼ D L�1 hdð Þ




 ¼ Dh L�1 dð Þ





; i ¼ 0; 1; 2;

ð38Þ

or in terms of the 1 th norm, y ið Þ � y ið Þ
n






1 �Fh, where

F ¼ Dh L�1 dð Þ




, i ¼ 0; 1; 2.

Here, the error estimate of the preceding results shows

that the accuracy of the numerical solution is closely

related to the fill distance h. So, more accurate solutions

can be obtained using more mesh points.

6 Numerical algorithm and numerical outcomes

The key features of the RKA are as follows; firstly, it can

produce good globally smooth numerical solutions, and

with ability to solve many FDEs with complex constraint

conditions, which are difficult to solve; secondly, the

numerical solutions and their derivatives are converge

uniformly to the exact solutions and their derivatives,

respectively; thirdly, the algorithm is mesh-free, easily

implemented and capable in treating various FDEs and

various constraint conditions; fourthly, since the algorithm

needs no time discretization, there is no matter, in which

time the numerical solutions is computed, from the both

elapsed time and stability problem, point of views.

Anyhow, to demonstrate the simplicity and effectiveness

of the RKA, numerical solutions for some fractional form

of Bagley–Torvik and Painlevé equations are constructed

in this section. The results reveal that the algorithm is

highly accurate, rapidly converge, and convenient to han-

dle a various physical problems in fractional calculus.

Algorithm 2 To approximate the solution yn tð Þ of y tð Þ for

Eq. (14), we do the following steps.

Step 1 Choose n collocation points in the independent

domain 0; 1½ �;

Step 2 Set wi tið Þ ¼ Ls R
3f g

ti sð Þ
h i

s¼ti
;

Step 3 Obtain the orthogonalization coefficients lik using

Algorithm 1;

Step 4 Set �wi tð Þ ¼
Pi

k¼1 likwk tð Þ for i ¼ 1; 2; . . .; n;

Step 5 Choose an initial approximation u0 tið Þ;
Step 6 Set i ¼ 1;

Step 7 Set Bi ¼
Pi

k¼1 likf tk; yk�1 tkð Þð Þ;
Step 8 Set yiðtÞ ¼

Pi
k¼1 Bk

�wkðtÞ;
Step 9 If i\n, then set i ¼ iþ 1 and go to step 7, else

stop.

Using RKA, taking ti ¼ i�1
n�1

, i ¼ 1; 2; . . .; n ¼ 21 in

yn tið Þ of Eq. (20), generating the reproducing kernel

functions R
1f g

t sð Þ;R 3f g
t sð Þ; R̂ 3f g

t sð Þ, and applying Algorithm

2 throughout the numerical computations; some results are

presented and discussed quantitatively at some selected

grid points on 0; 1½ � to illustrate the numerical solutions for

the following fractional form of Bagley–Torvik and Pain-

levé equations. In the process of computation, all the

symbolic and the numerical computations are performed by

using Mathematica 9 software package.

Example 1 Consider the following fractional initial

Bagley–Torvik equation:

y00 tð Þ þ D1:5y tð Þ þ y tð Þ ¼ 2 þ 4

ffiffiffi
t

p

r

þ t2;

y 0ð Þ ¼ 0; y0 0ð Þ ¼ 0:

8
<

:
ð39Þ

Here, the exact solutions is y tð Þ ¼ t2.

Example 2 Consider the following fractional initial

Bagley–Torvik equation:

y00 tð Þ þ D1:5y tð Þ þ y tð Þ ¼ t þ 1;

y 0ð Þ ¼ 1; y0 0ð Þ ¼ 1:

�

ð40Þ

Here, the exact solutions is y tð Þ ¼ t þ 1.

Example 3 Consider the following fractional boundary

Bagley–Torvik equation:

y00 tð Þ þ 0:5D0:5y tð Þ þ y tð Þ ¼ 3 þ t2
1

C 2:5ð Þ t
�0:5 þ 1

� �

;

y 0ð Þ ¼ 1; y 1ð Þ ¼ 2:

8
<

:
ð41Þ

Here, the exact solutions is y tð Þ ¼ t2 þ 1.

Example 4 Consider the following fractional boundary

Bagley–Torvik equation:

y00 tð Þ þ D0:5y tð Þ þ y tð Þ ¼ 2 þ t2
2

C 2:5ð Þ t
�0:5 þ 1

� �

�t
1

C 1:5ð Þ t
�0:5 þ 1

� �

;

y 0ð Þ ¼ 0; y 1ð Þ ¼ 0:

8
>>>>><

>>>>>:

ð42Þ

Here, the exact solutions is y tð Þ ¼ t2 � t.
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Example 5 Consider the following first fractional Pain-

levé equation:

Day tð Þ ¼ 6y2 tð Þ þ t;

y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1:

�

ð43Þ

Here, the exact solution is not available in term of closed

form expression.

Example 6 Consider the following second fractional

Painlevé equation:

Day tð Þ ¼ 2y3 tð Þ þ ty tð Þ þ 2;

y 0ð Þ ¼ 1; y0 0ð Þ ¼ 0:

�

ð44Þ

Here, the exact solution is not available in term of closed

form expression.

Our next goal is to illustrate some numerical results of

the RKA approximate solutions of the aforementioned

FDEs in numeric values. In fact, results from numerical

analysis are an approximation, in general, which can be

made as accurate as desired. Because a computer has a

finite word length, only a fixed number of digits are stored

and used during computations. Next, the agreement

between the exact and the numerical solutions is

investigated for Examples 1, 2, 3, and 4 at various t in 0; 1½ �
by computing the numerical approximating of their exact

solutions for the corresponding equivalent fractional

equations as shown in Tables 1, 2, 3, and 4, respectively,

while Tables 5 and 6 show the numerical results for

Examples 5 and 6 when a ¼ 2 and a 2 1:7; 1:8; 1:9f g.

To further show the advantage of the RKA proposed in

this paper, we now present comparison experiments for

Examples 1, 2, 5, and 6 at various t in 0; 1½ �. The numerical

methods that are used for comparison include the

following:

• For Example 1: variational iteration method (VIM) [8],

Podlubny matrix method (PMM) [9], hybrid genetic

algorithm with pattern search technique (HGA-PST)

[10], and homotopy analysis method (HAM) [11].

• For Example 2: pattern search technique (PST) [10],

hybrid genetic algorithm (HGA) [10], HGA-PST [10],

and HAM [11].

• For Example 5: VIM [17], homotopy perturbation

method (HPM) [17], HAM [17], particle swarm

optimization algorithm (PSOA) [18], and neural net-

works algorithm (NNA) [19].

Table 1 Numerical values of

the dependent variables yn tð Þ in

Example 1

t Exact solution Numerical solution Absolute error Relative error

0 0 0 0 Indeterminate

0.1 0.01 0.01 0 0

0.2 0.04 0.04 0 0

0.3 0.09 0.09 0 0

0.4 0.16 0.16 0 0

0.5 0.25 0.24999999999999997 2.775557562 9 10-17 1.110223025 9 10-16

0.6 0.36 0.36000000000000004 5.551115123 9 10-17 1.541976423 9 10-16

0.7 0.49 0.49000000000000005 5.551115123 9 10-17 1.132880637 9 10-16

0.8 0.64 0.64000000000000011 1.110223025 9 10-16 1.734723476 9 10-16

0.9 0.81 0.80999999999999999 1.110223025 9 10-16 1.370645709 9 10-16

1 1 0.99999999999999999 1.110223025 9 10-16 1.110223025 9 10-16

Table 2 Numerical values of

the dependent variables yn(t) in

Example 2

t Exact solution Numerical solution Absolute error Relative error

0 1 1 0 0

0.1 1.1 1.1 0 0

0.2 1.2 1.2 0 0

0.3 1.3 1.3 0 0

0.4 1.4 1.4 0 0

0.5 1.5 1.5 0 0

0.6 1.6 1.6000000000000003 2.220446049 9 10-16 1.387778781 9 10-16

0.7 1.7 1.7 0 0

0.8 1.8 1.8 0 0

0.9 1.9 1.8999999999999997 2.220446049 9 10-16 1.168655815 9 10-16

1 2 1.9999999999999998 2.220446049 9 10-16 1.110223025 9 10-16
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• For Example 6: Adomian decomposition method

(ADM) [20], HPM [20], Legendre Tau method

(LTM) [20], sinc collocation method (SCM) [21], and

VIM [21].

Anyhow, Tables 7 and 8 show comparisons between the

absolute errors of our RKA together with the other afore-

mentioned methods for Examples 1 and 2, while Tables 9

and 10 show comparisons for Examples 5 and 6 when a ¼
2 which is the most important case, because the others

fractional solutions are take the same behaviors in general.

It is clear from the tables that, for Examples 1 and 5, the

VIM is suited for the starting few nodes and failed at the

ending nodes, the HGA-PST is suited with great difficulty

for Examples 1 and 2, while when solving Example 2, the

HGA is suited with great difficulty too. As a result, it was

Table 3 Numerical values of

the dependent variables yn(t) in

Example 3

t Exact solution Numerical solution Absolute error Relative error

0 1 1 0 0

0.1 1.01 1.01000000000193260 1.932676241 9 10-12 1.913540833 9 10-12

0.2 1.04 1.04000000003161984 3.161981788 9 10-11 3.040367103 9 10-11

0.3 1.09 1.09000000036799092 3.679907490 9 10-10 3.376061917 9 10-10

0.4 1.16 1.16000000366169737 3.661697390 9 10-9 3.156635681 9 10-9

0.5 1.25 1.25000000330005737 3.300057339 9 10-9 2.640045871 9 10-9

0.6 1.36 1.36000000274596032 2.745960126 9 10-9 2.019088328 9 10-9

0.7 1.49 1.49000000020962725 2.096272045 9 10-10 1.406893990 9 10-10

0.8 1.64 1.64000000001404931 1.404942829 9 10-11 8.566724566 9 10-12

0.9 1.81 1.81000000000700459 7.004619107 9 10-12 3.869955308 9 10-12

1 2 2 0 0

Table 4 Numerical values of

the dependent variables yn(t) in

Example 4

t Exact solution Numerical solution Absolute error Relative error

0 0 0 0 Indeterminate

0.1 -0.09 -0.08999999999582198 4.178019042 9 10-12 4.642243380 9 10-11

0.2 -0.16 -0.15999999993107109 6.892891813 9 10-11 4.308057383 9 10-10

0.3 -0.21 -0.20999999919474275 8.052572498 9 10-10 3.834558332 9 10-9

0.4 -0.24 -0.23999999198934759 8.010652391 9 10-9 3.337771830 9 10-8

0.5 -0.25 -0.24999999280615515 7.193844853 9 10-9 2.877537941 9 10-8

0.6 -0.24 -0.23999999405062517 5.949374826 9 10-9 2.478906178 9 10-8

0.7 -0.21 -0.20999999954952164 4.504783491 9 10-10 2.145134996 9 10-9

0.8 -0.16 -0.15999999997010568 2.989430925 9 10-11 1.868394328 9 10-10

0.9 -0.09 -0.08999999999852638 1.473612898 9 10-12 1.637347665 9 10-11

1 0 0 0 Indeterminate

Table 5 Numerical values of

the dependent variables

yn(t) when a e {1.7, 1.8, 1.9, 2}

in Example 5

t When a = 2 When a = 1.9 When a = 1.8 When a = 1.7

0 0 0 0 0

0.1 0.1002167467681712 0.1003093976613067 0.1004423723366010 0.1006308738472339

0.2 0.2021394491589076 0.2028759154904554 0.2038590162268812 0.2051692125558933

0.3 0.3086307410263387 0.3111982192009080 0.3145175055117272 0.3188141361991701

0.4 0.4239862750679019 0.4304272933428017 0.4386248192814340 0.4491128767563382

0.5 0.5543400973632109 0.5679533647221752 0.5852221518881260 0.6073675234040106

0.6 0.7084620572155395 0.7346112020095495 0.7680570926065539 0.8116737137306028

0.7 0.8992498909209865 0.9469946474415487 1.0093296671203842 1.0933564694724303

0.8 1.1465316432231625 1.2318464528987476 1.3472552918799279 1.5110450598215275

0.9 1.4825242507589982 1.6354604865608850 1.8540058889915478 2.1892866019641310

1 1.9631276465421460 2.2475287865362894 2.6873096171138036 3.4524827436703194
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found that the RKA in comparison is much better with a

view to accuracy and applicability. Anyhow, to analyze the

most comprehensive and accurate, the following comments

and results are clearly observed:

• The best method for the solutions is the RKA.

• The average absolute errors for the RKA are the lowest

one among all other aforementioned numerical ones.

• For Examples 1 and 2, the average absolute errors using

the RKA are relatively of the same order which is of the

order between 0 and 10�16.

• For Example 5, the average absolute errors using the

RKA are of the order between 10�7 and 10�10.

• The results obtained in these tables make it very clear

that the RKA out stands the performance of all other

existing methods in terms of accuracy and applicability.

Table 6 Numerical values of

the dependent variables

yn(t) when a e {1.7, 1.8, 1.9, 2}

in Example 6

t When a = 2 When a = 1.9 When a = 1.8 When a = 1.7

0.05 1.0050270783281061 1.0054061913550463 1.0058340440219848 1.0062954421472683

0.15 1.0460914191430273 1.0488172245259315 1.0516974473860312 1.0547488897149455

0.25 1.1319230959965696 1.1384902948483682 1.1453960242618744 1.1526332232689838

0.35 1.2700963233079590 1.2822848480515807 1.2950982257970693 1.3084903920088693

0.45 1.4746448427936627 1.4956233821315383 1.5177329623795646 1.5413328808166180

0.55 1.7719629205792264 1.8074348358306989 1.8451630102161107 1.8863483029426404

0.65 2.2150792316721377 2.2729262263795222 2.3364407041341750 2.4026914292315550

0.75 2.9237162974802270 3.0313235828403150 3.1549802732589463 3.2843998898185680

0.85 4.2271261403011500 4.5378491201520920 4.9035108373042360 5.3824424974220570

0.95 7.4495291007688430 8.5819811453593270 10.161508978392225 12.630734711695155

Table 7 Numerical comparison

of absolute errors for yn(t) in

Example 1

t RKA VIM PMM HGA-PST HAM

0 0 0 0 3.34 9 10-2 0

0.1 0 5.48 9 10-5 7.04 9 10-4 3.43 9 10-2 4.02 9 10-11

0.2 0 6.31 9 10-4 1.07 9 10-3 3.33 9 10-2 5.27 9 10-9

0.3 0 2.66 9 10-3 1.26 9 10-3 3.04 9 10-2 9.30 9 10-8

0.4 0 7.48 9 10-3 1.32 9 10-3 2.57 9 10-2 7.22 9 10-7

0.5 2.78 9 10-17 1.67 9 10-2 1.28 9 10-3 1.96 9 10-2 3.59 9 10-6

0.6 5.55 9 10-17 3.22 9 10-2 1.16 9 10-3 1.26 9 10-2 1.34 9 10-5

0.7 5.55 9 10-17 5.80 9 10-2 9.67 9 10-4 5.49 9 10-3 4.15 9 10-5

0.8 1.11 9 10-16 9.58 9 10-2 7.14 9 10-4 8.80 9 10-4 1.11 9 10-4

0.9 1.11 9 10-16 1.50 9 10-1 4.12 9 10-4 5.42 9 10-3 2.67 9 10-4

1 1.11 9 10-16 2.25 9 10-1 6.83 9 10-5 6.91 9 10-3 5.91 9 10-4

Table 8 Numerical comparison

of absolute errors for yn(t) in

Example 2

t RKA PST HGA HGA-PST HAM

0 0 3.08 9 10-1 2.30 9 10-2 1.60 9 10-2 0

0.1 0 4.76 9 10-1 2.69 9 10-2 4.73 9 10-3 2.54 9 10-16

0.2 0 3.40 9 10-1 3.13 9 10-2 1.95 9 10-4 4.26 9 10-13

0.3 0 1.78 9 10-1 3.45 9 10-2 6.66 9 10-4 3.11 9 10-11

0.4 0 6.22 9 10-2 3.45 9 10-2 1.62 9 10-3 6.34 9 10-10

0.5 0 1.83 9 10-3 2.87 9 10-2 4.97 9 10-3 6.41 9 10-9

0.6 2.22 9 10-16 2.89 9 10-2 1.36 9 10-2 7.42 9 10-3 4.16 9 10-8

0.7 0 3.44 9 10-2 1.49 9 10-2 6.70 9 10-3 2.00 9 10-7

0.8 0 3.05 9 10-2 2.30 9 10-2 1.27 9 10-5 7.64 9 10-7

0.9 2.22 9 10-16 2.53 9 10-2 2.69 9 10-2 1.62 9 10-2 2.47 9 10-6

1 2.22 9 10-16 2.40 9 10-2 3.13 9 10-2 4.62 9 10-2 6.96 9 10-6
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As we mentioned earlier, it is possible to pick any point

in 0; 1½ � and as well the numerical solutions and all their

derivatives up to order two will be applicable. Next,

numerical results of approximating the first derivatives of

the numerical solutions for Examples 1 and 2 at various t in

0; 1½ � are given in Tables 11 and 12, respectively. Again, to

further show the advantage of the RKA, comparison

experiments for the first derivative of the numerical

solutions of Examples 1, 2, and 6 at various t in 0; 1½ � are

tabulated as given in Tables 13, 14, and 15, respectively.

Next, the geometric behaviors of the absolute value of

the nature error function en tð Þj j ¼ yn tð Þ � y tð Þj j are dis-

cussed. Anyhow, Fig. 1 (left and right) gives the relevant

data of the RKA results at various t in 0; 1½ � for Examples 1

and 2, respectively. It is observed that the increase in the

number of node results in a reduction in the absolute error

Table 9 Numerical comparison

of absolute errors for yn(t) when

a = 2 in Example 5

t RKA VIM HPM HAM PSOA NNA

0 0 0 0 0 0 0

0.1 1.32 9 10-10 1.35 9 10-8 7.96 9 10-10 8.00 9 10-10 1.05 9 10-3 6.15 9 10-6

0.2 4.74 9 10-9 1.85 9 10-6 4.88 9 10-9 1.19 9 10-9 8.05 9 10-4 2.58 9 10-6

0.3 1.38 9 10-8 3.20 9 10-5 2.22 9 10-7 5.62 9 10-9 6.71 9 10-4 2.00 9 10-6

0.4 2.48 9 10-8 2.45 9 10-4 3.94 9 10-6 1.12 9 10-8 6.39 9 10-4 2.21 9 10-6

0.5 4.42 9 10-8 1.20 9 10-3 3.79 9 10-5 5.31 9 10-8 6.79 9 10-4 1.17 9 10-6

0.6 7.41 9 10-8 4.50 9 10-3 2.45 9 10-4 6.38 9 10-7 7.72 9 10-4 4.55 9 10-6

0.7 1.22 9 10-7 1.40 9 10-2 1.21 9 10-3 7.55 9 10-6 9.10 9 10-4 4.05 9 10-6

0.8 2.06 9 10-7 3.84 9 10-2 4.97 9 10-3 6.89 9 10-5 1.07 9 10-3 8.42 9 10-6

0.9 3.84 9 10-7 9.63 9 10-2 1.78 9 10-2 5.02 9 10-4 1.29 9 10-3 8.85 9 10-6

1 9.14 9 10-7 2.27 9 10-1 5.74 9 10-2 3.07 9 10-3 1.98 9 10-3 4.13 9 10-5

Table 10 Numerical

comparison of approximate

solutions for yn(t) when a = 2

in Example 6

t RKA ADM and HPM LTM SCM VIM

0.05 1.005027078 1.005027146 1.004529011 1.005027405 1.005027146

0.15 1.046091419 1.046092056 1.045688050 1.046092872 1.046092056

0.25 1.131923096 1.131924915 1.133214910 1.131925931 1.131924915

0.35 1.270096323 1.270099775 1.268383414 1.270101106 1.270099772

0.45 1.474644843 1.474649720 1.476560547 1.474651851 1.474649662

0.55 1.771962921 1.771968010 1.770023756 1.771971939 1.771967255

0.65 2.215079232 2.215083211 2.217051331 2.215088621 2.215076626

0.75 2.923716297 2.923717805 2.921567093 2.923725942 2.923673264

0.85 4.227126140 4.227163801 4.229171242 4.227190830 4.226911437

0.95 7.449529101 7.442209560 7.449037963 7.447975354 7.446337458

Table 11 Numerical values for

the first derivative of the

dependent variables y0n tð Þ in

Example 1

t Exact solution Numerical solution Absolute error Relative error

0 0 0 0 Indeterminate

0.1 0.2 0.2 0 0

0.2 0.4 0.4 0 0

0.3 0.6 0.6 0 0

0.4 0.8 0.7999999999999999 1.110223025 9 10-16 1.387778781 9 10-16

0.5 1 0.9999999999999999 1.110223025 9 10-16 1.110223025 9 10-16

0.6 1.2 1.2 0 0

0.7 1.4 1.4 0 0

0.8 1.6 1.5999999999999999 2.220446049 9 10-16 1.387778781 9 10-16

0.9 1.8 1.7999999999999998 2.220446049 9 10-16 1.233581138 9 10-16

1 2 1.9999999999999998 2.220446049 9 10-16 1.110223025 9 10-16
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and correspondingly an improvement in the accuracy of the

obtained solutions. This goes in agreement with the known

fact, the error is monotone decreasing in the sense of the

used norm, where more accurate solutions are achieved

using an increase in the number of nodes. On the other

hand, the cost to be paid while going in this direction is the

rapid increase in the number of iterations required for

convergence.

The geometric behaviors of the memory and hereditary

properties of the RKA approximate solutions and their

level characteristics are studied next. Anyhow, the com-

parisons between the computational values of the RKA

Table 12 Numerical values for

the first derivative of the

dependent variables y0n tð Þ in

Example 2

t Exact solution Numerical solution Absolute error Relative error

0 1 1 0 0

0.1 1 1 0 0

0.2 1 1 0 0

0.3 1 1 0 0

0.4 1 0.9999999999999999 1.110223025 9 10-16 1.110223025 9 10-16

0.5 1 1 0 0

0.6 1 0.9999999999999999 1.110223025 9 10-16 1.110223025 9 10-16

0.7 1 0.9999999999999999 1.110223025 9 10-16 1.110223025 9 10-16

0.8 1 0.9999999999999999 1.110223025 9 10-16 1.110223025 9 10-16

0.9 1 0.9999999999999998 2.220446049 9 10-16 2.220446049 9 10-16

1 1 0.9999999999999998 2.220446049 9 10-16 2.220446049 9 10-16

Table 13 Numerical comparison of absolute errors for the first derivative y0n tð Þ in Example 1

t RKA PS GA GA-PS

0 0 2.67 9 10-3 1.80 9 10-2 1.76 9 10-2

0.1 0 4.90 9 10-2 9.07 9 10-2 1.41 9 10-4

0.2 0 9.49 9 10-2 1.20 9 10-2 1.97 9 10-2

0.3 0 1.34 9 10-1 1.34 9 10-2 3.86 9 10-2

0.4 1.11 9 10-16 1.63 9 10-1 3.14 9 10-2 5.49 9 10-2

0.5 1.11 9 10-16 1.80 9 10-1 2.07 9 10-2 6.66 9 10-2

0.6 0 6.03 9 10-2 7.19 9 10-2

0.7 0 1.60 9 10-1 1.80 9 10-2 6.91 9 10-2

0.8 2.22 9 10-16 1.08 9 10-1 9.07 9 10-4 5.65 9 10-2

0.9 2.22 9 10-16 1.42 9 10-2 1.20 9 10-2 3.23 9 10-2

1 2.22 9 10-16 1.35 9 10-1 1.34 9 10-2 4.98 9 10-3

Table 14 Numerical

comparison of absolute errors

for the first derivative y0n tð Þ in

Example 2

t RKA PS GA GA-PS

0 0 2.36 9 10-2 4.87 9 10-2 1.70 9 10-2

0.1 0 2.91 9 10-2 6.13 9 10-2 2.35 9 10-3

0.2 0 1.02 9 10-1 6.63 9 10-2 9.59 9 10-3

0.3 0 6.57 9 10-1 2.99 9 10-2 4.61 9 10-4

0.4 1.11 9 10-16 3.28 9 10-1 3.25 9 10-2 1.48 9 10-3

0.5 0 2.72 9 10-1 1.78 9 10-2 7.19 9 10-2

0.6 1.11 9 10-16 2.47 9 10-1 3.11 9 10-3 3.36 9 10-2

0.7 1.11 9 10-16 1.91 9 10-1 8.31 9 10-4 7.54 9 10-2

0.8 1.11 9 10-16 1.87 9 10-1 5.82 9 10-2 2.12 9 10-2

0.9 2.22 9 10-16 1.46 9 10-1 2.90 9 10-2 3.35 9 10-2

1 2.22 9 10-16 1.72 9 10-1 4.14 9 10-2 2.62 9 10-2
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approximate solutions when a ¼ 2 and a 2 1:7; 1:8; 1:9f g
for Examples 5 and 6 have been depicted on the domain

0; 1½ � as shown in Fig. 2 (left and right), respectively. It is

clear from the Fig. 2 that each of the graphs is nearly

coinciding and similar in their behaviors with good

agreement with RKA approximate solutions when a ¼ 2,

while each of the subfigures is nearly identical and in

excellent agreement to each other in terms of the accuracy.

As a result, one can note that the RKA approximate solu-

tions continuously depend on the fractional derivative.

While one cannot know the absolute errors without

knowing the exact solutions, in most cases, the residual

errors can be used as a reliable indicators in the iteration

progresses. Next, we present this type of errors which is

mentioned in Theorem 9 in order to measure the extent of

agreement with unknowns closed form solutions and to

measure the accuracy of the RKA in finding and predicting

the solutions. Anyhow, in Fig. 3 (left and right) the abso-

lute value of the residual error functions

Rn tð Þj j ¼ Lyn tð Þ � f t; yn tð Þð Þj j; ð45Þ

where 1\a� 2 and L : W3
2 0; 1½ � ! W1

2 0; 1½ � have been

plotted when a ¼ 2 for Examples 5 and 6, respectively.

As the plots show, while the value of t moving a way

from the boundary of 0; 1½ �, the values of Rn tð Þj j various

along the horizontal axis by satisfying the initial conditions

for the dependent variables of the corresponding FDEs. We

recall that the accuracy and duration of a simulation

depend directly on the size of the steps taken by the solver.

Generally, decreasing the step size increases the accuracy

of the results, while increasing the time required to simu-

late the problem.

7 Concluding remarks

Numerical methods for the solutions of FDEs are essential

for the analysis of physical and engineering phenomena.

Strong solvers are necessary when exploring characteristics

of equations that depend on description of memory and

hereditary level properties. In this paper, we introduced the

Table 15 Numerical

comparison of approximate

values for the first derivative

y0n tð Þ when a = 2 in Example 6

t RKA ADM and HPM LTM SCM VIM

0.05 0.201753533 0.201756593 0.195067375 0.201751421 0.201756593

0.15 0.625602384 0.625610996 0.581802006 0.625616189 0.625610996

0.25 1.103251821 1.103266432 1.134717326 1.103269243 1.103266431

0.35 1.682716557 1.682733307 1.656241728 1.682736893 1.682733219

0.45 2.450174066 2.450182667 2.481559896 2.450196784 2.450181019

0.55 3.579076213 3.579071205 3.539167147 3.579089581 3.579053577

0.65 5.465142612 5.465124951 5.509737883 5.465138658 5.464991984

0.75 9.179949124 9.179923029 9.147370930 9.179973066 9.179111763

0.85 18.52530314 18.52647814 18.49529693 18.52727520 18.52254013

0.95 56.17456544 55.74810648 56.15249937 56.11037085 56.07919325

Fig. 1 Absolute value of the nature errors function en tð Þj j of the RKA approximate solutions of: Example 1 (left graph) and Example 2 (right

graph)
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RKA as strong novel solver for some certain types of FDEs

which are Bagley–Torvik and Painlevé equations to

enlarge its applications range. The algorithm is applied in a

direct way without using linearization, transformation, or

restrictive assumptions. It is analyzed that the proposed

algorithm is well suited for use in FDEs of volatile orders

and resides in its simplicity in dealing with initial or

boundary conditions. Results obtained by the proposed

algorithm are compared systematically with some other

well-known methods and are found outperforms in terms of

accuracy and generality. It is worth to be pointed out that

the RKA is still suitable and can be employed for solving

other strongly linear and nonlinear FDEs.

Acknowledgments The authors would like to express their gratitude

to the unknown referees for carefully reading the paper and their

helpful comments.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Mainardi F (2010) Fractional calculus and waves in linear vis-

coelasticity. Imperial College Press, London

2. Zaslavsky GM (2005) Hamiltonian chaos and fractional dynam-

ics. Oxford University Press, Oxford

3. Podlubny I (1999) Fractional differential equations. Academic

Press, San Diego

4. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals

and derivatives theory and applications. Gordon and Breach, New

York

5. Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications

of fractional differential equations. Elsevier, Amsterdam

6. Bagley RL, Torvik PJ (1984) On the appearance of the fractional

derivative in the behavior of real materials. J Appl Mech

51:294–298

7. Bagley RL, Torvik PJ (1983) Fractional calculus—a different

approach to the analysis of viscoelastically damped structures.

AIAA J 21:741–748

8. Ghorbani A, Alavi A (2008) Application of He’s variational

iteration method to solve semidifferential equations of nth order.

Math Probl Eng. doi:10.1155/2008/627983

9. Podlubny I, Skovranek T, Jara BMV (2009) Matrix approach to

discretization of fractional derivatives and to solution of frac-

tional differential equations and their systems. In: Proceedings of

Fig. 2 Comparisons between the computational values of the RKA approximate solutions when a ¼ 2 and a 2 1:7; 1:8; 1:9f g: black a ¼ 2;

purple a ¼ 1:9; brown a ¼ 1:8; green a ¼ 1:7 for: Example 5 (left graph) and Example 6 (right graph)

Fig. 3 Absolute value of the residual errors function Rn tð Þj j when a ¼ 2 of the RKA approximate solutions of: Example 5 (left graph) and

Example 6 (right graph)

1478 Neural Comput & Applic (2018) 29:1465–1479

123

RETRACTED A
RTIC

LE

http://dx.doi.org/10.1155/2008/627983


the IEEE conference on emerging technologies and factory

automation (ETFA’09), pp 1–6

10. Raja MAZ, Khan JA, Qureshi IM (2011) Solution of fractional

order system of Bagley–Torvik equation using evolutionary

computational intelligence. Math Probl Eng. doi:10.1155/2011/

675075

11. Fadravi HH, Nik HS, Buzhabadi R (2011) Homotopy analysis

method based on optimal value of the convergence control

parameter for solving semi-differential equations. J Math Ext

5:105–121

12. Zolfaghari M, Ghaderi R, Eslami AS, Ranjbar A, Hosseinnia SH,

Momani S (2009) Sadati J (2009) Application of the enhanced

homotopy perturbation method to solve the fractional-order

Bagley–Torvik differential equation. Phys Scr T136:014032

13. Wang ZH, Wang X (2010) General solution of the Bagley–Tor-

vik equation with fractional-order derivative. Commun Nonlinear

Sci Numer Simul 15:1279–1285

14. Ray SS (2012) On Haar wavelet operational matrix of general

order and its application for the numerical solution of fractional

Bagley Torvik equation. Appl Math Comput 218:5239–5248
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309:108–118

25. Hesameddini E, Latifizadeh H (2012) Homotopy analysis method

to obtain numerical solutions of the Painlevé equations. Math
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