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Abstract Linear antenna array (LAA) design is a classical

electromagnetic problem. It has been extensively dealt by

number of researchers in the past, and different optimiza-

tion algorithms have been applied for the synthesis of

LAA. This paper presents a relatively new optimization

technique, namely flower pollination algorithm (FPA) for

the design of LAA for reducing the maximum side lobe

level (SLL) and null control. The desired antenna is

achieved by controlling only amplitudes or positions of the

array elements. FPA is a novel meta-heuristic optimization

method based on the process of pollination of flowers. The

effectiveness and capability of FPA have been proved by

taking difficult instances of antenna array design with

single and multiple objectives. It is found that FPA is able

to provide SLL reduction and steering the nulls in the

undesired interference directions. Numerical results of FPA

are also compared with the available results in the literature

of state-of-the-art algorithms like genetic algorithm, parti-

cle swarm optimization, cuckoo search, tabu search, bio-

geography based optimization (BBO) and others which

also proves the better performance of the proposed method.

Moreover, FPA is more consistent in giving optimum

results as compared to BBO method reported recently in

the literature.

Keywords Antenna � Linear antenna array � Optimization �
Flower pollination algorithm � Evolutionary computing

1 Introduction

Antennas are part and parcel of wireless communication.

Without antennas, it is difficult to imagine wireless com-

munication. For long distance communication, a single

antenna is not capable as it does not have sufficient gain.

Hence, antenna arrays are used to overcome this problem. In

antenna arrays, number of same type of element antennas are

arranged suitably to have required antenna characteristics.

Antenna arrays are of different types depending upon the

geometry, namely, linear antenna array (LAA), circular

antenna array, hexagonal antenna array and so on. Antenna

arrays find their application in number of fields like radar,

satellite, radio and many more [1]. The synthesis of antenna

array is a nonlinear and complex problem. Gradient methods

require initial guess for obtaining good solution and may

stuck in local minima. Hence, these are not good choice for

optimization of antenna arrays. So, different global opti-

mization techniques have emerged as good alternative for

antenna array optimization.

LAA synthesis using global optimization methods too

has received wide interest in researchers due to its geo-

metrical simplicity and large applications. Tabu search

(TS) has been applied for the designing of LAA by Merad

et al. [2]. Particle swarm optimization (PSO) has been used

for optimizing element positions of linear array to reduce

side lobe level (SLL) and null placement [3–5]. Rattan

et al. [6] have designed aperiodic LAA using genetic

algorithm (GA) and compared the results with PSO [3].

Cengiz and Tokat [7] have evaluated the performance of

GA, TS and memetic algorithm (MA) for the design of

three different linear arrays. Lin et al. [8] have investigated

the performance of differential evolution (DE) for sym-

metric aperiodic LAA. They have also shown the effect of

angle resolution. The performance of self-adaptive
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differential evolution (SADE) and Taguchi’s method (TM)

for design LAA has been compared in [9]. Biogeography

based optimization (BBO) has been applied for obtaining

linear antennas with low SLL and null placement in desired

directions [10–12]. Ant colony optimization (ACO) has

been applied for the synthesis of nonuniform LAA [13].

Multi-objective variant of DE called MOEA/D-DE has

been employed to synthesize LAA. In their work, the

authors have shown that MOEA/D-DE provides better

trade-off curves between null placement and SLL as

compared to single-objective optimization methods [14].

Goudos et al. [15] have applied an advance version of PSO,

namely comprehensive learning particle swarm optimiza-

tion (CLPSO) to three unequally spaced LAA for SLL

reduction, null placement and beamwidth control. LAA has

been also designed using a variant of DE called fitness

adaptive differential evolution (FiADE) by Chowdhury

et al. [16]. Harmony search algorithm (HSA) has been

employed for SLL reduction and null placement [17].

Singh and Rattan [18] have used cuckoo optimization

algorithm (COA) for synthesis of LAA and have obtained

lower SLL and better null values as compared to other

popular methods. Moreover, they have shown that the

convergence of COA is faster than other algorithms used

for the design of LAA. Khodier [19] has used cuckoo

search (CS) for the design of LAA and Yagi-Uda array.

Guney and Durmus [20] have used backtracking search

algorithm (BSA) for pattern nulling of LAA. Babayigit

et al. [21] have used clonal selection algorithm for null

synthesis of LAA by controlling element amplitudes. An

immune algorithm has been used for the null steering of

LAA by optimizing element amplitude excitations [22].

Position only pattern nulling of LAA using clonal selection

algorithm has been done by Guney et al. [23]. LAA design

problem has been investigated extensively in the past using

different well-known algorithms. So, it makes sense to

apply a new algorithm to the same problem and evaluate its

results with those available in the literature. In this paper,

flower pollination algorithm (FPA) is used for optimization

of LAA for reduction of maximum SLL and null control.

FPA given by Yang [24] is a new algorithm inspired from

the nature. It has been shown to be better than PSO and GA

for ten benchmark problems. Moreover, it has been suc-

cessfully used as an optimizer to solve problems in dif-

ferent engineering fields [25–29]. To show the strength and

capability of FPA as an optimizer, different LAA design

problems have been taken up for optimization that have

been studied in the past using various optimization meth-

ods. A comprehensive comparisons of results have been

made with the results of TS [2], GA [6, 7], MA [7], PSO

[3, 4], SADE [9], TM [9], MOEA/D-DE [14], FiADE [16],

BBO [10–12], ACO [13], BSA [20], HSA [17], CLPSO

[15], COA [18] and CS [19] techniques.

The rest of the paper is organized as follows: Sect. 2

presents basic FPA algorithm, while in Sect. 3, results and

discussion related to LAA are presented. Finally, in

Sect. 4, the paper is concluded.

2 Flower pollination algorithm

The Darwinian theory of natural selection accounting for

survival of the fittest is well known and is also applicable

to flowers where different species of flowers pollinate.

The pollination process in flowers paves way for optimal

production of best fit flowers. Almost 250,000 (80 %) of

all plants species are flowering, hence, dominating land-

scape aging from Cretaceous period (more than 125

million years) [30, 31]. From biological and evolutionary

point of view, the main function of flowers is to repro-

duce and the process is pollination. In pollination, the

transfer of pollen takes place which is further associated

with pollinators such as insects, birds and others. Some

flowers attract only specific species of insects or birds for

pollination resulting into specialized flower-pollinator

partnership [32].

The major forms of pollination are biotic and abiotic.

Biotic pollination in flowers is associated with pollinators

such as insects, birds, bats, honey bees and other animals. It

constitutes about 90 % of flowering plants. In contrary to

biotic, abiotic pollination does not require any pollinators.

As in case of grass where wind or diffusion in water help in

pollination [32]. Pollinators also called pollen vectors are

very diverse (at least 200,000 varieties) and can also

develop flower constancy. Constancy means pollinators

tend to visit certain species and bypass other species. This

maximizes the transfer of pollens to the same species of

flower or conspecific plants and also increases reproduction

rate of the same flower species. The pollinators in turn also

get benefited as in case of honey bee, they visit only certain

species to collect nectar maintaining minimum cost and

more intake of nectar [33].

Pollination can also be achieved by self-pollination or

cross-pollination. Self-pollination is the one in which

fertilization takes among different flowers of same species

or same flower, while in case of cross-pollination or

allogamy, pollination occurs between pollens of flowers

of different plants. Cross-pollination can be biotic and

occurs over long distances, thus also considered as global

pollination. Pollinators such as bees, bats and flies are

examples of biotic cross-pollinators. These pollinators

follow a Lévy flight behavior with steps obeying Lévy

distribution [34].

FPA was proposed by Yang [24] and was inspired from

the pollination process and constancy of flowering plants.

The algorithm is idealized into four general rules:
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Rule 1 Movement of pollen carrying pollinators obeys

Lévy flights, and biotic and cross-pollination are

considered as global pollination.

Rule 2 Abiotic and self-pollination are used for local

pollination.

Rule 3 Flower constancy which is proportional to the

similarity of two flowers can be considered as the

reproduction probability.

Rule 4 Switch probability p � [0, 1] controls the local and

global pollination. Physical proximity and factors such

as wind, bias the pollination activities towards local

pollination.

As each plant has multiple flowers, and each flower patch

release millions of pollen gametes. For present case, we

assume only a single flower producing only a single pollen

gamete. Thus, a single pollen gamete, flower or plant acts as

potential solution of the problem under consideration.

The above-mentioned four rules are converted into

proper equations. Global and local pollination are the main

steps of FPA. In global pollination, pollinators carry pollen

gametes even over long distances. Here Rule 1 and Rule 3

are used to formulate new equation as

xtþ1
i ¼ xti þ aL lð Þ R� � xti

� �
ð1Þ

where xi
t is the potential solution at t iteration, R* is the

current best solution, a is the scaling factor to control step

size of L(l), the Lévy flight-based step size corresponding

to strength of pollination. As pollinators travel variable

distance steps, so Lévy flight is used and is given by

L� l kð Þ sin pl=2ð Þ
p

1

s1þl
;

�
ðs � s0 [ 0Þ ð2Þ

where C(l) is the standard gamma function with step size

s[ 0 and theoretically s0 � 0, but practically it can be as

small as 0.1. The pseudorandom step size obeying Lévy

distribution is obtained from Mantegna algorithm by using

two Gaussian distributions. In local pollination, Rule 2 and

Rule 3 can be represented mathematically as

xtþ1
i ¼ xti þ � xtj � xtk

� �
ð3Þ

where xj
t and xk

t are pollens from different flowers of same

plants. Hence, flower constancy occurs in limited space

corresponding to a local randomwalk drawn from a uniform

distribution � in [0, 1]. The flowchart of FPA is given Fig. 1.

3 Design examples

ALAA consists of N antenna elements arranged in a straight

line. A symmetric LAA along the x-axis with 2 N elements is

shown in Fig. 2. The elements are divided into two groups of

N elements on each side of the origin. This symmetric

arrangement helps in providing symmetric radiation pattern

which is desirable for many applications. The symmetry also

reduces computational complexity as only N elements have

to be optimized instead on 2 N. The array factor (AF) in x–y

plane (azimuth plane) is given by [1]:

AF ;ð Þ ¼ 2
XN

n¼1

In cos kxn cos ;ð Þ þ un½ � ð4Þ

Fig. 1 Flowchart of FPA
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where In, un and xn are amplitude excitation, phase and

position of nth element, respectively, and k ¼ 2p=k is the

wave number. Hence, AF is a function of In, un, and xn. In

equally spaced or uniform antennas, the element positions

are kept fixed to k/2 but the element excitations are varied

to get the required radiation pattern. On the other hand,

unequally spaced antennas have uniform element excita-

tion but element positions are maneuvered to get the

desired antenna. In this work, FPA is used to find the

optimum design of both equally and unequally spaced

LAA.

In this section, FPA is implemented for synthesis of

uniform and nonuniform LAA. The performance of FPA

has been evaluated by taking several different examples

which have been studied in the literature. The aim is to

obtain an antenna having radiation pattern with minimum

possible SLL and nulls in the desired directions. The fit-

ness or objective function to achieve the desired goal is

given by:

Fitness ¼ k1fSL ;ð Þ þ k2fNS ;ð Þ ð5Þ

where k1 and k2 are the weights of the two goals. fSLðhÞ and
fNSðhÞ are given by:

fSL ;ð Þ ¼ max AF ;ð Þ½ � ð6Þ

fNS ;ð Þ ¼ max
k¼1.........K

AF ;nullk

� �� �� �
ð7Þ

and SL is the feasible region of sidelobes and ;nullk is the k-

th null direction. In the above equations, the value of AF is

in decibels.

3.1 Equally spaced linear arrays

The performance of FPA is evaluated by applying it to the

established LAA antenna design problem. Firstly, three

equally spaced antennas of different sizes are considered

for the optimization. The goal of optimization is to reduce

maximum SLL by perturbing the element amplitude exci-

tations. In this work, the element phase excitations are

assumed to be uniform and equal to zero, i.e., un = 0�. To
maintain a distance of k/2 between two elements on either

side of origin, the position of first element is taken as

x1 = k/4. The AF given in (4) for equally spaced array now

becomes:

AF ;ð Þ ¼ 2
XN

n¼1

In cos n� 0:5ð Þp cos ;ð Þ½ � ð8Þ

In the first example, a 10-element antenna array is taken

for having minimum SLL only. To achieve the desired

design, the value of k1 = 1 and k2 = 0 is taken in the

fitness function. The aim is to suppress the maximum SLL

in the region ; 2 [104�, 180�]. As this is a symmetric array,

there are only five element amplitudes that are to be opti-

mized. Hence, the number of parameters to be optimized is

five. The amplitudes of the elements allowed to vary

between [0, 1]. For the FPA algorithm, the population size

is taken as 20 and maximum number of iterations are fixed

to 500. The value of probability switch p = 0.8 is taken,

and for Levy flight, l is fixed to 1.5. The results obtained

by FPA are listed in Table 1. The convergence

Fig. 2 A 2 N element linear antenna array

Table 1 Optimum amplitude excitations obtained using FPA for

10-element LAA

Element 1 2 3 4 5

Amplitude 1 0.8979 0.7178 0.5002 0.3833

Table 2 Comparison of results of different algorithms for 10-ele-

ment LAA

Algorithm PSO [4] TM [9] BBO [11] FPA

SLL (dB) -24.62 -24.88 -25.21 -25.32
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Fig. 3 Convergence characteristics of FPA for 10-element LAA
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characteristics of FPA are shown in Fig. 3. The results are

compared with the antenna array obtained by PSO [4], TM

[9] and BBO [11] for the same objective in Table 2. The

FPA has obtained SLL of -25.32 dB as compared to PSO

[4], TM [9] and BBO [11] antenna which have SLL of

-24.62, -24.88 and -25.21 dB, respectively. The radia-

tion pattern of FPA optimized array is shown in Fig. 4

along with the radiation pattern of PSO [4], BBO [11] and

TM [9] arrays. The performance of BBO [11] and FPA is

compared in Table 3 in terms of standard deviation (SD).

The SD of FPA is quite less and is 0.0063 which indicates

that FPA is consistent in giving better solutions. Moreover,

when compared to BBO [11], it turns out to be more robust

as it has lower SD. Figure 5 shows the distribution of SLL

for 20 runs of FPA.

In the second example, FPA is used for maximum SLL

reduction and null placement of a 20-element LAA. The

single null is to be placed in the direction of 104�. In this

case, the value of k1 = 20 and k2 = 1 is taken. The others

parameters for optimization are same as in the previous
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Fig. 4 Radiation pattern of FPA optimized 10-element LAA com-

pared to other optimization methods

Fig. 5 Distribution of maximum SLL for 20 runs of FPA for

10-element LAA

Table 3 Comparison of performance of FPA with BBO [11] for

10-element LAA in 20 runs

BBO [11] FPA

Best SLL (dB) -25.2100 -25.3259

Worst SLL (dB) -24.0763 -25.2998

Average (dB) -24.9704 -25.3144

SD (dB) 0.2596 0.0063

Table 4 Optimum amplitude excitations obtained using FPA for 20-element LAA with null at 104�

Element 1 2 3 4 5 6 7 8 9 10

Amplitude 1.0000 0.9472 0.9230 0.8239 0.7287 0.5760 0.4414 0.2973 0.2304 0.2304

Table 5 Comparison of results of different algorithms for 20-ele-

ment LAA with null at 104�

Algorithm BSA [20] HSA [17] FPA

SLL (dB) -29.22 -29.14 -31.31

Null (dB) (104�) -134.2 -122.5 -120.9
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Fig. 6 Radiation pattern of FPA optimized 20-element LAA with

null at 104� compared to other optimization methods
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example with the exception that the algorithm is run for

1000 iterations. The optimum excitation amplitudes

obtained after optimization are given in Table 4. The

results of FPA and other popular algorithms are compared

in Table 5 with respect to SLL and null value obtained.

Clearly it can be seen that FPA has provided the better

results in terms of reduced SLL as compared to BSA [20]

and HSA [17] arrays. The null in the direction of 104� has a
value of -120.9 dB. It is pertinent to mention that any

value of AF lesser than -60 dB is considered as a null. The

array patterns of FPA, BSA [20] and HSA [17] optimized

arrays with null at 104� direction are shown in Fig. 6.

To test the proficiency of FPA for synthesis of LAA

with multiple nulls in any direction, in the next example,

it is used to optimize again a 20-element LAA for

maximum SLL reduction and null placement in two

directions, i.e., at 104� and 116�. The normalized exci-

tation amplitudes obtained after FPA optimization are

given in Table 6. As can been observed from Table 7,

the SLL obtained by FPA is least as compared to BSA

[20], HSA [17] and BBO [12] algorithms. Moreover,

FPA successfully imposed nulls of -98.45 and

-102.6 dB in 104� and 116� directions, respectively.

The radiation pattern of FPA optimized LAA along with

that of BSA [20], HSA [17] and BBO [12] optimized

arrays is shown in Fig. 7.

3.2 Unequally spaced linear arrays

The synthesis of unequally spaced linear array has been

very popular antenna array problem in the recent past. The

nonuniform spacing between the elements results in an

aperiodic array factor. This aperiodic attribute of the array

factor aids in attaining lower SLL with lesser number of

antenna elements for a given aperture size. Moreover, due

to uniform excitation of elements, the cost and complexity

of the feed network is reduced. But since the relationship

between array factor and positions of elements is non-

linear and non-convex, the design of unequally spaced

arrays is intricate. The AF of a nonuniform array with

uniform amplitude excitations, i.e., In = 1 and un = 0� is
given by:
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Fig. 7 Radiation pattern of FPA optimized 20-element LAA with

null at 104� and 116� compared to other optimization methods

Table 6 Optimum amplitude excitations obtained using FPA for 20-element LAA with null at 104� and 116�

Element 1 2 3 4 5 6 7 8 9 10

Amplitude 1.0000 0.9882 0.8369 0.7035 0.6124 0.4279 0.3654 0.2028 0.1787 0.8369

Table 7 Comparison of results of different algorithms for 20-ele-

ment LAA with null at 104� and 116�

Algorithm BSA [20] HSA [17] BBO [12] FPA

SLL (dB) -28.55 -28.34 -26.8 -30.61

Null (dB) (104�) -131.2 -125 -101.1 -98.45

Null (dB) (120�) -130.7 -135 -101 -102.6

Table 8 Optimum element positions obtained using FPA for

12-element unequally spaced LAA

Element 1 2 3 4 5 6

Position 0.3952 1.2016 2.0622 2.9954 4.1668 5.5576
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Fig. 8 Convergence characteristics of FPA for 12-element unequally

spaced LAA
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AF /ð Þ ¼ 2
XN

n¼1

cos kxn cos /ð Þ½ � ð9Þ

In order to rank FPA as one of the good optimizers, it is

imperative that a comparison of its performance is made

with other well-known methods. Again in this case, five

different problems of different array size are taken from the

literature which have been designed using state-of-the-art

algorithms.

In the first example for nonuniform linear arrays, a

12-element LAA is taken for FPA optimization. The aim is

to reduce SLL in the region ; 2 [98�, 180�] by optimizing

the element positions. To achieve the required antenna, the

value of k1 = 1 and k2 = 0 is chosen in the fitness function

given in (5). Again for this optimization, number of itera-

tions are 1000 with other parameters remaining the same.

The FPA optimized positions for 12-element LAA are

given in Table 8. The convergence graph for FPA opti-

mization is shown in Fig. 8. The performance of FPA in

terms of SLL attained is compared with that of FiADE

[16], TS [7], MA [7], GA [7] and PSO [16]. The maximum

SLL achieved by FPA is -20.764 dB which is least in

Table 9. For the same problem, the SLL obtained by

FiADE [16], TS [7], MA [7], GA [6] and PSO [16] is

18.96, -18.40, -19.10, -18.79 and -17.90 dB. The

optimized radiation pattern for FPA LAA is given in

Fig. 9. Also in the same figure for the purpose of com-

parison, radiation patterns of GA [7], PSO [16], FiADE

[16] are also plotted. Table 10 shows the performance of

FPA for 20 runs for this example. Clearly, it can be

observed that FPA is very consistent in obtaining optimum

solutions as the SD value is quite low. The maximum SLLs

obtained for the 20 runs are shown in Fig. 10.

In the next example, a 22-element is considered for FPA

optimization. The aim is to suppress the SLL in the region

; 2 [98�, 180�] and also to impose a null in the direction of

99�. For this optimization, the weighting factors k1 = 25

and k2 = 1 in the fitness function have been taken. The

Table 9 Comparison of results of different algorithms for 12-element unequally spaced LAA

Algorithm FiADE [16] TS [7] MA [7] GA [7] PSO [16] FPA

SLL (dB) -18.96 -18.40 -19.10 -18.7770 -17.90 -20.764

Table 10 Performance of FPA

algorithm for 12-element

unequally spaced LAA in 20

runs

FPA

Best SLL (dB) -20.7640

Worst SLL (dB) -20.6923

Average (dB) -20.7330

SD (dB) 0.022

Table 11 Optimum element positions obtained using FPA for

22-element unequally spaced LAA with null at 99�

Element 1 2 3 4 5 6

Position 0.4269 0.7919 1.2906 1.9942 2.6005 3.0342

Element 7 8 9 10 11

Position 3.9015 4.4903 5.5128 6.4482 7.7264
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Fig. 9 Radiation pattern of FPA optimized 12-element unequally

spaced LAA

Fig. 10 Distribution of maximum SLL for 20 runs of FPA for

12-element unequally spaced LAA
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optimum element positions obtained using FPA are given

in Table 11. In Table 12, the results of FPA are compared

with BSA [20], TS [7], GA [7], MA [7], HSA [17], PSO

[16] and MOEA/D-DE [14] methods in terms of peak SLL

obtained and value of null in the desired direction. The

SLL obtained by FPA for LAA is -23.81 dB which is

better than other techniques listed in Table 12. The null

value is also -101.71 dB which is deeper than GA [7], TS

[7] MS [7], PSO [16] and MOEA/D-DE [14] optimized

antennas. Figure 11 shows the plot of radiation patterns of

BSA [20], HSA [19], MOEA/D-DE [14] and FPA opti-

mized LAA which also indicates that the suppression of

SLL is maximum for FPA optimized LAA and also null

placement in the 99� direction.
In the third example for nonuniform LAA, a 26-element

array is designed for having minimum SLL in band ; 2
[100�, 180�] and nulls in the directions of 120� and 168�.
The value of k1 = 15 and k2 = 1 in the fitness function

yielded optimum results for this design problem. The

optimum geometry obtained after FPA optimization is

Table 12 Comparison of results of different algorithms for 22-element unequally spaced LAA with null at 99�

Algorithm BSA [20] TS [7] GA [7] MS [7] HSA [17] PSO [16] MOEA/D-DE [14] FPA

SLL (dB) -23.54 -17.17 -15.73 -18.11 -23.28 -20.68 -20.93 -23.81

Null (dB) (99�) -104.61 -67.94 -54.29 -73.92 -103.3 -49.94 -69.64 -101.71

Table 13 Optimum element

positions obtained using FPA

for 26-element unequally

spaced LAA with nulls at 120�
and 168�

Element 1 2 3 4 5 6 7

Position 0.3832 1.3986 2.2314 3.3338 4.1948 5.2293 6.2419

Element 8 9 10 11 12 13

Position 7.3744 8.5678 9.9085 11.6729 13.1859 14.8374

Table 14 Comparison of

results of different algorithms

for 26-element unequally

spaced LAA with null at 120�
and 168�

Algorithm MOEA/D-DE [14] TS [7] GA [7] MS [7] PSO [16] FPA

SLL (dB) -18.2 -13.2 -15.73 -18.11 -11.75 -21.65

Null (dB) (120�) -89.98 -49.65 -55.76 -55.55 -56.45 -126.9

Null (dB) (168�) -74.16 -42.39 -47.7 -77.17 -37.8 -116.2
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Fig. 11 Radiation pattern of FPA optimized 22-element unequally

spaced LAA with null at 99�
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Fig. 12 Radiation pattern of FPA optimized 26-element unequally

spaced LAA with null at 120� and 168�
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shown in Table 13. In Table 14, the SLL and null values

are compared with the results of MOEA/D-DE [14], TS [7],

GA [7], MA [7] and PSO [16]. As it is obvious from the

table, the SLL reduction is maximum in case of FPA

optimized LAA. The SLL of FPA synthesized LAA is

-21.65 dB. The null values at 120� and 168� are -126.9

and -116.2 dB, respectively. The radiation patterns of GA

[7], MA [7], PSO [16] and FPA arrays are shown in

Fig. 12.

To test the proficiency of FPA in steering multiple nulls

in the desired directions, a 28-element LAA is designed in

this example. The aim is to impose the nulls in 120�, 122.5�
and 125�. The SLL is reduced in the region ; 2 [100�,
180�]. The optimized array geometry is given in Table 15.

The optimized radiation pattern is shown in Fig. 13. For

the sake of comparison, radiation plots of quadratic pro-

gramming method (QPM) [3], HSA [17] and BSA [20] are

also shown in the same figure. The comparison of perfor-

mance of different algorithms is made in Table 16. Clearly,

it is evident from the comparison that the SLL attained by

FPA is least and is equal to -22.60 dB. The SLL is better

than the closest competitor algorithm BSA [20] by -0.7

and -9.36 dB than QPM [3]. Moreover, the null values at

directions 120�, 122.5� and 125� are -78.45, -96.51 and

-82.58 dB, respectively, which are also quite less than the

desired value of -60 dB.

In the last example, to compare the performance of FPA

with the other popular optimization methods, a well-known

problem of optimizing 32-element LAA for SLL reduction

and null placement is taken up. This problem has been

optimized by popular optimization methods like PSO [3],

CLPSO [15], GA [6], HSA [17], BSA [20], CS [19] and

QPM [3]. The aim is to synthesize 32-element LAA for

SLL reduction in the region ; 2 [93�,180�] and null

Table 15 Optimum element

positons obtained using FPA for

28-element unequally spaced

LAA with nulls at 120�, 122.5�,
and 125�

Element 1 2 3 4 5 6 7

Position 0.5311 1.3364 2.2776 3.0821 3.9592 5.0355 6.1067

Element 8 9 10 11 12 13 14

Position 7.0464 8.1125 9.4293 10.7359 12.5182 14.0743 15.7643

Table 16 Comparison of results of different algorithms for 28-element unequally spaced LAA with nulls at 120�, 122.5�, and 125�

Algorithm BSA [20] PSO [3] COA [18] QPM [3] ACO [13] GA [6] CLPSO [15] FPA

SLL (dB) -21.90 -13.6 -21.86 -13.24 -14.64 -13.60 -21.63 -22.60

Null (dB) (120�) -82.49 -52.74 -60.08 -48.49 -52.74 -59.25 -60.04 -78.45

Null (dB) (122.5�) -93.59 -51.66 -60.05 -48.35 -59.20 -75.53 -60.01 -96.51

Null (dB) (125�) -80.49 -61.46 -60.10 -89.3 -43.58 -62.52 -60.00 -82.58

Table 17 Optimum element

positions obtained using FPA

for 32-element unequally

spaced LAA with null at 99�

Element 1 2 3 4 5 6 7 8

Position 0.4791 1.0818 2.1656 3.0907 3.9687 4.7983 5.7582 6.7406

Element 9 10 11 12 13 14 15 16

Position 7.8396 8.9171 10.0773 11.3090 12.8004 14.5430 16.1822 17.9032
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Fig. 13 Radiation pattern of FPA optimized 28-element unequally

spaced LAA. LAA with nulls at 120�, 122.5� and 125�
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placement in the direction of 99�. The optimum array

geometry achieved after FPA optimization is given in

Table 17. Table 18 presents the comparison of results of

different algorithms that have been used to optimize the

same antenna. Clearly, FPA has achieved better results in

terms of SLL reduction and null placement. The maximum

SLL of FPA antenna is -23.10 dB, and null value is

-130.60 dB which are least when compared with BSA

[20], PSO [3], HSA [17], QPM [3], CS [19], GA [6],

CLPSO [15] optimized antennas. The array pattern of FPA,

HSA [17], PSO [3] and CS [19] optimized antenna are

shown in Fig. 14.

4 Conclusions

In this paper, FPA is presented for synthesis of LAA for

suppressing the sidelobes and placing nulls in certain

directions. The desired antenna arrays have been

achieved by controlling either amplitude excitations or

element positions. Results show that FPA is able to

synthesize array pattern with minimum SLL and nulls in

the directions of interferences. A comprehensive

comparison of results of FPA optimization has been

made with PSO, TS, TM, BBO, GA, PSO, HSA, BSA,

TA, CS, ACO, COA and CLSPO. The results of FPA are

found to be superior in terms of better SLL reduction

and null placement than other algorithms. The results

also show the robustness of the proposed technique as it

consistently obtained the optimum antenna arrays. FPA

is simple and easy to implement. In comparison with

other methods, FPA requires few parameters to be tuned

for optimization. The results of LAA obtained using

FPA prove the strength and competence of the method

and hence, can be used for solving other electromagnetic

and real-world problems.
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