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Abstract Non-conventional machining processes always

suffer due to their low productivity and high cost. How-

ever, a suitable machining process should improve its

productivity without compromising product quality. This

implies the necessity to use efficient multi-objective opti-

mization algorithm in non-conventional machining pro-

cesses. In this present paper, an effective standard

deviation based multi-objective fire-fly algorithm is pro-

posed to predict various process parameters for maximum

productivity (without affecting product quality) during

WEDM of Indian RAFM steel. The process parameters of

WEDM considered for this study are: pulse current (I),

pulse-on time (Ton), pulse-off time (Toff) and wire tension

(WT).While, cutting speed (CS) and surface roughness

(SR) were considered as machining performance parame-

ters. Mathematical models relating the process and

response parameters had been developed by linear regres-

sion analysis and standard deviation method was used to

convert this multi objective into single objective by uni-

fying the responses. The model was then implemented in

firefly algorithm in order to optimize the process parame-

ters. The computational results depict that the proposed

method is well capable of giving optimal results in WEDM

process and is fairly superior to the two most popular

evolutionary algorithms (particle swarm optimization

algorithm and differential evolution algorithm) available in

the literature.

Keywords Multi-objective optimization � Standard
deviation method � Firefly algorithm � Wire cut EDM �
Reduced activation ferritic martensitic steel

List of symbols

I Pulse current

Ton Pulse-on time

Toff Pulse-off time

WT Wire tension

CS Cutting speed

min CS The minimum value of cutting speed

max CS The maximum value of cutting speed

SR Surface roughness

min SR The minimum value of surface roughness

max SR The maximum value of surface roughness

FA Firefly algorithm

PSO Particle swarm optimization algorithm

DE Differential evolution algorithm

RAFM Reduced activation ferritic martensitic steel

WEDM Wire electrical discharge machining

r Distance between two fire-fly

I(r) Light intensity at distance (r)

I0 Original light intensity at zero distance

c Light absorption coefficient

b Attractiveness measure at distance (r)

b0 Original attractiveness at zero distance

xi*(k) Normalized value of output parameter ‘i’ at

kth experiment

xi
(o)(k) Experimental value of output parameter ‘i’ at

kth experiment

minxi
(o)(k) The minimum value of output parameter ‘i’

maxxi
(o)(k) The maximum value of output parameter ‘i’

mi Variances of normalized output parameter ‘i’

li Mean of all normalized experimental values

(n) for output parameter ‘i’
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n Number of experiments

w1, w2 Individual response weight of cutting speed

and surface roughness respectively

N Population size/size of the swarm

T Number of iteration

1 Introduction

After being introduced in 1960 [1] the wire-cut electro

discharge machining (EDM) has come a long way to

become one of the most sophisticated machining processes

of modern era. It is basically used to cut very hard con-

ductive material and very difficult shape with great accu-

racy with the help of electric spark. It does not require a

special shaped electrode; instead it uses a continuous-

travelling vertical wire under tension as the electrode.

Electro discharge machining is basically a spark erosion

process where with each spark a small amount of work-

piece material melts or vaporizes and washed away by the

dielectric [2]. This machining process is a stochastic in

nature as sparking itself is a stochastic phenomenon [3]. In

electrical discharge machining, selection of machining

parameters is very important to achieve high machining

performance. Generally based on experience or handbook

values the desired machining parameters are chosen. But

this method of selecting machining parameters does not

ensure optimal or near optimal machining performance for

particular electrical discharge machine and environment

[4].

In any machining process machining time and surface

finish are the most important performance characteristics. In

the case of WEDM also it is same. But the problem is that

cutting speed and surface roughness are two very contra-

dictory parameters for choosing the optimal process

parameters. To solve this problem many researchers had

carried out extensive research using various optimization

techniques. Tarng et al. [3] used feed forward neural net-

work and simulated annealing to get optimized WEDM

process parameters for better machining speed and surface

roughness taking SUS-304 stainless steel as workpiece

material. Equal weightage were given to both the responses.

Spedding and Wang [2] incorporated response surface

method to model the cutting speed and surface roughness of

WEDM and tried to optimize the process parameters by

artificial neural network (ANN) technique. A regression

model and feasible direction method was used by Liao et al.

[5] to reduce the machining time while not compromising

the surface quality of WEDM process. Lin et al. [6] pro-

posed a control strategy based fuzzy logic for better

machining accuracy in WEDM. Tosun et al. [7] developed a

mathematical model for kerf and material removal rate

(MRR) by regression analysis and used analysis of variance

(ANOVA) and signal to noise ratio (S/N ratio) to optimize

the process parameters. Singh et al. [8] carried out a multi-

objective optimization of EDM process parameters by using

orthogonal array (OA) with Grey relational analysis. Sarkar

et al. [9] investigated the wire cut electro discharge

machining on c-titanium aluminide alloy and modeled the

process with additive model. They also tried to optimize the

process parameters by constrain optimization and Pareto

optimization algorithm. Kuriakose and Shunmugam [10]

used multiple regression models to represent the relationship

between input and output of WEDM. Optimization of the

process parameters for cutting velocity and surface rough-

ness was done by a multi-objective optimization method

based on a non-dominated sorting genetic algorithm

(NSGA). Chiang and Chang [11] deployed Taguchi based

grey relational analysis to optimize the wire electric dis-

charge machining (WEDM) process of Al2O3 particle rein-

forced material (6061 alloy) with multiple performance

characteristics. Mahapatra and Patnaik [12] established the

relationship between WEDM process parameters and

responses like MRR, surface finish and kerf width by non-

linear regression analysis. Genetic algorithm (GA) was used

by them to optimize process parameters with multiple

objectives. Artificial neural network (ANN) with back

propagation algorithm with non-dominating sorting genetic

algorithm-II was used by Mandal et al. [13] for multi-ob-

jective optimization of WEDM process. Kanagarajanet et al.

[14] studied the influence of various parameters of EDM of

WC/CO composites on material removal rate and surface

roughness. Process characteristics were modeled by second

order polynomial equation and for optimization purpose

non-dominated sorting genetic algorithm (NSGA-II) was

used by them. Ramkrishnan and Karunamoorthy [15] used

back propagation ANN algorithm to predict the response

parameters like material removal rate and surface roughness

for WEDM of Inconel 718 material. Sarkar et al. [16] cor-

related surface roughness, dimensional shift and cutting

speed with various process parameters of WEDM of c-TiAl
alloy by response surface response surface methodology. In

their study optimization of process parameters was done by

desirability function approach and Pareto optimization

algorithm. To predict the cutting speed and kerf width Saha

et al. [17] deployed normalized radial basis function network

(NRBFN) with enhanced k-means clustering technique for

WEDM of 5 vol% TiC/Fe in situ metal matrix composite

(MMC). Chen et al. [18] used back propagation neural

network based simulated annealing algorithm to optimize

the process parameters to get better cutting velocity and

surface roughness for WEDM of pure tungsten. Neuro-Ge-

netic technique; a combination of a radial basis function

network (RBFN) and non-dominated sorting genetic algo-

rithm (NSGAII) was deployed by Saha et al. [19] to opti-

mize the process parameters for multi responses of WEDM
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of WC/CO composites. Arindam Majumder [20] developed

the relation between various process parameters with

response parameter by response surface methodology

(RSM) and then used genetic algorithm to minimize the

electrode wear rate in EDM. Saha et al. [21] used neuro-

genetic algorithm for multi-objective optimization of

WEDM of 5 vol% titanium carbide (TiC) reinforced aus-

tenitic manganese steel metal matrix composite (MMC).

The relation between multiple input and outputs of WEDM

of AISI 316LN Stainless Steel was modeled by Majumder

et al. [22] with the help of response surface methodology

(RSM). They employed desirability based multi-objective

particle swarm optimization (DMPSO) algorithm to opti-

mize the process parameters for maximizing the MRR and

Minimizing the EWR. From the literature it can be seen that

various techniques is used to optimize the WEDM process

parameters for multiple performance characteristics. How-

ever as per as machining is concerned WEDM does not

depend upon the variety of material if they are conductive

but optimum machining conditions varies with different

workpiece material. In the other hand optimization tech-

niques also can make a noticeable difference while finding

the optimum machining conditions. Metaheuristic algo-

rithms are very powerful in searching global optima for very

difficult engineering and industrial problems. Especially

they are proved to very efficient tool to solve multi-objective

optimization problems [23, 24]. It has also been seen from

the previous literature that the population base meta-

heuristics algorithms performed better than the single point

search meta-heuristics [25].

Currently firefly algorithm (FA) draws the attention of

various researchers, working in different fields due to its

flexibility to solve continuous problems, clustering and

classifications, and combinatorial optimization problems

very efficiently [26]. Apostolopoulos and Vlachos [27],

proposed the firefly algorithm for multi-objective mini-

mization problem of economic emissions load dispatch to

minimize fuel cost and emission of generating units. The

results show that firefly algorithm is much more accurate

than other metaheuristic algorithms to find out the global

optima with high success rates. Gandomi et al. [28] in their

study to solve mixed variable structural optimization

implemented firefly algorithm. The optimization results

confirm the superiority firefly algorithm than other meta-

heuristic algorithms such as particle swarm optimization,

genetic algorithm, simulated annealing and hunting search.

Senthilnath et al. [29] used firefly algorithm for clustering

and compared the results with artificial bee colony (ABC),

particle swarm optimization (PSO) and other widely used

algorithms. Their findings conclude that firefly algorithm is

more worthy, efficient and successful to generate optimum

result. Taleizadeh and Leopoldo [30] showed the applica-

bility firefly algorithm in supply chain management

problems. Rao et al. [31] implemented firefly algorithm and

bat algorithm for optimizing placement as well as sizing of

static VAR compensator to enhance voltage stability. But

yet a less effort has been given by the previous researchers

in order to use this technique in the manufacturing field.

This paper investigated the optimum process parameters

values for wire-electro discharge machining of Indian

RAFM steel. RAFM steel is one of the newly developed

materials profoundly used in nuclear power plant industry.

To carry out the study, pulse current (I), pulse-on time (Ton),

pulse-off time (Toff) and wire tension (WT) were taken as

input process parameters, based upon the various literature

available, as they are the very significant parameters for

WEDM. These process parameters were than optimized

with respect to the response parameters i.e. cutting speed

and surface roughness. Mathematical models to relate the

machining parameters with the response parameters had

been developed by linear regression analysis. The adequacy

of the mathematical models was checked by deploying

analysis of variance (ANOVA). While, Standard deviation

based technique was used to select individual weights for

each responses during this study. Later, a firefly algorithm

(FA) was employed to find out the optimum set of data for

the described process parameters. The results thus obtained

were then compared with the results obtained by particle

swarm optimization algorithm (PSO) and differential evo-

lution algorithm (DE) as well as the response parameters at

the initial condition. Finally the optimized results were

validated experimentally.

2 Regression analysis

Linear regression analysis is a statistical process. It esti-

mates the relationships among variables. This method is

extensively used in mathematical model building depend-

ing upon the relationship between the dependent and

independent variables [32]. Linear regression technique

consists of simple linear regression and multiple linear

regression analysis. In simple linear regression only one

independent variable can be used. But multiple linear

regression analysis does not have such limits. That means,

more than one independent variable can be used to explain

the variation of dependent variable.

To describe a particular response or dependent variable

using the independent ones general linear model for mul-

tiple regression analysis is used. General linear model and

its assumption are shown below.

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxnþ 2 ð1Þ

where y = response or independent variable; b0, b1, b2 …,

bn are unknown constants. x1, x2, …, xn are independent

variables; 2 = random error.
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Each value of y is deviate from the average y value by

random error amount. Certain assumptions have to be taken

into account.

1. 2 values are independent.

2. 2 values have a mean of 0 and a common variance r2

for any set x1, x2, …, xn.

3. 2 values are normally distributed.

When the above listed assumption met about random

error (2) the basic equation (deterministic general linear

model) can be written as [33]

EðyÞ ¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn: ð2Þ

3 Firefly algorithm (FA)

3.1 Basic foundation of firefly algorithm

The firefly algorithm was developed by Xin-She Yang. This

is a meta-heuristic type algorithm, inspired by the social

behavior of fireflies. Fireflies produce flash by virtue of

bioluminescence [28]. The varied flashing light patterns are

used to send courtship signal to other fireflies for mating.

Firefly algorithm is based on the idealized behavior of the

flashing characteristics of fireflies. To simplify, the flashing

characteristics can be described by the following three rules:

1. As fireflies are unisex, so the attract each other

regardless of their sex.

2. Attractiveness is defined by the brightness. With

higher the brightness the firefly becomes more attrac-

tive. That means the lesser one attracts towards the

brighter one.

3. With increase in distance the brightness and attrac-

tiveness decrease. If no one is brighter than a particular

firefly, it will move randomly [34].

The pseudo code used to summarize the basic steps of

firefly algorithm is shown below (Fig. 1).

3.2 Characteristic description of FA

Firefly algorithm basically depends upon the light intensity

variation and formulation of attractiveness. In basic firefly

algorithm the solution of the fitness function is defined by

the light intensity. The light intensity varies with the dis-

tance (r) between two fireflies. The following equation

shows the relation between light intensity and distance

between two fireflies.

IðrÞ ¼ I0e
�c�r2 ð3Þ

where I(r) is the light intensity at distance (r), I0 is the

original light intensity at r = 0 and c is the light absorption

coefficient. Inverse square law and approximation of

absorption in Gaussian form jointly omit the singularity at

r = 0 in the expression I/r2 effectively.

On the other hand attractiveness and light intensity of

fireflies are proportional to each other. So the attractiveness

of fireflies also can be described by a similar equation to

light intensity as follows.

b ¼ b0e
�c�r2 ð4Þ

where b is the attractiveness measure at distance (r) and b0
is the original attractiveness at zero distance.

From the above description it may be concluded that

attractiveness and light intensity are synonyms. But there is

a major difference between the two terms. Light intensity

gives the absolute measure of light emitted by a firefly

whereas attractiveness gives the relative measure of light

that is seen by the other one [35].

Distance between two fireflies i and j at xi and xj can be

expressed by a Euclidean equation as follows.

rij ¼ xi � xj
�
�

�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xd

k¼1

ðxik � xjkÞ2
v
u
u
t ð5Þ

where xik represents the component of the spatial coordi-

nate xi of the ith firefly and ‘d’ defines the number of

dimensions [27].

Brighter firefly ‘j’ attracts the other firefly ‘i’. The

movement of ‘i’ towards ‘j’ can be formulated by the

following equation.

xi ¼ xi þ b0e
�c�r2ijðxj � xiÞ þ aei ð6Þ

where the second term is for attraction factor and the third

term is for randomization. The randomness factor is

denoted by ‘a’. ei is random vector quantity drawn from

Gaussian distribution.

begin 
Call objective function f(X), X = (x1,…,xd)T
Initializethe population of fireflies Xi(1=1,2,…,n) 
Determination of light intensity Ii  at Xi  by f(Xi)  

while(t <Maximum Generation) 
for I = 1 : n all n fireflies 
for j = 1 : I all n fireflies 

if(Ij> Ii) 
 Move the firefly I towards j in d-dimension via L’evy flights 

end if 
 Attractiveness varies when distance r varies via exp [- 2] 
 Evaluate and update new solutions and light intensity respectively 
end for j 
end for i 

 Ranking off the fireflies and find the current best 
end while 

 Post-process results and visualization 
End  

Fig. 1 Pseudo code for firefly algorithm
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In most cases the values for b0 can be taken as 1 and a e
[0, 1]. Theoretically the value the value of the absorption

coefficient c e [0, ?], but in most time the value of it

typically varies from 0.1 to 10 [35].

4 Experimental procedure

For this study Indian RAFMS was used as workpiece

material. The composition and physical properties of the

material [36] are shown in Tables 1 and 2. Figure 2 shows

the optical micro graph of Indian RAFMS. Electronica

Sprintcut WEDM was used to perform the experiments.

For conducting the experiments distilled water was used as

dielectric medium. While cutting brass wire (CuZn37)

electrode was used due to its favorable thermal property,

easy availability and low cost.

During the experiment pulse current (I), pulse-on time

(Ton), pulse-off time (Toff) and wire tension (WT) were

taken as variable process parameters [3, 5] whereas the

discharge voltage (V), flushing pressure (FP) and wire feed

(WF) were taken as constant parameters due to machine

constrains. The values taken for the constant parameters

were 20 V for discharge voltage, 5 atm for flushing pres-

sure and 4 mm/min for wire feed. For experimentation the

ranges of process parameters were selected through trial

and error method. Then three levels for each parameter

were taken and the leveling of parameters was done

accordingly. Table 3 shows the leveling of parameters.

The experiments started by selecting a suitable design of

experiment. In this case Taguchi’s L9 (34) orthogonal array

was selected. After that the workpiece material (RAFMS)

had been prepared by scaling it for nine number of cutting

pass. The Scaling was done in such a way that the distance

between two cuts remains 10 mm. The cutting length for

the experiments was taken as 15 mm. Then the work

material machined in the WEDM. Time taken by the

machine to cut the 15 mm length for each pass was

recorded very minutely with the help of a stopwatch.

There after the pieces of the workpiece material were

cut down to find out the surface roughness of the Wire-

EDMed faces. Figure 3 shows the work piece after

WEDM. The surface roughness of the pieces was measured

by Taylor Hobson surface profiler. The cutting speed and

surface roughness values are shown in the Table 4.

5 Proposed methodology

The section deals with description of the proposed

methodology for optimizing the process parameters during

WEDM of RAFM. A brief description of this methodology

is presented in the following subsections.

5.1 Mathematical model building

In this study with the help of multiple linear regression

analysis mathematical models for cutting speed (CS) and

surface roughness (SR) were developed. To find out the

coefficients for the given four factors the deterministic

general linear model of multiple linear regression analysis

shown in Eq. 7 was used.

EðyÞ ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 ð7Þ

Table 1 Chemical properties of Indian RAFMS

Cr C Mn V W Ta N O P S

8.8–9.2 0.10–0.12 0.40–0.60 0.20–0.24 0.9–1.1 0.006–0.008 0.002–0.004 \0.01 \0.02 \0.002

B Ti Nb Mo Ni Cu Al Si Co AS ? Sn ? Sb

\0.001 \0.005 \0.001 \0.002 \0.005 \0.002 \0.005 \0.05 \0.005 \0.03

Table 2 Physical properties of Indian RAFMS

Hardness 405 ± 5 HV

Density 7760 kg/m3

Thermal conductivity 33 W/m k (at room temperature)

Specific heat at constant pressure 622 J/kg k

Melting temperature 2032 k

Fig. 2 Micrographs of Indian RAFMS
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where y = Cutting speed or Surface roughness, x1 = pulse-

peak current (I), x2 = pulse on time (Ton), x3 = pulse of

time (Toff) and x4 = wire tension (WT).

After determining the coefficients square root transfor-

mation (y* = y(1/2)) was determined to develop mathe-

matical models. The mathematical models thus obtained

for cutting speed (CS) and surface roughness (SR) are as

follow:

CS ¼ �6:08356þ 0:00970706� I þ 0:056970 � Tonð
�0:024323� Toff þ 0:015548�WTÞ2 ð8Þ

SR ¼ �3:22606þ 0:012573� I þ 0:016654� Tonð
�0:000338626� Toff þ 0:021980�WTÞ2 ð9Þ

5.2 Model adequacy checking

In this present study, to find out the adequacy of the

developed mathematical models analysis of variance

(ANOVA) was conducted. The analysis result values for

cutting speed and surface roughness are shown in the

Tables 5 and 6.

The cutting speed and surface roughness models have

F value of 65.82 and 12.86 respectively which implies that

the models are significant. The P values of the models also

assure the significancy of them. The determination coeffi-

cient (R2) values of the models are 0.9850 and 0.9278

which indicates their capability to explain more than 98 %

and 92 % of the total variations respectively. Further it has

been observed that the adjusted R2 value and predicted R2

values of each regression model have reasonable agree-

ment with each other. Moreover, for both the models the

adequate precision, which measures the signal to noise

ratio, were also calculated (Tables 5, 6). A ratio [4 is

desirable. While in this present investigation the calculated

adequate precision of CS and SR model are 19.511 and

10.569 respectively, which indicate adequate signal.

Additionally, for further illustration of accuracy the

scatter plots between the predicted and actual values for

cutting speed and surface roughness were drawn during this

study. From the Figs. 4 and 5 it have been observed that the

datas are spreaded closer to the 45� line, which shows

adequacy of the developed models.

Table 3 Input parameters and

their level
Levels Pulse-peak

current (A)

Ton
(machine unit)

Toff
(machine unit)

Wire tension

(machine unit)

1 210 110 50 4

2 220 115 55 6

3 230 120 60 8

For pulse on time, Ton machine unit = 0.05 9 Ton ? 0.1 ls; For pulse off time, Toff machine

unit = 0.25 9 Toff ? 2 ls; wire tension, wt machine unit = 100 9 wt ? 100 g

Fig. 3 RAFM steel after machined in WEDM

Table 4 Experimental results
Exp no. I (A) Ton

(machine unit)

Toff
(machine unit)

WT

(machine unit)

CS

(mm/min)

SR

(lm)

1 210 110 50 4 1.11 1.66

2 210 115 55 6 1.61 2.14

3 210 120 60 8 2.08 2.37

4 220 110 55 8 1.26 2.54

5 220 115 60 4 1.6 2.41

6 220 120 50 6 3 2.67

7 230 110 60 6 0.99 2.41

8 230 115 50 8 2.71 3

9 230 120 55 4 2.91 3.1
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5.3 Calculation of individual weight using standard

deviation method

In this study standard deviation method was used to give

adequate individual weightage to the responses. The pur-

pose for selecting this method over desirability method is

to consider the degree of variability of responses with

sequences during determining individual weight [37]. The

individual weightages determined during this method is

based upon the non-dimensional variation characteristic of

the responses with experimental sequences. Figure 6 rep-

resents the box plot for linearly normalized values of

response variables which justifies the use of this standard

deviation method. The box plot graphically summarizes the

statistical distribution of each response during experimen-

tation. From the figure it has clearly been seen that the

50 % normalized cutting speed values collected during

experimentation were clustered between 0.097 and 0.905.

While for surface roughness the 50 % data collected during

experimentation were lying within the range 0.413–0.816.

Therefore from the plot it can be conclude that the varia-

tion of cutting speed is more than surface roughness and it

is unjust to give equal weightages to them. The various

steps involved in this approach are as follow:

Table 5 Analysis of variance

(ANOVA) results for cutting

speed

Source Sum of squares df Mean

square

F value P value

Prob[F

Contribution

(%)

Model 0.64 4 0.159 65.82 0.001 98.50

error 0.009 4 0.003 1.50

Total 0.648 8

SD 0.049 R-squared 0.9850

Mean 1.36 Adj R-squared 0.9783

C.V. % 3.62 Pred R-squares 0.9183

PRESS 0.053 Adeq precision 19.511

Table 6 Analysis of variance

(ANOVA) results for surface

roughness

Source Sum of squares df Mean

square

F value P value

Prob[F

Contribution

(%)

Model 0.148 4 0.037 12.86 0.0149 92.78

error 0.012 4 0.003 7.22

Total 0.16 8

SD 0.054 R-squared 0.9278

Mean 1.57 Adj R-squared 0.8557

C.V. % 3.42 Pred R-squares 0.5079

PRESS 0.079 Adeq precision 10.569

Fig. 4 Predicted versus actual plot for cutting speed Fig. 5 Predicted versus actual plot for surface roughness
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Step 1 Initially the experimental values of responses

(cutting speed and surface roughness) were normalized

linearly using Eqs. 10 and 11 respectively. For cutting

speed the normalization was carried out by ‘‘larger the

better’’ scheme, while surface roughness were normal-

ized using ‘‘lower the better’’ method (Table 7).

Larger the better:

x�i ðkÞ ¼
x
ðoÞ
i ðkÞ �minx

ðoÞ
i ðkÞ

maxx
ðoÞ
i ðkÞ �minx

ðoÞ
i ðkÞ

ð10Þ

Lower the better:

x�i ðkÞ ¼
maxx

ðoÞ
i ðkÞ � x

ðoÞ
i ðkÞ

maxx
ðoÞ
i ðkÞ �minx

ðoÞ
i ðkÞ

ð11Þ

where: xi
(o)(k) = experimental value of output parameter

‘i’ at kth experiment, minxi
(o)(k) = the minimum value

of output parameter ‘i’ and maxxi
(o)(k) = the maximum

value of output parameter ‘i’.

Step 2 During this step the variances of normalized

cutting speed and surface roughness values were found

by using Eq. 12. The standard deviation values were

acquired by Eq. 13 (Table 8).

vi ¼ ðx�i ðkÞ � liÞ2 ð12Þ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

mi

s

ð13Þ

where, mi = variances of normalized output parameter

‘i’, li = mean of all normalized experimental values

(n) for output parameter ‘i’, n = number of experiments.

Step 3 In final step the ratio of the standard deviation

value for each response to sum of the standard deviation

values of both responses gives the individual weight for

each response. Equations 14 and 15 represents the

weightage equations for cutting speed and surface

roughness respectively.

w1 ¼
S1

S1 þ S2
ð14Þ

w2 ¼
S2

S1 þ S2
: ð15Þ

Thus by using the proposed approach, the calculated

individual weight of cutting speed and surface roughness

are 0.565 and 0.435 respectively. After calculating the

individual weight, the two mathematical models as men-

tioned above (Eqs. 8, 9) were combined and a single

mathematical model was generated shown in Eq. 16.

X ¼ 0:565164748� CS�minCS

maxCS�minCS

� �

þ 0:434835252� maxSR� SR

maxSR�minSR

� �

ð16Þ

Fig. 6 Box plot for linearly normalized values of response variables

Table 7 Normalized result

Exp. no. Pre-processed data

Linearly normalized response values

Cutting speed

(higher the better)

Surface roughness

(lower the better)

1 0.053701493 1

2 0.308457711 0.666666667

3 0.542288557 0.506944444

4 0.134328358 0.388888889

5 0.303482587 0.479666667

6 1 0.298611111

7 0 0.479166667

8 0.855721393 0.069444444

9 0.955223881 0

Mean value 0.462133776 0.432098765

Table 8 Standard deviation and individual weight values of each

response

Exp. no Standard deviation values

Cutting Speed Surface Roughness

Variance Variance

1 0.161951923 0.32251155

2 0.023616402 0.05502199

3 0.006424753 0.00560184

4 0.107456539 0.00186711

5 0.025170271 0.00221537

6 0.289299834 0.01781902

7 0.213567834 0.00221537

8 0.154911036 0.13151833

9 0.24313763 0.18670955

Slandered deviation 0.369013132 0.28391707

Weightage 0.565251492 0.43490199
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5.4 Optimization through firefly algorithm

For the present study firefly algorithm was used to opti-

mize the process parameters. In this regard the combined

mathematical model was used as a fitness function for

firefly algorithm. The population size for the algorithm

was taken as 20. While the maximum number of iteration

was taken as 200 in order to decide when to stop algo-

rithm. The values for the tuning factors of FA like ran-

domness factor (a), actual attractiveness (b0) and

absorption factor (c) 0.2, 1 and 1 respectively [38]. The

FA was coded in Matlab 2009a and executed in a PC with

Intel i5-2450 M CPU with 4 GB RAM running at

2.50 GHz. To eliminate the effect of the stochastic

behavior of this algorithm while finding the best optimal

solution the algorithm was run thirty times. Figure 7

shows the best convergence rate of fitness value obtained

when firefly algorithm.

6 Results and discussion

In this section the optimal results (shown in table) obtained

by the algorithm were compared with the results achieved

by experiments and the existing algorithms (DE and PSO)

to find the effectiveness of the proposed approach. The

detailed discussions are given below.

6.1 Confirmative test

The present investigation consist a confirmation test to

validate the optimized parameters. The confirmation test

results are shown in Table 9.

The percentage of errors between the predicted and

experimental values of cutting speed and surface roughness

can be seen in Table 9. It can be observed from the

table that the percentages of errors are very small. Thus

excellent reproducibility of the experimental conclusions is

confirmed by the confirmation test results.

6.2 Comparison of FA with PSO, DE

and experimental results

In this section the performance of the proposed approach

was investigated. For such investigation initially the com-

putational performance of the applied Firefly algorithm

(FA) was compared with the existing particle swarm

Fig. 7 Convergence characteristics of differential evolution algo-

rithm (DE), firefly algorithm (FA) and partial swarm optimization

Algorithm (PSO) for the optimization WEDM process parameters

Table 9 Confirmation test

result
Predicted condition Observed condition Error (%)

Pulse current (A) 210 Pulse current (A) 210

Ton (machine unit) 120 Ton (machine unit) 120

Toff (machine unit) 50 Toff (machine unit) 50

Wire tension (machine unit) 4 Wire tension (machine unit) 4

Cutting speed (mm/min) 2.68 Cutting speed (mm/min) 2.70 0.75

Surface roughness (lm) 2.20 Surface roughness (lm) 2.23 1.36

Table 10 Input parameter setting for PSO and DE during 30 trial

runs

Optimization

algorithm

Process parameters

PSO Cognitive parameters c1 = 2 [39]

Social parameters c2 = 2 [39]

Random number r1 = uniformly distributed

random numbers in the range [0–1] [39]

Random number r2 = uniformly distributed

random numbers in the range [0–1] [39]

Size of the swarm, N = 20

Number of iterations, T = 200

Weight function [39], wN ¼ wmax � wmax�wminð Þ�T½ �
Tmax

where, initial weight, wmax = 1 [39]

Final weight, wmin = 0.01 [39]

DE Population size (N) = 20

Number of iterations, T = 200

Mutation factor (F) = 0.8 [40]

Crossover factor (CR) = 0.8 [40]
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optimization algorithm (PSO) [39] and differential evolu-

tion optimization algorithm (DE) [40]. During this com-

parison the achieved maximum fitness value, number of

iterations and computational time were considered as per-

formance parameters. The process parameters used for

existing PSO and DE in this study were taken from pre-

vious literature, Majumder [39] and Roque et al. [40]

respectively and are shown in Table 10. However, the

maximum number of iteration and population size for PSO

and DE were taken as 100 and 20 respectively to make the

performance comparison more appropriate. Both of these

existing meta-heuristics (PSO and DE) were coded in

MATLAB 2009a programming environment. Figure 7

represents the comparison between the convergence char-

acteristic of applied firefly algorithm (FA) and existing

particle swarm optimization algorithm (PSO) and differ-

ential evolution optimization algorithm (DE) during one of

the test run.

In addition to that the performance of the developed

approach was checked by comparing the achieved opti-

mal condition with the initial condition. The initial

experiment results and predicted results are shown in the

Table 11.

6.3 Discussion of results

The comparison of applied FA with existing PSO and DE

was carried out by running each of these algorithms thirty

times during this study. Table 12 presents the best, worst,

mean and standard deviation of the optimal solutions

achieved from thirty trial runs. From the results it has been

observed that each of these three algorithms achieved a

similar best optimum solution. However, standard devia-

tion of these test runs indicates a consistency in perfor-

mance of FA as compared to the other two. For further

illustration pair-wise t test between the three algorithms

(Table 13) were performed with 95 % confidence interval.

The hypotheses, used for this paired t test are as follows:

Null hypothesis: [mean (term 1) - mean (term 2) B 0],

Alternative hypothesis: [mean (term 1) - mean (term

2)[ 0]. If the calculated t value and P value of pair dif-

ference is positive and \0.05 respectively, then term 1

performed significantly better term 2. In this case, the

results of this analysis indicate that FA significantly out-

performed PSO and DE. This is expected due to two major

advantageous characteristics of FA, namely automatic

subdivision and the ability of controlling the randomness

with the progression of convergence [26].

Table 11 Comparison between

the predicted optimal condition

and initial condition

Initial condition Predicted condition

Pulse current (A) 210 Pulse current (A) 210

Ton (machine unit) 110 Ton (machine unit) 120

Toff (machine unit) 50 Toff (machine unit) 50

Wire tension (machine unit) 4 Wire tension (machine unit) 4

Cutting speed (mm/min) 1.11 Cutting speed (mm/min) 2.68

Surface roughness (lm) 1.66 Surface roughness (lm) 2.20

Table 12 Best, worst, mean and standard deviation of solutions

achieved by FA, PSO and DE during 30 trial runs

Solution FA PSO DE

Best 0.697356877 0.697357 0.697357

Worst 0.697281469 0.6832 0.532316

Mean 0.69735185 0.691678 0.637061

Standard Deviation 1.91316E-05 0.007041 0.062612

Table 13 t Test statistics of paired differences of solution for each evolutionary algorithm

MSE-test Mean DF Standard deviation Standard error mean 95 % confidence interval of the difference t P value

Lower Upper

PSO vs DE 0.054618 29 0.062344 0.011382 0.035278 0 4.7984 0.000

FA vs DE 0.060291 29 0.062605 0.011430 0.040870 0 5.2748 0.000

FA vs PSO 0.0056736 29 0.0070401 0.0012853 0.0034896 0 4.4141 0.000

Table 14 Best, worst, mean and standard deviation of iterations

required by FA, PSO and DE during 30 trial runs

Solution FA PSO DE

Best 40 53 100

Worst 50 59 120

Mean 45.16667 55.83333 109.9333

Standard deviation 3.052227 1.78274 5.936058
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The calculated values of mean, best, worst and standard

deviation of number of iterations required for convergence

of FA, PSO and DE during thirty number of trail runs were

reported in Table 14. The results shown in this table indi-

cates that the applied firefly algorithm (FA) requires sig-

nificantly less iteration as compare to particle swarm

optimization algorithm (PSO) and differential evolution

optimization algorithm (DE). This has also been verified by

paired t tests of iterations (Table 15) used by FA, PSO and

DE during convergence. The following hypotheses are

used for this t test study: Null hypothesis: [mean (term

1) - mean (term 2) C 0], Alternative hypothesis: [mean

(term 1) - mean (term 2)\ 0].

Based on the results of Table 16 it has been seen that the

PSO requires less computational time for convergence as

compare to the applied FA and existing DE. While for

more elaboration of analysis a paired t test between the

CPU time taken by FA, PSO and DE for convergence were

conducted and the results were shown in Table 17. The

results reflect that PSO converges quickly followed by FA

and DE. It is because of the fact that the complexity of PSO

(O(NT)) is lower than FA (O (N2T)) and is same as

required by DE (O(NT)). However in case of PSO the

number of iteration taken for convergence is much lesser

than DE and moderately higher than FA.

Moreover from Table 11 it can be clearly seen that with

optimized parameters the cutting speed increases along

with the surface roughness. The increase in cutting speed is

141.44 % and increase in surface roughness is 32.53 %. As

the cutting speed increased by a very high rate, the slight

increment in surface roughness can be neglected.

Thus it can be conclude that the proposed approach is

the best performed technique for optimizing WEDM pro-

cess parameters.

7 Conclusion

The present study investigated the application of Standard

Deviation Method based multi-objective firefly algorithm

to predict the optimal process parameters during wire

electro discharge machining (WEDM) of Indian reduced

activation ferritic martensitic (RAFM) steel. The study

includes pulse current (I), pulse-on time (Ton), pulse-off

time (Toff) and wire tension (WT) as the process parame-

ters. However, the response parameters considered in this

study are: cutting speed and surface roughness. Based on

the results the following conclusions can be drawn:

1. The solution quality achieved by applied firefly

algorithm (FA) is significantly better than the two

efficient algorithms (PSO and DE) found in literature.

2. The applied firefly algorithm (FA) has faster conver-

gence rate as compare to DE in terms of CPU time.

While comparing with PSO the proposed FA requires

more CPU time for convergence.

Table 15 t Test statistics of paired differences of number of iteration for each evolutionary algorithm

MSE-test Mean DF Standard

deviation

Standard

error mean

95 % confidence

interval of the difference

t P value

Lower Upper

PSO vs DE -54.100 29 5.886 1.0746 -52.274 0 -50.343 0.000

FA vs DE -64.767 29 7.389 1.3491 -62.474 0 -48.009 0.000

FA vs PSO -10.667 29 3.585 0.65449 -9.5546 0 -16.298 0.000

Table 16 Best, worst, mean and standard deviation of computational

time required by FA, PSO and DE during 30 trial runs

Solution FA PSO DE

Best 0.156 0.0468 0.468

Worst 0.3744 0.0936 0.9828

Mean 0.226667 0.06526 0.57096

Standard deviation 0.037004 0.011392 0.100983

Table 17 t Test statistics of paired differences of computational time for each evolutionary algorithm

MSE-test Mean DF Standard deviation Standard error mean 95 % confidence interval of the difference t P value

Lower Upper

PSO vs DE -0.50570 29 0.10108 0.018455 -0.47434 0 -27.402 0.000

FA vs DE -0.34429 29 0.09004 0.016439 -0.31636 0 -20.944 0.000

PSO vs FA -0.16141 29 0.03335 0.0060880 -0.17175 0 -26.512 0.000
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3. By using standard deviation method multiple criterions

can be logically aggregated to convert a single

performance index (MPI). Single performance index

(MPI) can easily be optimized to determine the optimal

machining environment which facilitates it for mass

production and consequently product quality

improvement.

4. The proposed integrated approach was found to be

capable to optimize the process parameters during

WEDM of Indian RAFMS.

Even though, the proposed technique is efficient enough

to solve the multi-attribute optimization problem. But the

major disadvantage of this approach is its dependency on

the collected experimental data set during individual

weight selection. Therefore, it is required to overcome such

uncertainty in individual weight selection by combining

some other approach such as fuzzy logic and principal

component analysis with standard deviation method. This

can be taken as a future scope of this research. Aside from

this in future, the proposed approach can also be used in

other real life multi-objective optimization problems.
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