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Abstract In this paper, we have formulated a fuzzy least

squares version of recently proposed clustering method,

namely twin support vector clustering (TWSVC). Here, a

fuzzy membership value of each data pattern to different

cluster is optimized and is further used for assigning each

data pattern to one or other cluster. The formulation leads

to finding k cluster center planes by solving modified pri-

mal problem of TWSVC, instead of the dual problem

usually solved. We show that the solution of the proposed

algorithm reduces to solving a series of system of linear

equations as opposed to solving series of quadratic pro-

gramming problems along with system of linear equations

as in TWSVC. The experimental results on several publicly

available datasets show that the proposed fuzzy least

squares twin support vector clustering (F-LS-TWSVC)

achieves comparable clustering accuracy to that of

TWSVC with comparatively lesser computational time.

Further, we have given an application of F-LS-TWSVC for

segmentation of color images.

Keywords Machine learning � Twin support vector

clustering � Plane-based clustering � Fuzzy clustering

1 Introduction

Clustering is a powerful tool which aims at grouping

similar objects into the same cluster and dissimilar objects

into different clusters by identifying dominant structures in

the data. It has remained a widely studied research area in

machine learning [1, 2] and has applications in diverse

domains such as computer vision, text mining, bioinfor-

matics and signal processing [3–6].

Traditional point-based clustering methods such as k-

means [1] and k-median [7] work by partitioning the data

into clusters based on the cluster prototype points. These

methods perform poorly in case when data are not dis-

tributed around several cluster points. In contrast to these,

plane-based clustering methods such as k-plane cluster-

ing [8], proximal plane clustering [9] and local k-proximal

plane clustering [10] have been proposed in the literature.

These methods calculate k cluster center planes and parti-

tion the data into k clusters according to the proximity of

the data points with these k planes.

Jayadeva et al. [11] have proposed twin support vector

machine (TWSVM) classifier for binary data classification

where the two hyperplanes are obtained by solving two

related smaller-sized quadratic programming problems

(QPPs) as compare to single large-sized QPP in conven-

tional support vector machine (SVM). Mehrkanoon

et al. [12] introduced a general framework of non-parallel

support vector machines, which involves a regularization

term, a scatter loss and a misclassification loss. Taking

motivation from Xie and Sun [11, 13], they have proposed

multi-view twin support vector machines in the semi-su-

pervised learning framework which combines two views by

introducing the constraint of similarity between two one-

dimensional projections identifying two distinct TWSVMs

from two feature spaces. An inherent shortcoming of twin
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support vector machines is that the resultant hyperplanes

are very sensitive to outliers in data. To overcome this

disadvantage, Xie and Sun [14] have proposed multitask

centroid twin support vector machines. The more recent

extensions and developments in TWSVMs have been dis-

cussed in [15, 16].

Recently, Shao et al. [17] proposed a novel plane-based

clustering method, namely twin support vector clustering

(TWSVC). The method is based on twin support vector

machine (TWSVM) [11] and exploits information from

both within and between clusters. Different from the

TWSVM, the formulation of TWSVC is modified to get

one cluster plane close to the points of its own cluster and

at the same time far away from the points of different

clusters from both sides of cluster plane. Experimental

results in [17] show the superiority of the method against

existing plane-based methods.

Working on the lines of [18], in this paper, we first

extend the TWSVC to least squares TWSVC (LS-TWSVC)

and further propose a fuzzy extension of LS-TWSVC ter-

med as F-LS-TWSVC by incorporating a fuzzy matrix

which represents the membership value of each data point

to different available clusters. The key features of F-LS-

TWSVC are listed below:

– We modify the quadratic programming problem (QPP)-

based formulation of TWSVC in least squares sense

which leads to solving optimization problem with

equality constraints.

– A regularization term in the objective function is

introduced which takes care of structural risk compo-

nent along with empirical risk associated with data

samples.

– The solution of LS-TWSVC requires solving series of

system of linear equations as opposed to solving a

series of QPP and a system of linear equations as in the

case of TWSVC.

– We incorporate fuzzy membership matrix of each data

sample to different clusters in order to extend LS-

TWSVC to F-LS-TWSVC. The initial fuzzy member-

ship matrix is obtained using fuzzy nearest neighbor

algorithm [19] (as discussed in Sect. 5.3).

– Experimental results on several benchmark UCI

datasets indicate that the proposed F-LS-TWSVC

achieves similar or better clustering accuracy results

as compared to TWSVC and with considerably lesser

computational time for both linear as well as nonlinear

cases.

– We also perform experiments on image segmentation

as an application to our proposed formulation.

The paper is organized as follows. In Sect. 2, we briefly

discuss k-means and TWSVC. Section 3 presents the for-

mulation of LS-TWSVC and F-LS-TWSVC along with

algorithm in detail. Section 4 discusses the nonlinear

extension of LS-TWSVC and F-LS-TWSVC, respectively.

Computational comparison of proposed formulation with

other plane-based formulations is done in Sect. 5. Sec-

tion 6 provides the concluding remarks.

2 Background and related work

The samples are denoted by a set of m row vectors X ¼
fx1; x2; . . .; xmg in the n-dimensional real space Rn, where

the j th sample is xj ¼ ðxj1; xj2; . . .; xjnÞ. We assume that

these samples belong to k clusters with their corresponding

cluster labels in f1; 2; . . .; kg. Let Xi denotes the set of

samples belonging to cluster label i and Xi denotes the set

of samples belonging to remaining cluster labels, where

i ¼ 1; 2; . . .; k. The fuzzy membership of a sample is

denoted by k column vector fs1; s2; . . .; skg where sj, j ¼
1; ::; k represents the fuzzy membership value of all sam-

ples in the j th cluster. Let Si and Si denote the diagonal

fuzzy membership matrix corresponding to samples

belonging to cluster label i and remaining cluster labels,

respectively, where i ¼ 1; 2; . . .; k whose diagonal entries

represent the association of i th pattern to j th cluster.

2.1 k-Means

Consider the clustering problem with a set X of m unla-

beled data samples in Rn. k-means [1] partition X into

k clusters X1;X2; . . .;Xk such that the data samples are

close to their respective k cluster center points

l1; l2; . . .; lk. It aims to minimize the following objective

function

min
ðl1;l2;...;lk ;X1;X2;...;XkÞ

Xk

i¼1

Xmi

j¼1

jjXiðjÞ � lijj2; ð1Þ

where XiðjÞ represents the j th sample in Xi, mi is the

number of samples in Xi so that m1 þ m2 þ � � � þ mk ¼ m,

and jj:jj2 denotes L2 norm.

In practice, an iterative relocation algorithm is followed

which minimize (1) locally. Given an initial set of k cluster

center points, each sample x is labeled to its nearest cluster

center by

y ¼ arg
i

minfjjx� lijj; i ¼ 1; 2; . . .; kg: ð2Þ

Then the k cluster center points are updated as the mean of

the corresponding cluster samples since for a given

assignment Xi, the mean of the cluster samples represents

the solution to (1). At each iteration, the cluster centers and

sample labels are updated until some convergence criteria

is satisfied.
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2.2 TWSVC

Working on the lines of TWSVM, Wang et al. [17] pro-

posed TWSVC. In TWSVC, the following problem has

been considered in order to obtain k cluster center planes

wT
i xþ bi ¼ 0, i ¼ 1; 2; . . .; k, one for each cluster:

Min
ðwi; bi; qi;XiÞ

1

2
kðXiwi þ bieÞk22 þ CeTqi

s:t:

jðXiwi þ bieÞj þ qi � e;

qi � 0;

ð3Þ

where C[ 0 is a penalty parameter and qi is a slack vector

corresponding to i th cluster. Here, j � j would illustrate the

condition that the i th cluster center plane is required to be

close to the pattern of cluster Xi and away from the other

cluster Xi from both sides.

Each of the k hyperplane is close to the samples of its

own cluster and far away from the samples of the other

clusters from both sides unlike the One Against All (OAA)-

based multi-class TWSVM which yields hyperplanes

which are close to the samples of its cluster but are away

from the samples of other cluster from one side only.

For given a certain Xi Wang et al. [17] solved (3) by the

concave–convex procedure (CCCP) [20], which decom-

poses it into a series of convex quadratic subproblems with

an initial w0
i and b0i as follows:

Min
ðwjþ1

i
; bjþ1

i
; qjþ1

i
Þ

1

2
kðXiw

jþ1
i þ b

jþ1
i eÞk22 þ CeTq

jþ1
i

s:t:

TðjðXiw
jþ1
i þ b

jþ1
i eÞjÞ þ q

jþ1
i � e;

q
jþ1
i � 0;

ð4Þ

where the index of the subproblem j ¼ 0; 1; 2; . . .; and T(.)

denotes the first-order Taylor expansion.

Wang et al. [17] showed that the above problem (4) is

equivalent to the following optimization problem:

Min
ðwjþ1

i
; bjþ1

i
; qjþ1

i
Þ

1

2
kðXiw

jþ1
i þ b

jþ1
i eÞk22 þ CeTq

jþ1
i

s:t:

diagðsignðXiw
j
i þ b

j
i eÞÞðXiw

jþ1
i þ b

jþ1
i eÞ þ q

jþ1
i � e;

q
jþ1
i � 0:

ð5Þ

The solution of (5) is obtained by solving its dual problem

Min
a

1

2
aTGðHTHÞ�1

GTa� eTa

s:t:

0� a�Ce;

ð6Þ

where G ¼ diagðsignðXiw
j
i þ b

j
i eÞÞ½Xi e�, H ¼ ½Xi e�

and a 2 Rm�mi is the Lagrangian multiplier vector.

Once the solution of (6) is obtained, the decision vari-

able ½wjþ1
i ; bjþ1

i � is obtain from solving systems of linear

equation

½wjþ1
i ; bjþ1

i �T ¼ ðHTHÞ�1
GTa: ð7Þ

In short, for each i ¼ 1; 2; . . .; k, we select an initial w0
i and

b0i and solve for ½wjþ1
i ; bjþ1

i � by (7) for j ¼ 0; 1; 2. . .; and

stop when jj½wjþ1
i ; bjþ1

i � � ½wj
i ; b

j
i �jj is small enough. We

then set wi ¼ w
jþ1
i , bi ¼ b

jþ1
i .

Given any initial sample cluster assignment of X,

TWSVC iterates alternatively updating the cluster center

planes by solving (3) with a certain Xi and then updating

cluster assignments by relabeling each sample by y ¼

arg
i

minfjwT
i xþ bij; i ¼ 1; 2; . . .; kg . The iterations are

repeated until some convergence criteria is met.

It is to be noted that the solution of (5) requires solving a

QPP with m� mi parameters and in addition requires an

inversion of matrix of size ðnþ 1Þ � ðnþ 1Þ where

n\\m.

TWSVC was also extended in [17] to handle nonlinear

case by considering k cluster center kernel-generated sur-

faces for i ¼ 1; 2; . . .; k

Kðx;XÞui þ ci ¼ 0; ð8Þ

where K is any arbitrary kernel, ui 2 Rm and c 2 R. The

kernel counterpart of (3) for i ¼ 1; 2; . . .; k is

Min
ðui; ci; gi;XiÞ

1

2
kðKðXi;XÞui þ cieÞk

2
2 þ CeTgi

s:t:

jðKðXi;XÞui þ cieÞj þ gi � e;

gi � 0;

ð9Þ

where gi is a slack vector. The above problem is solved in a

similar manner to linear case by CCCP. However, it is

worth mentioning that for each i ði ¼ 1; 2; . . .; kÞ the

solution of nonlinear TWSVC is decomposed into solving a

series of subproblems which requires inversion of matrix of

size ðmþ 1Þ � ðmþ 1Þ along with a QPP to be solved,

where m is the total number of patterns.

3 Fuzzy least squares twin support vector
clustering

Taking motivation from [21], we first propose least squares

version of TWSVC and then extend it to fuzzy LS-TWSVC.
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Here, wemodify the primal problem of linear TWSVC (3) in

least squares sense, with inequality constraints replaced by

equality constraints along with adding a regularization term

in the objective function to incorporate structural risk min-

imization (SRM) principle. Thus, for cluster

i ði ¼ 1; 2; . . .; k) the optimization problem is given as:

Min
ðwi; bi; qi;XiÞ

1

2
kðXiwi þ bieÞk22 þ

m
2

kwik22 þ b2i

� �
þ C

2
kqik22

s:t:

jðXiwi þ bieÞj þ qi ¼ e;

ð10Þ

where m[ 0 is a parameter. Note that QPP (10) uses the

square of L2-norm of slack variable qi instead of L1-norm of

qi in (3), which makes the constraint qi � 0 redundant [18].

Solving (10) is equivalent to solving system of linear

equations.

Further, we introduce the fuzzy matrices Si and Si in

(10) which indicates the fuzzy membership value of each

data points to different available clusters as follows:

Min
ðwi; bi; qi;XiÞ

1

2
kððSiXiÞwi þ bieÞk22 þ

m
2

kwik22 þ b2i

� �
þ C

2
kqik22

s:t:

jððSiXiÞwi þ bieÞj þ qi ¼ e:

ð11Þ

Similar to the solution of TWSVC formulation [17], the

above optimization problem can be solved by using the

concave–convex procedure (CCCP) [20], which decom-

poses it into a series of j ðj ¼ 1; 2; . . .Þ quadratic sub-

problems with initial w0
i and b0i as follows:

Min
w
jþ1
i

; bjþ1
i

; qjþ1
ið Þ

1

2
k ðSiXiÞwjþ1

i þ b
jþ1
i e

� �
k22

þ m
2

kwjþ1
i k22 þ ðbjþ1

i Þ2
� �

þ C

2
kqjþ1

i k22
s:t:

T jððSiXi

� �
w
jþ1
i þ b

jþ1
i eÞjÞ þ q

jþ1
i ¼ e;

ð12Þ

where T(.) denotes the first-order Taylor expansion.

Working along the lines of [17], the equation (12)

reduces to

Min
w
jþ1
i

; bjþ1
i

; qjþ1
ið Þ

1

2
k ðSiXiÞwjþ1

i þ b
jþ1
i e

� �
k22

þ m
2

kwjþ1
i k22 þ ðbjþ1

i Þ2
� �

þ C

2
kqjþ1

i k22
s:t:

diag signððSiXiÞwj
i þ b

j
i eÞ

� �

ðSiXiÞwjþ1
i þ b

jþ1
i e

� �
þ q

jþ1
i ¼ e:

ð13Þ

Substituting the error variable q
jþ1
i into the objective

function of (13) leads to the following optimization

problem.

Min
w
jþ1
i

; bjþ1
ið Þ

1

2
k ðSiXiÞwjþ1

i þ b
jþ1
i e

� �
k22 þ

m
2

kwjþ1
i k22 þ ðbjþ1

i Þ2
� �

þ

C

2
kdiag signððSiXiÞwj

i þ b
j
i eÞ

� �
ðSiXiÞwjþ1

i þ b
jþ1
i e

� �
� ek22:

ð14Þ

Further, considering the gradient of (14) with respect to

w
jþ1
i and b

jþ1
i and equate it to zero gives:

ðSiXiÞT H1z
jþ1
i

h i
þ mwjþ1

i þ CðSiXiÞTGT GðH2z
jþ1
i Þ � e

h i
¼ 0;

ð15Þ

eT H1z
jþ1
i

h i
þ mbjþ1

i þ CeTGT GðH2z
jþ1
i Þ � e

h i
¼ 0; ð16Þ

where H1 ¼ ½SiXi e�, H2 ¼ ½SiXi e�, z
jþ1
i ¼ ½wjþ1

i ; bjþ1
i �

and G ¼ diagðsignðH2 z
j
i ÞÞ. Rearranging the above equa-

tions, we obtained the following system of linear equations:

HT
1H1 þ Imþ CHT

2H2

� �
z
jþ1
i ¼ CHT

2G
Te; ð17Þ

which gives the solution for z
jþ1
i :

z
jþ1
i ¼ w

jþ1
i ; bjþ1

i

h i
¼ CðHT

1H1 þ Imþ CHT
2H2Þ�1

HT
2G

Te:

ð18Þ

Input : The dataset X; the number of clusters k; appropriate F-LS-TWSVC
parameters C, ν.

Output : k fuzzy matrices Si for i = 1, 2, ..., k
Process:
1. Initialize fuzzy membership matrix S via FNNG(as explained in 5.3) for each data
points in k clusters.
2. For each i = 1, 2, ..., k :

2.1. Use obtained fuzzy membership matrix in Step 1 as initial fuzzy membership
matrix Sj

0 and solve equ.(18) to obtain [wj+1
i bj+1

i ], j = 0, 1, 2....
Sj+1
i = 1

dj+1

2.2. Stop when ‖Sj+1
i − Sj

i ‖ < ε and set Si = Sj+1
i

3. Update the cluster assignments by relabelling each sample by y = arg
i

max{Si}.

Algorithm 1: F-LS-TWSVC clustering algorithm
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It can be finally observed that our algorithm requires the

solution of (18) which involves inversion of smaller-di-

mensional matrix of size ðnþ 1Þ � ðnþ 1Þ as compared to

an additional QPP solution required in case of TWSVC.

The details of the proposed algorithm are described in

Algorithm 1.

4 Nonlinear fuzzy least squares twin support
vector clustering

Working on the lines of [11], we extend the nonlinear

formulation of F-LS-TWSVC by considering k cluster

center kernel-generated surfaces for i ¼ 1; 2; . . .; k:

Kðx;XÞui þ ci ¼ 0; ð19Þ

where K is any arbitrary kernel, ui 2 Rm and c 2 R. The

primal QPP of F-LS-TWSVC (9) is modified in least

squares sense as follows for i ¼ 1; 2; . . .; k:

Min
ðui; ci; giÞ

1

2
k ðSiKðXi;XÞuiÞ þ cieð Þk22 þ

m
2

jjuijj22 þ c2i

� �
þ CgTi gi

s:t:

j ðSiKðXi;XÞuiÞ þ cie
� �

j þ gi ¼ e:

ð20Þ

Similar to the linear case, for each i ¼ 1; 2; . . .; k the above

problem is also decomposed into series of quadratic sub-

problems where the index of subproblems is j ¼ 0; 1; 2. . .;

and solution of which can be derived to be:

u
jþ1
i ; cjþ1

i

h i
¼ C ET

1E1 þ Imþ CET
2E2

� ��1
ET
2F

Te; ð21Þ

where E1 ¼ ½SiðKðXi;XÞÞ e�, E2 ¼ ½SiðKðXi;XÞÞ e� and
F ¼ diagðsignð E2½u j

i ; b
j
i�ÞÞ.

The overall algorithm remains same as of linear case

except that now we solve for k kernel-generated surfaces

parameters li, ci, i ¼ 1; 2; . . .; k.

It can be noted that the nonlinear algorithm requires the

solution of (21) which involves calculating the inverse of

matrix of order ðmþ 1Þ � ðmþ 1Þ. However, we show that

(21) can be solved by calculating inverses of two smaller

dimension matrices as compare to ðmþ 1Þ � ðmþ 1Þ by

using Sherman–Morrison–Woodbury (SMW) [22] formula.

Therefore, inversion of matrices in (21) can be further

solved by

u
jþ1
i ; cjþ1

i

h i
¼ C Y � YET

1 ðI þ E1YE
T
1 Þ

�1
E1Y

� �
ET
2F

Te;

ð22Þ

where Y ¼ 1
m ðI � ET

2 ðmC þ E2E
T
2 Þ

�1
E2Þ, which involves

matrix inverses of (mi � mi) and (ðm� miÞ � ðm� miÞ),
respectively, for i ¼ 1; 2; . . .; k.

5 Experimental results

The TWSVC, LS-TWSVC and F-LS-TWSVC clustering

methods were implemented by using MATLAB 8.1 [23]

running on a PC with Intel 3.40 GHz with 16 GB of RAM.

The methods were evaluated on several benchmark data-

sets from UCI Machine Learning Repository [24].

5.1 Performance measure for UCI datasets

To compare the performance of various clustering algo-

rithm, we have used the metric accuracy [17] as the per-

formance criteria for UCI datasets. Given the k th cluster

labels yi where i ¼ 1; . . .;m; compute the corresponding

similarity matrix M 2 Rm�m, where

Mði; jÞ ¼
1 : if yi ¼ yj

0 : otherwise:

�
ð23Þ

Let Mt is the similarity matrix computed by the true cluster

label of the dataset and Mp corresponds to the label com-

puted from the prediction of clustering method. Then, the

metric accuracy of the clustering method is defined as the

MetricAccuracy ¼ n00 þ n11 � m

m2 � m
� 100%; ð24Þ

where n00 is the number of zeros in Mp and Mt, and n11 is

the number of ones in Mp and Mt respectively.

5.2 Performance measure for BSD

To establish the validity of our proposed formulations, we

also perform experiments on the Berkeley Segmentation

Dataset (BSD) [25] and for comparison we have used

F�measure [26] and error rate (ER) [27] as the perfor-

mance criteria.

– F�measure can be calculated as

F�measure ¼ 2� Precision� Recall

Precisionþ Recall
; ð25Þ

with respect to human ground truth boundaries. Here,

Precision ¼ TP

TPþ FP
;

and

Recall ¼ TP

TPþ FN
:

– ER can be calculated as

ER ¼ FPþ FN

TT
; ð26Þ

where TP is number of true detection object pixels, FP is

the number of false-detection object pixels, FN is the

Neural Comput & Applic (2018) 29:553–563 557
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number of false-detection not object pixels and TT is the

total number of pixels present in the image.

For our simulations, we have considered RBF kernel and

the values of parameters such as C, m and sigma (kernel

parameter) are optimized from the set of values

2iji ¼ �9;�8; . . .; 0f g using cross-validation methodol-

ogy [28]. The initial cluster labels and fuzzy membership

values are optimized from FNNG initialization as dis-

cussed in Sect. 5.3.

5.3 Steps involved in initialization of initial fuzzy

membership matrix via fuzzy NNG

Traditionally, the initial labels of clustering can be gener-

ated randomly. However, in our algorithm discussed in

Algorithm 1, we use fuzzy membership matrix as initial

input. In [17], authors have shown via experiments that the

results of plane-based clustering methods strongly depend

on the initial input of class labels. Hence taking motivation

from initialization algorithm based on NNG [17], we

implement fuzzy NNG (FNNG) and provide output in the

form of fuzzy membership matrix from FNNG method as

the initial input to our algorithm. The main process of

calculating FNNG is as follows:

1. For the given dataset and a parameter p, construct

p nearest neighbor undirected graph whose edges

represents the distance between xi (i = 1,...,m) and its

p nearest neighbor.

2. From the graph, t clusters are obtained by associating

the nearest samples. Further, construct a fuzzy mem-

bership matrix Sij where i ¼ 1; . . .m and j ¼ 1; . . .t

whose (i, j) entry can be calculated as follows,

Sij ¼
1

dij
; ð27Þ

where dij is the euclidean distance of the sample i with

the j th cluster. If the current number of cluster t is

equal to k, then stop. Else, go to step 3 or 4

accordingly.

3. If t\k, disconnect the two connected samples with the

largest distance and go to step 2.

4. If t[ k, compute the Hausdorff distance [29] between

every two clusters among the t clusters and sort all

pairs in ascending order. Merge the nearest pair of

clusters into one, until k clusters are formulated, where

the Hausdorff distance between two sets S1 and S2 of

sample is defined as

hðS1;S2Þ¼maxfmax
i2S1

fmin
j2S2

jji� jjjg;fmax
i2S2

fmin
j2S1

jji� jjjgg:

ð28Þ

For solving F-LS-TWSVC via CCCP, we would need to

initialize ½w0
1 b01� and to obtain the same we observe the

similarity between F-LS-TWSVC and F-LS-TWSVM, i.e.,

once the labels are known, solving F-LS-TWSVC is same

as solving F-LS-TWSVM [30]. Thus, the initial value of

½w0
1 b01� can be obtained as the solution of F-LS-TWSVM

classifier.

5.4 Computational complexity

In [11], authors have shown that TWSVM is approxi-

mately 4 times faster than SVM. The computational com-

plexity of TWSVM is ðm3=4Þ, where m is the total number

of training samples. In [18], authors have shown that the

solution of LS-TWSVM requires system of linear equa-

tions to be solved as opposed to the solution of TWSVM

which requires system of linear equations along with two

QPPs to be solved.

On the similar lines, our algorithm F-LS-TWSVC

essentially differs from TWSVC from the optimization

problem involved, i.e., in order to obtain k cluster plane

parameters, we solve only two matrices inverse of size

ðnþ 1Þ � ðnþ 1Þ in linear case, whereas TWSVC seeks to

solve system of linear equations along with two QPPs.

Table 6 shows the training time comparison among dif-

ferent algorithms with linear kernel on UCI dataset.

For nonlinear F-LS-TWSVC, solution requires inverse

of the matrices with order ðmþ 1Þ which can further be

solved by (22) using SMW formula where we tend to solve

inverse of two smaller dimension ðmi � miÞ and ððm�
miÞ � ðm� miÞÞ matrices. Table 7 shows the training time

comparison among different techniques with nonlinear

kernel on UCI dataset. Table 9 shows the training time

comparison among different techniques for image seg-

mentation on BSD dataset.

5.5 Experimental results on UCI datasets

In this section, we perform experiments on different UCI

datasets with TWSVC, and compared its efficacy with

proposed algorithms LS-TWSVC and F-LS-TWSVC,

respectively. The summary of UCI datasets is given in

Table 1.

In [17], authors have reported clustering accuracy by

considering whole dataset for learning the cluster hyper-

planes. However, in our presentation of results, we have

calculated training clustering accuracy as well as out of

sample testing clustering accuracy along with reporting

clustering accuracy on the whole dataset together. As a

result, we have presented the results in two subsection

discussed below.
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5.5.1 Part 1 results

Tables 2 and 3 summarize the clustering accuracy results

of proposed algorithms F-LS-TWSVC and LS-TWSVC

along with TWSVC on several UCI benchmark datasets

using linear and nonlinear kernel, respectively. These

tables show that metric accuracy of LS-TWSVC and

TWSVC are comparable to each other, which further

increases approximately 2–5 % on each datasets after

incorporating fuzzy membership matrix. In Tables 1 and 2,

we have taken results of kPC [8], PPC [9] and FCM [31]

from [17] from their respective references.

Figure 1 shows the relations between the parameters and

the clustering accuracy (vertical axis) of linear F-LS-

TWSVC on the above datasets. It can be found from Fig. 1

that the accuracy of F-LS-TWSVC is affected by both

p and c, and higher accuracy is reached by smaller value of

p for most datasets.

Figure 2 shows the relations between the parameters and

the accuracy (vertical axis) of nonlinear F-LS-TWSVC

only on two datasets. In Fig. 2, the x-axis, y-axis and z-axis

correspond to the kernel parameter, ‘‘c’’ parameter and

clustering accuracy on datasets, respectively. From Fig. 2,

it can be found that F-LS-TWSVC performs better for c\1

and r\1. From experiments we have observed that F-LS-

TWSVC is invariant from the value of m.

Table 1 Summary of UCI datasets

Dataset No. of

instances

No. of

features

No. of

classes

Zoo 101 17 7

Wine 178 13 3

Iris 150 4 3

Glass 214 9 6

Dermatology 358 34 6

E. coli 327 7 5

Compound 399 2 2

Haberman 306 3 2

Libras 360 90 15

Page blocks 5473 10 5

Optical recognition 5620 64 10

Table 2 Clustering accuracy

with linear kernel on UCI

datasets

Data kPC [8] PPC [9] FCM [31] TWSVC LS-TWSVC F-LS-TWSVC

Zoo 23.31 86.85 85.82 88.83 89.40 92.65

Wine 33.80 73.29 71.05 89.19 89.36 93.18

Iris 50.56 83.68 87.97 91.24 91.02 95.74

Glass 50.65 65.71 71.17 68.08 67.88 69.02

Dermatology 60.50 62.98 69.98 87.89 86.31 91.44

E. coli 27.01 64.42 78.97 83.68 84.04 88.13

Compound 67.54 76.92 84.17 88.31 88.33 88.70

Haberman 60.95 60.95 49.86 62.21 62.14 62.21

Libras 49.90 81.37 51.89 89.42 89.64 90.14

Page blocks – – – 79.88 79.58 81.01

Optical recognition – – – 79.26 79.22 80.17

Table 3 Clustering accuracy

with nonlinear kernel on UCI

datasets

Data kPC PPC TWSVC LS-TWSVC F-LS-TWSVC

Zoo 89.31 87.84 90.63 91.88 95.14

Wine 55.77 83.05 91.24 91.42 94.66

Iris 77.77 91.24 91.24 91.66 96.66

Glass 63.45 66.95 69.04 69.08 70.96

Dermatology 64.71 71.83 89.44 89.96 93.22

E. coli 86.35 70.17 85.45 87.01 90.17

Compound 88.49 96.84 97.78 96.32 97.88

Haberman 61.57 61.57 61.26 62.14 62.74

Libras 85.32 87.79 90.08 90.56 92.01

Page blocks – – 80.78 80.42 82.38

Optical recognition – – 81.32 81.06 82.14
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5.5.2 Part 2 results

In this part, clustering accuracy was determined by

following the standard fivefold cross-validation

methodology [28]. Tables 4 and 5 summarize testing

clustering accuracy results of our proposed algorithms

F-LS-TWSVC and LS-TWSVC along with TWSVC on

several UCI benchmark datasets (Tables 6, 7).

Fig. 1 Illustration of the effectiveness of linear F-LS-TWSVC on UCI datasets with different parameter: a zoo, b iris, c glass, d dermatology,

e E. coli, f compound, g Haberman and h libras

Fig. 2 Illustration of the effectiveness of nonlinear F-LS-TWSVC with different parameter. For Dermatology dataset a–c and for Zoo dataset d–f
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5.6 Experimental results on BSD datasets

In this section, we perform image segmentation on BSD

dataset with proposed algorithm F-LS-TWSVC. Texture

feature is one of the common feature used in image seg-

mentation. Hence, we extract pixel-level texture feature

from the images with the help of Gabor filter. Gabor fil-

ter [32] is a class of filters in which a filter of arbitrary

orientation and scale is synthesized as linear combination

of a set of ‘‘basis filter.’’ It allows one to adaptively ‘‘steer’’

a filter to any orientation and scale, and to determine

analytically the filter output as a function of orientation and

scale. In our experiments, we use three level of scale

(0.5, 1.0, 2.0) and four level of orientation

ð0�; 45�; 90�; 135�Þ. As a result, we have 12ð3� 4Þ coef-

ficients for each pixel of image. Finally, we use the max-

imum (in absolute value) of the 12 coefficients for each

pixels which represents the pixel-level wise Gabor features

of an image. Further, this feature used as an input to FNNG

which give us initial membership matrix for every pixels in

different clusters. We have also use this Gabor filter to

identify number of clusters present in the image.

Table 8 compares the performance of F-LS-TWSVC

with TWSVC methods on Berkeley Segmentation Dataset.

It is noticeable that for better segmentation, the value of

F�measure should be high and the value of ER should be

lower. Table 8 shows that the value of F-measure for F-LS-

TWSVC is higher and the value of ER is lower than

TWSVC (Table 9).

Figures 3, 4, 5 and 6 show the segmentation results

with F-LS-TWSVC and TWSVC, respectively.

Table 4 Testing clustering accuracy with linear kernel on UCI

datasets

Data TWSVC LS-TWSVC F-LS-TWSVC

Zoo 92:21	 3:23 93:56	 2:88 96:10	 2:18

Wine 85:88	 4:16 84:94	 4:89 90:92	 2:78

Iris 86:01	 8:15 86:57	 8:05 96:55	 1:23

Glass 65:27	 4:12 61:20	 5:26 65:41	 3:80

Dermatology 87:80	 2:39 88:08	 1:17 92:68	 2:42

E. coli 80:96	 5:16 82:45	 4:96 86:23	 4:56

Compound 89:34	 3:53 90:70	 3:20 90:22	 3:29

Haberman 62:57	 4:06 60:63	 3:94 64:63	 3:94

Libras 87:31	 1:53 87:34	 0:64 88:52	 0:49

Page blocks 74:98	 4:07 74:63	 3:89 76:32	 3:12

Optical recognition 74:01	 4:78 73:33	 5:04 77:40	 4:32

Table 5 Testing clustering accuracy comparison with nonlinear

kernel on UCI datasets

Data TWSVC LS-TWSVC F-LS-TWSVC

Zoo 93:47	 3:96 94:76	 3:04 97:26	 2:68

Wine 87:66	 4:46 88:04	 4:98 92:56	 3:48

Iris 88:08	 7:45 89:77	 7:88 97:25	 2:23

Glass 67:27	 4:62 64:64	 5:66 68:04	 4:14

Dermatology 88:26	 3:49 88:77	 1:74 94:78	 2:90

E. coli 83:28	 5:46 84:74	 5:07 88:96	 5:24

Compound 90:14	 3:68 90:98	 3:44 91:88	 3:55

Haberman 62:16	 4:26 60:03	 3:14 63:36	 3:44

Libras 88:16	 1:98 88:46	 1:06 90:05	 0:84

Page blocks 76:68	 5:22 75:99	 6:07 79:88	 5:51

Optical recognition 75:82	 5:78 75:32	 6:03 78:44	 4:11

Table 6 Average training time (in s) with linear kernel on UCI

datasets

Data TWSVC LS-TWSVC F-LS-TWSVC

Zoo 0.1262 0.0042 0.0052

Wine 0.0916 0.0033 0.0047

Iris 0.1645 0.0044 0.0051

Glass 0.2788 0.0062 0.0074

Dermatology 0.2666 0.0114 0.0160

E. coli 0.2687 0.0115 0.0136

Compound 0.5570 0.0199 0.0225

Haberman 0.1156 0.0054 0.0068

Libras 0.4592 0.0319 0.0491

Page blocks 7.6533 0.5316 0.8183

Optical recognition 8.3640 0.1860 0.2220

Table 7 Average training time (in s) with nonlinear kernel on UCI

datasets

Data TWSVC LS-TWSVC F-LS-TWSVC

Zoo 1.1200 0.5300 0.7000

Wine 1.6272 0.8447 0.9677

Iris 1.0535 0.5314 0.6468

Glass 6.8200 2.1500 2.6000

Dermatology 12.1500 6.2700 6.9100

E. coli 6.6280 2.9400 3.5111

Compound 17.6589 4.8600 5.3526

Haberman 3.1300 0.9593 1.1900

Libras 28.7700 19.0800 19.9400

Page blocks 204.6000 64.5000 78.6512

Optical recognition 420.5000 190.4100 210.3333
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6 Conclusions

In this paper, we have extended TWSVM-based clustering

method TWSVC to least squares version termed as LS-

TWSVC for both linear and nonlinear cases. Further

extension of LS-TWSVC to fuzzy scenario by introducing

Table 8 F-measure and error rate on BSD dataset

Image-ID F-measure ER

TWSVC F-LS-TWSVC TWSVC F-LS-TWSVC

3096 0.0250 0.0279 0.0538 0.0499

35070 0.0182 0.0427 0.2216 0.2001

42049 0.0215 0.0699 0.1249 0.0879

71046 0.0619 0.0625 0.2353 0.2280

86016 0.0491 0.0618 0.4806 0.3951

135069 0.0101 0.0141 0.0426 0.0380

198023 0.0500 0.0522 0.0742 0.0687

296059 0.0341 0.0369 0.0645 0.0616

Table 9 Training time (in s) comparison of Image segmentation on

BSD dataset

Image-ID TWSVC F-LS-TWSVC

3096 060.7049 020.6946

35070 168.8547 130.7123

42049 821.8520 510.9260

71046 118.2998 066.9686

86016 221.4578 130.2693

135069 395.4747 188.3213

198023 482.3645 200.9582

296059 275.1587 185.7195

Fig. 3 Segmentation results a original image (ImageID-296059),

b segmented image with F-LS-TWSVC and c segmented image with

TWSVC

Fig. 4 Segmentation results a original image (ImageID-86016),

b segmented image with F-LS-TWSVC and c segmented image with

TWSVC

Fig. 5 Segmentation results a original image (ImageID-71046),

b segmented image with F-LS-TWSVC and c segmented image with

TWSVC

Fig. 6 Segmentation results a original image (ImageID-198023),

b segmented image with F-LS-TWSVC and c segmentation results

with TWSVC

562 Neural Comput & Applic (2018) 29:553–563

123



a fuzzy membership matrix has been considered. The

proposed algorithms yields k cluster center planes by

solving a series of system of linear equations as opposed to

solving series of QPPs along with system of linear equa-

tions required for TWSVC algorithm. The experimental

results on several UCI benchmark datasets shows that our

proposed method achieves better clustering accuracy to

that of TWSVC and with considerably less computational

time. We have also validated our algorithm for image

segmentation where the images have been considered from

BSD image dataset.

Currently in FNNG initialization method, we have used

1=dij membership function where dij represent the distance

between two clusters i and j which would not be suit-

able for noisy data, i.e., Haberman dataset. Therefore, in

the future work, we would like to contribute by adding

other robust membership function which could handle the

noisy data as well.
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