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Abstract The influence of nonlinear thermal radiation on

the flow of a viscous fluid between two infinite parallel

plates is investigated. The lower plate is solid, fixed and

heated, while the upper is porous and capable of moving

toward or away from the lower plate. The effects of non-

linear thermal radiation are incorporated in the energy

equation by using Rosseland approximation. The similarity

transformations have been used to obtain a system of

ordinary differential equations. A finite element algorithm,

known as Galerkin method, has been employed to obtain

the solution of the resulting system of differential equa-

tions. It is observed that the radiation parameter Rd

increases the temperature of the fluid in all the cases con-

sidered. Same is the case with temperature ratio parameter

hw. The influence of the concerned parameters on the local

rate of heat transfer is also displayed with the help of

graphs.

Keywords Nonlinear thermal radiation � Deformable

walls � Porous channel � Heat transfer � Numerical solutions

1 Introduction

In modern era, there are a number of industrial and bio-

logical situations where we come across the domains that

exhibit dilating and squeezing motion. From filling

machines to expanding and contracting arteries, this type of

situation is very common. Also, in most of the cases, the

boundaries moving together or apart are permeable. To

understand the flow in such domains can help in under-

standing the mechanisms precisely. For this purpose,

researchers from all over the world have turned their heads

toward the study of the flows between dilating and

squeezing channels.

The brains behind initiating the study regarding the flow

between parallel and permeable plates are Berman. In his

pioneering work [1], he studied laminar flow in porous

channels. After him, many others followed his footsteps

and extended his journey. Some of the most recent and

relevant efforts are cited here [2–7]. In the flows between

dilating and squeezing walls, the resulting equation is

inherently nonlinear. For these equations, the exact solu-

tions are very unlikely. In the studies mentioned above,

several analytical as well as numerical methods have been

opted to obtain the solutions of the problems.

The study of heat transfer in different equipment,

instruments and mechanisms is essential to develop such

methods that not only ensure the proper working, but also,

the enhancements in the current gear. Thermal analysis of

the physical systems gives us such information that can be

very handy to increase the performance, reliability and the

durability of these systems. Some of such mechanisms are

involved in processes like the production of glass sheets,

automobile engines, combustion chambers, paper manu-

facturing and wire coating [8–16].

In the situations where the convective heat transfer plays

a less dominant role, the heat transfer through radiation

takes control of the total heat transfer and its actions are

more dominant. Even in the presence of free or forced

convection, the radiation has its own part to play and it

affects the total heat transfer in such a way that cannot
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easily be neglected. Due to this reason, several researchers

dedicated their efforts to study and model the radiative heat

transfer in different geometries and situations. Some of

them can be found here [17–21].

In our literature exploration, we have come to know that

the effects of thermal radiation have not been studied for the

flows through dilating and squeezing domains. In this article,

we have studied the effect of nonlinear thermal radiation in

the flow of a viscous fluid between two infinite plates. The

lower plate is fixed, solid and heated, while the upper plate is

permeable andmoving up and down yet remaining parallel to

the lower plate. After obtaining the governing system of

ordinary differential equations, we have solved it by using a

finite element method known as Galerkin method. The

results are compared with the solution obtained by a math-

ematical software Maple. A good agreement between the

solutions has been found that is displayed in the form of

tables. The effects of relevant physical parameters on the

temperature distribution are highlighted with the help of

graphs.An appropriate explanation of the events presented in

the graphical results is also provided.

2 Mathematical exploration

We intend to explore the effects of nonlinear thermal

radiation on the flow of a Newtonian fluid between two

infinite parallel plates. The lower plate is solid, fixed and

heated, while the upper plate is permeable and is moving

uniformly toward, or away from the lower plate at a time

(t) dependent rate _h tð Þ. The Cartesian coordinate system is

considered in such a way that the horizontal axis coincides

with the lower plate. The configuration of the axes in

presented in Fig. 1.

The components of velocity along �x and �y axes are

denoted by �u and �v, respectively. To cool down the lower

plate, a coolant is injected through the porous plate at a

uniform speed vw. We shall also be interested in examining

the case when the fluid is sucked out from the same plate at

the same speed. The conduction fluxes as well as the dis-

sipative disturbance, along the tangential direction, are

neglected.

For the current problem, Navier–Stokes equations take

the following form [3, 4];

o�u
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where t; �p; T and cp represent kinematic viscosity,

dimensional pressure, dimensional temperature and the

specific heat under constant pressure, respectively. Besides,

b ¼ k=�qcp is thermal diffusivity that depends on thermal

conductivity (k), density (�q) and cp. Furthermore, the term

�qr in Eq. (4) represents the net heat radiation flux. The

expression, approximating the radiative diffusion, is pro-

posed by Rosseland and is given by [22]

�qr ¼ � 16�r �T3

3aR

o�T

o�y
; ð5Þ

In above equation, �r symbolizes Stefan–Boltzmann con-

stant and aR denotes Rosseland mean absorption

coefficient.

By following [4], the auxiliary conditions can be written

as follows:

Fig. 1 Geometrical description

of the problem
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at �y ¼ 0;

�u ¼ �v ¼ 0 and �T ¼ �Tl;
ð6Þ

at �y ¼ h tð Þ;
�u ¼ 0; �v ¼ �Au

_h ¼ �vw and �T ¼ �Tu;
ð7Þ

where �Tl is the temperature of the heated plate. Moreover,

�Tu is the temperature at the upper wall where the coolant is

injected from.

Equations (1)–(3) can be reduced to a single, fourth-

order, ordinary differential equation (ODE). It can be

achieved by implementing the similarity transform pro-

posed by [2] and [23]. The transformation is given as under

- ¼ �y=h; �u ¼ t �x �F-=h
2; �v ¼ �t �F -; tð Þ=h: ð8Þ

In Eq. (8), the subscript - represents the differentiation

with respect to -. As the process of this transition has been

explained in many studies [2–4], so we feel appropriate to

mention only the essential ingredients and skip the details

about the process of reduction. The ultimate result is a non-

dimensional ODE that is given as follows:

�f ivð Þ þ a f �f 000 þ 3�f 00
� �

þ R �f �f 000 � �f 0�f 00
� �

¼ 0; ð9Þ

where a ¼ h _h=t and R ¼ hvw=t denote the dimensionless

wall reformation rate and the permeation Reynolds number,

respectively. As customary, the positive value of a represents
the partingmotion of the upper plate and the positive value of

R represents the injection of the fluid. Besides, the primes

denote the differentiation with respect to -. It is worth

mentioning that Boutros et al. [24] obtained a similar equa-

tion by using the Lie group symmetries.

The non-dimensional variables have been obtained by

using the following normalizing scales:

�u ¼ �u= _h; �v ¼ �v= _h; �x ¼ �x=h; �f ¼ �F=R: ð10Þ

The supporting conditions for the velocity profile, after

being non-dimensionalized, can be written as [4]

�f 0ð Þ ¼ �f 0 0ð Þ ¼ �f 0 1ð Þ ¼ 0; �f 1ð Þ ¼ 1; ð11Þ

The Eq. (4), representing the conservation of energy, can be

reduced to an ODE by using the following transformation:

�T ¼ �Tu þ �Tl � �Tu
� �

h -ð Þ: ð12Þ

Equation (12), also transforms the part of the boundary

conditions, in Eqs. (6) and (7), associated with the tem-

perature profile. The consequent ODE and the boundary

condition are presented, respectively, in the next two

equations to follow (see Eqs. 13 and 14).

1þ Rd 1þ hw � 1ð Þhð Þ3h0
� �0

þ Pr a-þ R�f
� �

h0 ¼ 0:

ð13Þ

h 0ð Þ ¼ 1; h 1ð Þ ¼ 0: ð14Þ

In Eq. (13), Pr ¼ b=t; Rd ¼ 16�r �T3
u=3aRk and hw ¼ �Tl=�Tu

represent Prandtl number, radiation parameter and the

temperature ratio (between lower and upper plates),

respectively.

The dimensionless expression, representing the local

rate of heat transfer also known as Nusselt number, can be

obtained by using the following relation:

Nu ¼ h

k �Tl � �Tu
� � �qr þ �qwð Þ; ð15Þ

where,

�qr ¼ �k
o�T3

o�y
: ð16Þ

By making use of Eqs. (5), (12), (15) and (16), Nusselt

number at lower and upper plates is given as:

Nu ¼ � 1þ Rd hwð Þ3
h i

h0 0ð Þ; ð17Þ

Nu ¼ � 1þ Rd½ �h0 1ð Þ: ð18Þ

3 Solution of the problem

The system of ordinary differential equation (Eqs. 9 and

13) with the boundary conditions (Eqs. 11 and 14) has been

solved by two methodologies. One, using a finite element

algorithm known as Galerkin method (GM), and the other,

by using built-in methods provide by a mathematical

software Maple. It is done to see the relative accuracy of

the calculated solutions. Galerkin method as other methods

of weighted residual (MWRs) requires a trial solution to

initiate the solution process. The trial solution is forged

with the help of basis function chosen from a set of

orthonormal basis. The residual is calculated by plugging

the trail solution into the differential equation. The trail

function contains some undermined constants that can be

calculated by minimizing the weighted residual in an

average sense.

To explain the procedure, let us consider a deferential

operator D acting upon a function f(-) to yield a function

g xð Þ, i.e.,
D f -ð Þð Þ ¼ g -ð Þ: ð19Þ

To find the solution of above problem, we consider a trial

solution �f -ð Þ which is a linear combination of linearly

independent base functions. i.e.,

f -ð Þ ffi �f -ð Þ ¼ /0 þ
Xn
1

ci/i; ð20Þ
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where/0 satisfies the essential boundary conditions and cis are

the constants to be determined. These constants are obtained by

minimizing the residual error in an average sense. The residual

for Eq. (19) after substituting Eq. (20) can be written as

R xð Þ ¼ D �f -ð Þ
� �

� g -ð Þ 6¼ 0; ð21Þ

If the trail solution is an exact solution the residual van-

ishes. In fact, it is very rare and mostly we end up with a

nonzero residual.

The next step is to construct a weighted residual error

with appropriate weights and minimize it to get the values

of cis, that is,Z
x

R xð ÞWi xð Þ ¼ 0 i ¼ 1; 2; 3; . . .n; ð22Þ

The above equation, after the selection of proper weight

functions, gives us a system of algebraic equation con-

sisting of unknown constants. After solving the resulting

system, we get the values of cis against which the residual

error is minimum. By using these values of constants in the

trial solution, we get an approximated solution for the

original differential equation.

To solve the problem at hand, we can use the following

couple of trail solutions.

�F -ð Þ ¼ 3-2 � 2-3 þ
X5
i¼1

ci -ð Þ -� 1ð Þi: ð23Þ

�h -ð Þ ¼ -þ
X5
i¼1

di -ð Þ -� 1ð Þi: ð24Þ

By using these as trial functions and following the steps

stated above, we can find the approximated solution of the

original problem. The following equations display the

solution of the problem for a particular set of values of the

parameters. i.e., R ¼ 1:5 : a ¼ 1:0 : hw ¼ 1:1 : Rd ¼ 0:1 :

Pr ¼ 4:5:

�f fð Þ ffi �F fð Þ ¼ �0:1954653365x6 þ 0:8756651867x5

� 0:737389047x4 � 2:370356119x3

þ 3:427545316x2 � 0:0000000001x

ð25Þ

h fð Þ ffi �h fð Þ ¼ �1:485749312x6 þ 2:144382664x5

þ 2:38518252x4 � 4:92411405x3

þ 0:515476060x2 þ 2:364822102x ð26Þ

To compare the results with Maple solutions, we present

the following tables. The values of the parameters remain

the same as stated above. Table 1 shows the comparison

for the velocity profile while the Table 2 does the same for

the temperature profile. A very good agreement between

both the solutions is clearly visible.

4 Results and discussion

We dedicate this section to explore and analyze the vari-

ations in the temperature distribution caused by the rele-

vant physical parameters. The graphs to follow provide a

pictorial description of the behavior of the temperature

profile under the influence of involved parameters.

Figures 2 and 3 display the influence of varying a on the

temperature profile #(-) for the suction (R\ 0) and

injection (R[ 0) cases, respectively. It is worth mention-

ing again that the positive values of a represent the parting

motion of the upper plate and the negative values of a
describes the case when the upper plate moves toward the

lower plate of the channel. Besides, the fixed upper plate is

described by the value a = 0. For the suction case (see

Fig. 2), the temperature of the fluid increases when the

upper plate moves toward the lower plate (a\ 0), as the

upper plate comes closer to the lower heated plate and the

fluid is sucked out from the upper plate, a rise in temper-

ature is logically sane. On the other hand, when the plates

go apart, a temperature drop is also evident from the same

Table 1 Comparison of the results for the velocity profile

- Numerical GM Abs error

0 0 0 0

0.1 0.03185218571 0.03183991931 1.22663997e-005

0.2 0.1172823582 0.1172268444 5.551378927e-005

0.3 0.2405736846 0.2404919842 8.170042084e-005

0.4 0.3860434854 0.3859934849 5.000051643e-005

0.5 0.538787728 0.53881539 2.766204725e-005

0.6 0.6852269057 0.6853258658 9.896007747e-005

0.7 0.81348009 0.8135946924 0.0001146024316

0.8 0.9135997972 0.9136700189 7.022170745e-005

0.9 0.9776994852 0.9777143836 1.489839539e-005

1 1 1 6.661338148e-016

Table 2 Comparison of the results for temperature profile

- Numerical GM Abs error

0 0 0 0

0.1 0.2368314327 0.2369713331 0.0001399003685

0.2 0.4579219914 0.458597957 0.0006759656158

0.3 0.6466426742 0.6463361141 0.0003065600968

0.4 0.7908863325 0.7901952342 0.0006910983133

0.5 0.8884218412 0.8886368442 0.0002150029828

0.6 0.9465269517 0.9474037424 0.0008767907444

0.7 0.9771155349 0.9772794233 0.0001638883749

0.8 0.9914819664 0.9907777782 0.0007041882200

0.9 0.9975950915 0.9977630399 0.0001679483994

1 1 1 6.661338148e-016
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figure. A lager area of the channel perhaps is a reason

behind this drop. For injection case, a similar behavior is

shown in the next figure (see Fig. 3); however, this time the

temperature has lesser values. These lesser values are a

result of injection of a coolant fluid from the upper plate.

Figures 4 and 5 display the effects of permeation Rey-

nolds number R on the temperature profile for contraction

and expansion cases, respectively. The behavior is similar

as far as the variations due to the suction or injection are

concerned; with increasing suction, the temperature of the

fluid increases, and for increasing injection, the tempera-

ture falls. This is expected as the injection of coolant is

supposed to drop the temperature of the fluid. It is also

appropriate to mention that the contracting channel has

higher temperature values as compared to the expanding

channel. It is due to the decrement and increment in the

area of the channel, respectively.

The variations in the temperature profile, caused by

increasing hw, are captured in next two figures (see Figs. 6,

Fig. 2 Temperature variations due to changing a: suction case

Fig. 3 Temperature variations due to changing a: injection case

Fig. 4 Temperature variations due to changing R: contraction case

Fig. 5 Temperature variations due to changing R: suction case

Fig. 6 Temperature variations due to hw varying:

injection/contraction

Fig. 7 Temperature variations due to hw varying: injection/expansion
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7). Two cases are considered, the injection combined with

contraction, and the injection combined with expansion.

The temperature in both the cases rises due to increasing

hw. As hw increases, the temperature difference between the

lower and upper plate increases. Due to the increasing

temperature difference, more heat flows toward the upper

plate, and in results, the temperature of the fluid rises.

Figures 8 and 9 display that the temperature distribution

rises with increasing Rd. As Rd increases, the mean

absorption decreases; therefore, a temperature surge is

most likely. It can also be seen from the same figures that

the deviation in the temperature distribution is more

prominent in the expansion/injection case.

In Fig. 10, an increment in the rate of heat transfer, at

upper and lower plates, is portrayed. This increment is

caused by increasing the values of hw. The local rate of heat
transfer (Nusselt number) is plotted against the increasing

values of Rd. It is also evident that an increase in Rd

increases the Nusselt number. The case considered,

involves expansion combined with injection.

We keep the same setup as was in Fig. 10, but now the

case considered is contraction combined with suction (see

Fig. 11). For this case, Nusselt number at lower plate

behaves in a similar manner as it did in the expansion/

injection case; however, the behavior is opposite at upper

plate, and there a decrease in Nu is observed for increasing

both Rd and hw.

5 Conclusion

This manuscript deals with the study of effects of nonlinear

thermal radiation on the flow of a viscous fluid between

two infinite plates. The lower plate is fixed, solid and

heated, while the upper plate is porous and it is moving to

or away from the lower plate. Appropriate similarity

transformations have been used to obtain a system of

ordinary differential equations from the laws of conserva-

tion of mass, momentum and energy. The nonlinear radi-

ation effects have been incorporated in energy equation by

using Rosseland approximation [22]. The solution of the

problem is found by using Galerkin method. The Galerkin

solution is also supported by a numerical solution obtained

by using built-in routines of the mathematical software

Fig. 8 Temperature variations due to Rd varying:

injection/contraction

Fig. 9 Temperature variation du to Rd varying: injection/expansion

Fig. 10 Nusselt number for hw
varying: expansion/injection
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Maple. A summary of conclusive remarks is presented in

the form of bullet points as follows:

• The temperature of the fluid rises when the plates come

closer to each other and it drops when they go apart (see

Figs. 2, 3). This happens for both suction and injection

cases.

• For a fixed contraction or expansion rate, the injection

of coolant decreases the temperature. The temperature

increases when the suction takes place. (see Figs. 4, 5).

In all the cases considered, the temperature rises with

increasing Rd and hw. It means that the thermal radiation

increases the temperature of the fluid.

Nusselt number, at lower and upper plates, increases

with increasing Rd and hw in all the cases, except at

upper wall when the contraction is combined with

suction.
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