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Abstract Teaching–learning-based optimization (TLBO)

is one of the latest metaheuristic algorithms being used to

solve global optimization problems over continuous search

space. Researchers have proposed few variants of TLBO to

improve the performance of the basic TLBO algorithm.

This paper presents a new variant of TLBO called fuzzy

adaptive teaching–learning-based optimization (FATLBO)

for numerical global optimization. We propose three new

modifications to the basic scheme of TLBO in order to

improve its searching capability. These modifications

consist, namely of a status monitor, fuzzy adaptive teach-

ing–learning strategies, and a remedial operator. The per-

formance of FATLBO is investigated on four experimental

sets comprising complex benchmark functions in various

dimensions and compared with well-known optimization

methods. Based on the results, we conclude that FATLBO

is able to deliver excellence and competitive performance

for global optimization.

Keywords Metaheuristic � Global optimization �
Fuzzy logic � Teaching–learning-based optimization �
Parameter tuning

1 Introduction

The field of metaheuristics has emerged as a promising

research area in which those involved focus on solving

various optimization problems by using the simulation of

a variety of natural phenomena. Genetic algorithm (GA)

[1], particle swarm optimization (PSO) [2], and differen-

tial evolution (DE) [3] are a few examples of some early

metaheuristic algorithms that have been proposed

throughout the past decades. Metaheuristic algorithms

have now been used in many research areas, including

those of computer science [4], forecasting [5, 6], medicine

[7], economics [8], and engineering [9, 10]. The success

of those metaheuristic algorithms in solving various

optimization problems across a wide range of fields has

resulted in proposals for promising algorithms like artifi-

cial bee colony (ABC) [11], multi-verse optimizer (MVO)

[12], symbiotic organisms search (SOS) [13], and Jaya

algorithm [14]. One of the advantages of metaheuristic

algorithms is that they do not need to deeply adapt to

each problem in order to solve it, which is contrary to

problem-specific heuristics [15]. According to the ‘‘No-

Free-Lunch’’ theorem [16], any pair of search algorithms

has similar average performance with regard to all pos-

sible optimization problems. However, this does not

exclude the possibility that certain algorithms will obtain

better results for some objective functions. Thus, the need

to develop high-performance metaheuristic algorithms

increases continually.

Inspired by the idea of the classroom teaching–

learning process, Rao et al. developed a metaheuristic

algorithm entitled the teaching–learning-based opti-

mization (TLBO) algorithm to solve various constrained

[17] and unconstrained benchmark test functions [18].

TLBO mimics the natural phenomena of the classroom.
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For the TLBO algorithm, the term ‘‘student’’ is used to

represent a candidate solution to the corresponding

optimization problem. Meanwhile, the term ‘‘teacher’’

deemed to be the best learner in the classroom, and it is

used to represent the current best solution. All students

in the classroom individually perform unique search

patterns over solution space through the teacher phase

and the learner phase. The teacher phase is characterized

by the transmission of knowledge from a teacher to

students. The learner phase, on the other hand, is char-

acterized by the transmission of knowledge from mutual

interactions between students. Metaheuristic algorithms

in general require extra algorithm-specific control

parameters. Thus, the advantage the TLBO has over

majority of metaheuristic algorithms is that it only

requires control parameters such as maximum number of

generations and population size.

Since it was initially proposed, there have been

numerous applications of the TLBO in solving different

complex problems. Some are utilized in data clustering

[19], mechanical engineering [17], structural engineering

[20], parameter optimization [21], and economic dispatch

[22]. Several discussions related to TLBO have also

appeared in the literature surrounding this topic [23, 24].

As it is a new and promising optimization algorithm,

researchers worldwide have attempted to enhance the

performance of TLBO. Rao and Patel [25] added the

elitism concept, where the elite solutions replace the

worst solutions. To make TLBO faster and more robust,

Satapathy and Naik [26] introduced a modified TLBO

(mTLBO), which altered the learner phase formula by

adopting extra training through tutorials. Rao and Patel

[27] presented several new elements in the improved

TLBO (I-TLBO) such as adaptive teaching factors,

number of teachers, tutorial training, and self-motivated

learning to increase the searching ability of TLBO. Pre-

vious research findings have successfully improved the

capability of the basic TLBO, and thus, developing better

metaheuristic algorithms remains a top priority as the

amount of hard and complex problems have continued to

augment.

The fact that the TLBO algorithm is relatively new yet

demonstrates superior performance over other meta-

heuristics algorithms in solving various benchmarks and

engineering problems, has drawn our attention and

encouraged us to further investigate and enhance the

capability of the TLBO algorithm. In this paper, a new

metaheuristic algorithm called fuzzy adaptive teaching–

learning-based optimization (FATLBO) is introduced to

improve the performance of its predecessor. Three new

modifications are implemented: a status monitor, fuzzy

adaptive teaching–learning strategies (FATLS), and a

remedial operator. These modifications aim to increase the

effectiveness and efficiency of TLBO. In the status moni-

tor, a new procedure to track the productivity of each

student in both the teacher and learner phases is developed.

FATLS uses a fuzzy logic controller to control the opera-

tion of teacher and learner phases, setting a much larger

weight on the most productive phase and thus increasing

the convergence speed. A remedial operator is deployed to

activate the restart mechanism for the entire classroom if

there is no significant improvement over a certain period of

time. We compare FATLBO with a number of algorithms,

including the basic TLBO, ITLBO, and other well-known

metaheuristic algorithms across a range of benchmark

functions. Experimental results confirm the excellent per-

formance of proposed FATLBO algorithm in comparison

with the other metaheuristic algorithms.

The remaining sections are organized as follows. In

Sect. 2, we describe the regular TLBO algorithm. In

Sect. 3, we briefly review previous works related to

parameter adaptation techniques. In Sect. 4, we describe

the proposed algorithm in further detail. In Sect. 5, we

present the experimental results. Finally, Sect. 6 consists of

our conclusions.

2 The teaching–learning-based optimization
(TLBO) algorithm

Rao et al. [17, 18] introduced TLBO as a population-based

metaheuristic algorithm that simulates traditional class-

room learning. First, a random population consisting of

students is generated based on population size and the

number of design variables. A student, Xi, is represented by

one solution vector to a specific objective function with a

corresponding fitness value, f(Xi). The searching procedure

is performed throughout two main phases of the learning

process: the teacher phase and the learner phase. The

efficiency of knowledge transfer is determined by the

appropriate combination of these two phases. In the teacher

phase, a teacher is required to deliver knowledge directly to

students. After evaluating the fitness value of each student,

the teacher (Xteacher) role is assigned to the smartest student

with the lowest fitness value in that iteration. The other

students are then improved by shifting the average

knowledge of all students (Xmean) toward the Xteacher as

shown in Eq. (1):

Xinew ¼ Xi þ rand � Xteacher � TF � Xmeanð Þ; ð1Þ

where rand is a uniform random number between 0 and 1

and TF is a teaching factor with a random value of either 1

or 2.

In the learner phase, a student (Xi) engages with other

students and benefits from the exchange, which is selected

randomly (Xj). The student Xi is first compared with student
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Xj. If student Xj is smarter than Xi, then Xi is shifted toward

Xj as shown in Eq. (2). Otherwise, it is shifted away from

Xj as shown in Eq. (3):

Xinew ¼ Xi þ rand � Xj � Xi

� �
; ð2Þ

Xinew ¼ Xi þ rand � Xi � Xj

� �
: ð3Þ

For both the teacher and learner phases, the fitness value

of each student is allowed to update only when the new

solution (Xi new) outperforms the former one (Xi). Subse-

quently, the TLBO attempts to enhance some students by

modifying them throughout the teacher and learner phases.

The algorithm is run until the maximum number of itera-

tions is reached. The whole main procedure of the TLBO

algorithm is shown in Fig. 1.

3 Previous works related to parameter adaptation
techniques

It is worth noting that although TLBO is described in the

literature as an algorithm-specific parameter-less opti-

mization method, common control parameters (such as

population size and maximum number of iterations) still

need to be determined. Nevertheless, unlike most meta-

heuristic algorithms, TLBO does not have any algorithm-

specific control parameter. Hence, no additional effort is

required to set additional parameters for the algorithm to

work. This situation offers a huge benefit to TLBO since

choosing the proper control parameters requires some

expertise. The inappropriate choice of control parameters

may contribute to worse performance.

Initialization

Calculate the mean of each design 
variables

Identify the best solution (teacher)

Modify solution based on best solution
Xnew = Xold + rand (Xteacher (TF) Xmean)

Is new solution better 
than existing?

Select any two solutions randomly Xi

and Xj

Is Xi better than Xj?

Is new solution better 
than existing?

Is termination criterion 
satisfied?

The best solution

Yes

Replace Xold with XnewYes

No

No

Replace Xold with Xnew

No

Yes

Xnew = Xold + rand (Xj-Xi)YesXnew = Xold + rand (Xi-Xj) No

Teacher
Phase

Learner
Phase

Fig. 1 TLBO flowchart
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Despite these above-mentioned advantages, the lack of

additional algorithm-specific parameters also entails some

drawbacks. The additional algorithm-specific parameters

help metaheuristic algorithms generate some unique

searching patterns to solve various optimization problems

comprising a variety of fitness landscapes [28]. In GA,

after the selection process, the solutions undergo crossover

and mutation operators with certain probabilities. The

crossover and mutation operators occur only within some

probabilities, called the crossover rate (CR) and the

mutation rate (MR), respectively. When the solutions are

not subjected to crossover or mutation, they remain

unmodified. CR and MR are categorized as algorithm-

specific control parameters in GA. The choice of CR and

MR is known to significantly affect the behavior and per-

formance of GA [29]. Similarly to GA, TLBO has two

operators that modify the current solutions, known as tea-

cher phase and learner phase. However, unlike GA, these

two operators are not subjected to probabilities. The solu-

tions will undergo teacher and learner phases throughout

the iterations. With respect to CR and MR, adding algo-

rithm-specific parameters that control the probabilities of

both the teacher and learner phases may increase the per-

formance of TLBO.

Many researchers have developed parameter adaptation

techniques for finding the optimal parameter setting

instead of setting fixed values to the control parameters.

For example, Qin et al. [30] proposed a self-adaptive DE

algorithm (SaDE) that employs mutation strategies and

the respective control parameter is self-adapted based on

their previous experiences of generating promising solu-

tions. Yang and Hsieh [31] developed auto-tuning

boundary-approaching PSO (AB-PSO) algorithm, which

has the feature of adaptive auto-tuning parameters. The

adjustment is conducted after a certain number of itera-

tions, allowing some time for the control parameters to

make an impact.

Meanwhile, some researchers have experimented with

using fuzzy concepts to improve the performance of dif-

ferent types of optimization algorithms. Shi and Eberhart

[32] proposed fuzzy adaptive PSO to improve the perfor-

mance of the PSO by dynamically adjusting the inertia

weight parameter by integrating a fuzzy system with fitness

feedback of each particle. Melin et al. [33] improved the

swarm diversity and convergence capability of PSO using

fuzzy parameter adaptation for designing the fuzzy classi-

fier. Several schemes of Mamdani’s fuzzy inference sys-

tems were developed to adjust the cognitive factor (c1) and

social factor (c2) parameters using the information of

iteration, swarm diversity, and swarm convergence. Using

fuzzy logic controllers whose inputs incorporate the rela-

tive function values, Liu and Lampinen [34] proposed

fuzzy adaptive DE (FADE) to make some parameter

adjustments for the mutation and crossover operations. The

obtained results show that the FADE algorithm has a better

performance than a regular DE in regard to higher-di-

mensional problems.

In summary, the setting of algorithm-specific parameters

with the appropriate adaptive strategy may affect the

optimization performance of metaheuristic algorithms

significantly. Introducing some new algorithm-specific

control parameters and implementing the right strategy for

its parameter adaptation may improve the performance of

TLBO.

4 Fuzzy adaptive teaching–learning-based
optimization (FATLBO)

In the real classroom, teaching methods are paramount for

the successful transmission of teachers’ knowledge to

students. Certain materials are adapted to the teacher-cen-

tered approach, whereas the others are adequate for the so-

called student-centered approach. The term student-cen-

tered approach refers to the teaching style in which stu-

dents are involved in discussions and learning through

cooperation. It is important to underline that inadequate

teaching methods are likely to have an adverse effect on

the learning process.

In the fundamental form of the TLBO algorithm, stu-

dents are required to experience both teacher and learner

phases. Accordingly, the TLBO needs two function eval-

uations to calculate the fitness value of one candidate

solution during one iteration. This paper presents the

implementation of the teaching methods used in the real

classroom through the usage of modifications of the fun-

damental TLBO. Section 4.1 will elaborate on the status

monitor we developed. This monitor records the progress

of students related to both phases. It has the capacity to

measure the productivity in both phases, as well as the

improvement of the knowledge of students in a given time

frame of an iteration. Section 4.2 presents the new strategy

called the fuzzy adaptive teaching–learning system

(FATLS), to choose appropriate teaching methods in order

to optimize the efficiency and the search speed of the

TLBO algorithm. We allow the students to skip the teacher

or learner phase by introducing two new parameters, called

the teaching rate (TR) and the learning rate (LR). TR and

LR present the probabilities that a student will enter the

teacher and learner phases. If TR is set to 0.7, then every

student will have a 70 % probability of moving to the

teacher phase and 30 % probability of skipping the teacher

phase. Fuzzy logic is further employed to self-adjust the

TR and LR based on information collected from the status

monitor. Finally, in Sect. 4.3, we introduce a remedial

operator to ensure students are not trapped in local optima.
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4.1 Status monitor

Two new variables are introduced to measure the produc-

tivity of students during the teacher and learner phases: the

success rate of teacher phase (SRTP) and the success rate

of learner phase (SRLP). The values of SRTP and SRLP

vary between 0 and 1, where a higher value means the

more success in improving student knowledge.

Table 1 explains the impact of the SRTP and the SRLP

calculation during one iteration. As can be seen from Table 1,

the value of the SRTP is 0.4, whereas the value of the SRLP is

0.6. These results show that entering the teacher phase is going

to enhance the fitness for about 40 % of students and entering

the learner phase is going to enhance the fitness for about 60 %

of students. The advantage of this monitor is that it follows the

progress of students in all iterations. FATLS uses the SRTP and

the SRLP information obtained by the status monitor to adapt

the fittest TR and LR for each student in the following step.

4.2 Fuzzy adaptive teaching–learning strategies

(FATLS)

The fuzzy adaptive system has been developed to boost

productivity during the learning process. The SRTP and

SRLP information gathered by the status monitor is further

used as input variables. In addition, regarding output

variables, we proposed a bar controller to adapt the LR and

the TR. Figure 2 represents an illustration of this bar

controller. The central bar is actually the navigation bar.

When the bar goes toward the left, the TR is in decline. It

practically means that the FATLS will focus on the learner

phase. On the contrary, when the bar goes toward the right,

the LR will be in decline. Bar movement is used as the

output variable. Then, we adjust the bar movement to tune

the TR and LR.

The FATLS consists of three principal components:

fuzzification, inferencing process, and defuzzification.

Table 1 Example of success rate calculation

Individual Fitness value from

the end of last iteration

Fitness value after

teacher phase

Success? Fitness value after

learner phase

Success?

1 5.49 3.29 Yes 3.29 No

2 19.97 13.1 Yes 13.1 No

3 68.69 68.69 No 68.69 No

4 61.95 35.18 Yes 28.79 Yes

5 74.89 74.89 No 50.78 Yes

6 54.11 54.11 No 47.13 Yes

7 22.32 22.32 No 17.66 Yes

8 48.51 47.56 Yes 46.11 Yes

9 3.04 3.04 No 3.04 No

10 6.68 6.68 No 6.06 Yes

Success rate 4/10 6/10

The number in bold italics indicates the updated fitness value

0.5

1.0 1.0

1.0

0.5

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.00.6 0.7 0.8 0.9

0.60.70.80.9
Navigation Bar

Teaching Rate (TR)

Learning Rate (LR)

Fig. 2 Fuzzy bar controller
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4.2.1 Fuzzification

Figure 3 shows the conversion of all input variables from

the preceding step into the membership grade. Left-trian-

gle, triangle, and right-triangle functions are used as the

membership functions for all input variables. Figure 4

shows five triangular membership functions used for the

output variable, namely one left-triangle, three triangles,

and one right-triangle.

4.2.2 Inferencing process

The Mamdani-type fuzzy rules are employed to formulate

the conditional statements that consist of the fuzzy rule

base. The Mamdani’s fuzzy inference system is also

applied to map all the input variables to the target output.

As previously mentioned, the input variables are success

rate of teacher phase (SRTP) and success rate of learner

phase (SRLP), while the output variable is bar movement.

The bar movement is critical to the tuning of the teaching

rate (TR) and learning rate (LR) parameters. The proposed

mapping process by the fuzzy inference system is illus-

trated in Fig. 5. Meanwhile, the following nine fuzzy rules

aim to develop the best parameter adaptation scheme for

the TR and LR parameters:

1. If (SRTP is LOW) and (SRLP is LOW), then (bar

movement is NEUTRAL).

2. If (SRTP is LOW) and (SRLP is MEDIUM), then (bar

movement is LEFT).

3. If (SRTP is LOW) and (SRLP is HIGH), then (bar

movement is FAR-LEFT).

4. If (SRTP is MEDIUM) and (SRLP is LOW), then (bar

movement is RIGHT).

5. If (SRTP is MEDIUM) and (SRLP is MEDIUM), then

(bar movement is NEUTRAL).

6. If (SRTP is MEDIUM) and (SRLP is HIGH), then

(bar movement is LEFT).

7. If (SRTP is HIGH) and (SRLP is LOW), then (bar

movement is FAR-RIGHT).

8. If (SRTP is HIGH) and (SRLP is MEDIUM), then

(bar movement is RIGHT).

9. If (SRTP is HIGH) and (SRLP is HIGH), then (bar

movement is NEUTRAL).

All the fuzzy rules are designed to choose the teaching

method that will have the most impact on the learning

process. The bar controller plays a key role in controlling

the values of TR and LR. If the bar moves to the left, then it

lowers the TR and maintains the high rate of LR. This

forces the students to attend the learner phase more fre-

quently than the teacher phase, thereby mimicking a stu-

dent-centered approach. Conversely, if the bar moves to the

right, then it lowers the LR and maintains the high rate of

TR. This forces students to attend the teacher phase more

frequently than the learner phase, thereby creating a

teaching-centered approach. In the inferencing process, the

bar movement will adapt through different combinations of
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Fig. 3 Membership function of the SRTP and SRLP
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SRTP and SRLP, which were previously calculated from

the status monitor. When SRTP is high and SRLP is low, it

indicates that students’ knowledge is improving mainly due

to the effect of the teacher phase rather than that of the

learner phase. Therefore, it is reasonable for FATLBO to

switch the current teaching–learning strategy into a more

teacher-centered approach by moving the bar controller to

the right (decreasing LR while maintaining TR) and vice

versa.

4.2.3 Defuzzification

The next part of the process is the opposite of fuzzification.

After the process of inferencing is complete, defuzzifica-

tion is begun. Center-of-sums is the method we chose for

defuzzification. Fuzzy strategies have an output, named bar

movement, and based on that, the LR and TR of the fol-

lowing iterations can be adjusted. As an example, if there is

a bar movement result of -0.35, the bar is going to travel

3.5 steps toward the left, which means that the TR and LR

will be adjusted to 0.65 and 1.0, respectively, as shown in

Fig. 6.

4.3 Remedial operator

There are times in class when whole groups of students

show no improvement in the process of learning. This could

be due to several factors, such as bad environment, difficult

topic, or teaching style. Faced with this issue, the teacher

could evaluate it and as a result add remediation or pertur-

bation to the classroom based on the current circumstances.

Remediation such as this may include downgrading the

content and/or volume of the lesson, the application of

personal tutoring, or a change in the style of teaching.

On the occurrence of premature convergence, the

remedial operator adjusts the environment of the classroom

by a population expansion utilizing the random step based

on the Gaussian law, with a center point of the teacher. In

this paper, we assume premature convergence if fitness

value does not improve after a long period or if the whole

population makes a convergence in a single solution.

The formula for the remedial operator is shown in

Eq. (4).

Xinew ¼ Xteacher þ Nð0; range=2Þ; ð4Þ

where range is equal to upper and lower bounds.

Fuzzy Inferencing System
[Mamdani]

Input 1: SRTP

Input 2: SRLP

Output: Bar Movement

Fuzzy Rules
SRTP

LOW MEDIUM HIGH

SR
LP

LOW NEUTRAL RIGHT FAR-RIGHT

MEDIUM LEFT NEUTRAL RIGHT

HIGH FAR-LEFT LEFT NEUTRAL

Fig. 5 The mapping process by Mamdani’s fuzzy inference system
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1.0
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1.0 1.0

1.0

0.5

1.0

Navigation Bar

Teaching Rate (TR)

Learning Rate (LR)

Fig. 6 Fuzzy bar controller after FATLS applied

Initialization

Teacher Phase

Status monitor to calculate success 
rate of Teacher Phase

Learner Phase

Status monitor to calculate success 
rate of learner phase

Are FATLS criteria satisfied?

Is premature 
convergence detected?

No

Is termination 
criterion satisfied?

No

No

FATLS to adjust TR and LR:
1. Fuzzification
2. Inferencing process
3. Defuzzification
4. Adjust controller bar

Yes

Remedial 
OperatorYes

Output the best solution

Yes

Fig. 7 FATLBO flowchart
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To conclude, the entire procedure of FATLBO is shown

in Fig. 7.

5 Experimental results

We compare the FATLBO performance with other meta-

heuristic algorithms from the literature, including TLBO,

ABC, PSO, DE, and their variants. This section is typically

divided into four subsections that explain the four different

experiment sets, including the details regarding benchmark

functions, the setup of the experiment, and the results.

5.1 Experiment 1

In this experiment, we apply FATLBO to eight different

benchmark functions that were originally solved by Liang

et al. [35]. Table 2 gives the details of the benchmark

functions. Previously, all functions were tested with the

maximum of 30,000 function evaluations. To maintain

consistency in the comparison, the FATLBO algorithm is

also tested with the same maximum number of function

evaluations. For the population size, FATLBO uses 10

individuals for all functions except Function 2, which uses

25 individuals.

Each benchmark function is tested 30 times with the

FATLBO algorithm, and results are obtained in the form of

mean value and standard deviation. FATLBO is compared

with TLBO variants [27], ABC variants [36], and PSO

variants [35]. With the exception of FATLBO, the rest of

the results are obtained from those previous works. The

comparative results of FATLBO and other algorithms are

shown in Table 3.

The FATLBO algorithm identified better solutions

compared with other algorithms in 6 functions: Sphere,

Rosenbrock, Griewank, Weierstrass, Rastrigin, and

NCRastrigin functions. Meanwhile, I-TLBO, TLBO,

CLPSO, and modified ABC have only found 5, 5, 4, and 1

solution(s) better than others, respectively. FATLBO is

able to achieve the global optimum in the Sphere, Grie-

wank, Weierstrass, Rastrigin, and NCRastrigin functions.

Furthermore, the FATLBO algorithm performs better than

the rest of the considered algorithms for the Rosenbrock

function. Although FATLBO was not able to find a solu-

tion better than other algorithms in the Ackley and Sch-

wefel functions, FATLBO can consistently produce a

strong performance and is still better than more than half of

its competitors.

Although the results presented in Table 3 provide first

insight into the performance of the algorithms, carrying out

a statistical hypothesis test is still required for a better

comparison. For this purpose, an unpaired t test is per-

formed with a statistical significance value a = 0.05. T
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Table 4 shows the statistical results of FATLBO compared

with those of other algorithms. The last column of Table 4

presents the total count of the three statistically significant

conclusions of performance comparisons between

FATLBO and other algorithms from the t test (a/b/c).

According to the table, FATLBO outperforms the rest of

the algorithms, including the PSO and variants, the original

TLBO, and the improved version of TLBO (I-TLBO). In

comparison with FATLBO, the second best algorithm is

I-TLBO, where FATLBO has a significantly better per-

formance in two functions, a statistically similar perfor-

mance in five functions, and a significantly worse

performance in only one function.

5.2 Experiment 2

In this experiment, we apply FATLBO to eight different

benchmark functions that Mathur et al. [37] previously

solved. The benchmark function set is solved later by Pham

et al. [38], Ahrari and Atai [39], and Rao and Patel [27].

The results obtained using the FATLBO algorithm are

compared with the previous works of TLBO variants along

with other well-known optimization algorithms. The details

of the benchmark functions are shown in Table 5.

We maintain consistency in the comparison between

previous works by adhering to the same rules. In previous

studies, the optimization process stops when the difference

Table 3 Comparative results of TLBO and other algorithms in Experiment 1

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Sphere Rosenbrock Ackley Griewank

PSO–w 7.96E-051 ± 3.56E-050 3.08E?000 ± 7.69E-001 1.58E-014 ± 1.60E-014 9.69E-002 ± 5.01E-002

PSO–cf 9.84E-105 ± 4.21E-104 6.98E-001 ± 1.46E?000 9.18E-001 ± 1.01E?000 1.19E-001 ± 7.11E-002

PSO–w-local 2.13E-035 ± 6.17E-035 3.92E?000 ± 1.19E?000 6.04E-015 ± 1.67E-015 7.80E-002 ± 3.79E-002

PSO–cf-local 1.37E-079 ± 5.60E-079 8.60E-001 ± 1.56E?000 5.78E-002 ± 2.58E-001 2.80E-002 ± 6.34E-002

UPSO 9.84E-118 ± 3.56E-117 1.40E?000 ± 1.88E?000 1.33E?000 ± 1.48E?000 1.04E-001 ± 7.10E-002

FDR 2.21E-090 ± 9.88E-090 8.67E-001 ± 1.63E?000 3.18E-014 ± 6.40E-014 9.24E-002 ± 5.61E-002

FIPS 3.15E-030 ± 4.56E-030 2.78E?000 ± 2.26E-001 3.75E-015 ± 2.13E-014 1.31E-001 ± 9.32E-002

CPSO-H 4.98E-045 ± 1.00E-044 1.53E?000 ± 1.70E?000 1.49E-014 ± 6.97E-015 4.07E-002 ± 2.80E-002

CLPSO 5.15E-029 ± 2.16E-28 2.46E?000 ± 1.70E?000 4.32E-014 ± 2.55E-014 4.56E-003 ± 4.81E-003

ABC 7.09E-017 ± 4.11E-017 2.08E?000 ± 2.44E?000 4.58E-016 ± 1.76E-016 1.57E-002 ± 9.06E-003

Modified ABC 7.04E-017 ± 4.55E-017 4.42E-001 ± 8.67E-001 3.32E-016 ± 1.84E-016 1.52E-002 ± 1.28E-002

TLBO 0.00 ± 0.00 1.72E?00 ± 6.62E-01 3.55E-15 ± 8.32E-31 0.00 ± 0.00

I-TLBO 0.00 ± 0.00 2.00E-01 ± 1.42E-01 1.42E-15 ± 1.83E-15 0.00 ± 0.00

FATLBO 0.00 ± 0.00 1.55E-04 ± 2.67E-04 3.97E-15 ± 1.23E-15 0.00 ± 0.00

Weierstrass Rastrigin NCRastrigin Schwefel

PSO–w 2.28E-003 ± 7.04E-003 5.82E?000 ± 2.96E?000 4.05E?000 ± 2.58E?000 3.20E?002 ± 1.85E?002

PSO–cf 6.69E-001 ± 7.17E-001 1.25E?001 ± 5.17E?000 1.20E?001 ± 4.99E?000 9.87E?002 ± 2.76E?002

PSO–w-local 1.41E-006 ± 6.31E-006 3.88E?000 ± 2.30E?000 4.77E?000 ± 2.84E?000 3.26E?002 ± 1.32E?002

PSO–cf-local 7.85E-002 ± 5.16E-002 9.05E?000 ± 3.48E?000 5.95E?000 ± 2.60E?000 8.78E?002 ± 2.93E?002

UPSO 1.14E?000 ± 1.17E?00 1.17E?001 ± 6.11E?000 5.85E?000 ± 3.15E?000 1.08E?003 ± 2.68E?002

FDR 3.01E-003 ± 7.20E-003 7.51E?000 ± 3.05E?000 3.35E?000 ± 2.01E?000 8.51E?002 ± 2.76E?002

FIPS 2.02E-003 ± 6.40E-003 2.12E?000 ± 1.33E?000 4.35E?000 ± 2.80E?000 7.10E?001 ± 1.50E?002

CPSO-H 1.07E-015 ± 1.67E-015 0.00 ± 0.00 2.00E-001 ± 4.10E-001 2.13E?002 ± 1.41E?002

CLPSO 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

ABC 9.01E-006 ± 4.61E-005 1.61E-016 ± 5.20E-016 6.64E-017 ± 3.96E-017 7.91E?000 ± 2.95E?001

Modified ABC 0.00 ± 0.00 1.14E-007 ± 6.16E-007 1.58E-011 ± 7.62E-011 3.96E?000 ± 2.13E?001

TLBO 2.42E-05 ± 1.38E-20 6.77E-08 ± 3.68E-07 2.65E-08 ± 1.23E-07 2.94E?02 ± 2.68E?02

I-TLBO 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.10E?02 ± 1.06E?02

FATLBO 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.72E-02 ± 1.06E?02

The number in italics indicates the best value
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between the fitness value and the global solution is lower

than 0.1 % or less than 0.001, whichever is smaller.

FATLBO uses a population size of 40. Each benchmark

function is tested 100 times, and Table 6 shows the com-

parative results in the form of mean of function evaluations

and success percentages. The results of the other competing

algorithms are obtained from previous works.

Table 5 demonstrates that the FATLBO algorithm is

able to produce the fewest number of function evaluations

in 7 out of 8 problems. Moreover, FATLBO requires

approximately 29 and 52 % fewer function evaluations in

the De Jong function (F1) than I-TLBO and TLBO,

respectively; 17 and 32 % in the Branin function (F3); 30

and 61 % in the Martin and Gaddy function (F4); 13 and

32 % in the Rosenbrock1 function (F5); 8 and 32 % in the

Rosenbrock2 function (F6); 61 and 68 % in the Rosen-

brock3 function (F7); and 14 and 23 % in the Hyper Sphere

function (F8). The only function where FATLBO failed to

achieve the fewest number of function evaluations is the

Goldstein and Price function (F2). However, FATLBO still

produces the second fewest number of function evaluations

after I-TLBO.

Table 4 Statistical comparison of FATLBO with other optimization algorithms using an unpaired t test in Experiment 1

Algorithms t value with a = 0.05 and degree of freedom = 58 Total (a/b/c)

Sphere Rosenbrock Ackley Griewank Weierstrass Rastrigin NCRastrigin Schwefel

PSO–w 1.225b 21.936a 4.038a 10.594a 1.774a 10.769a 8.598a 8.220a 7/1/0

PSO–cf 1.280b 2.618a 4.978a 9.167a 5.111a 13.243a 13.172a 18.285a 7/1/0

PSO–w-local 1.890a 18.042a 5.467a 11.272a 1.224b 9.240a 9.199a 10.547a 7/1/0

PSO–cf-local 1.340b 3.019a 1.227b 2.419a 8.333a 14.244a 12.534a 15.434a 6/2/0

UPSO 1.514b 4.078a 4.922a 8.023a 5.337a 10.488a 10.172a 20.525a 7/1/0

FDR 1.225b 2.913a 2.381a 9.021a 2.290a 13.487a 9.129a 15.765a 7/1/0

FIPS 3.784a 67.371a -0.057b 7.699a 1.729a 8.731a 8.509a 2.117a 7/1/0

CPSO-H 2.728a 4.929a 8.458a 7.962a 3.510a N/Ab 2.672a 6.613a 7/1/0

CLPSO 1.306b 7.925a 8.417a 5.193a N/Ab N/Ab N/Ab -0.001b 3/5/0

ABC 9.449a 4.669a -15.481c 9.491a 1.071b 1.696a 9.184a 0.393b 5/2/1

Modified ABC 8.475a 2.791a -16.022c 6.504a N/Ab 1.014b 1.136b 0.200b 3/4/1

TLBO N/Ab 14.230a -1.870c N/Ab 9.61E?015a 1.008b 1.180b 5.587a 3/4/1

I-TLBO N/Ab 7.708a -6.334c N/Ab N/Ab N/Ab N/Ab 4.019a 2/5/1

a FATLBO is significantly better than the compared algorithm
b FATLBO has no significant performance difference with the compared algorithm
c FATLBO is significantly worse than the compared algorithm

Table 5 Details of benchmark functions in Experiment 2 (D: dimensions)

No. Function Formulation D Search range

F1 De Jong Fmin ¼ 3905:93 � 100 x2
1 � x2

� �2� 1 � x1ð Þ2 2 [-2.048, 2.048]

F2 Goldstein-Price Fmin ¼ 1 þ x1 þ x2 þ 1ð Þ2
19 � 14x1 þ 3x2

1 � 14x2 þ 6x1x2 þ 3x2
2

� �h i

30 þ 2x1 � 3x2ð Þ2
18 � 32x1 þ 12x2

1 þ 48x2 � 36x1x2 þ 27x2
2

� �h i
2 [-2, 2]

F3 Branin Fmin ¼ x2 � 5:1
4p2 x

2
1 þ 5

p x1 � 6
� �2þ10 1 � 1

8p

� �
cos x1 þ 10 2 [-5, 10]

F4 Martin and Gaddy Fmin ¼ x1 � x2ð Þ2þ x1 þ x2 � 10ð Þ=3½ �2 2 [0, 10]

F5 Rosenbrock1 Fmin ¼ 100 x21 � x2ð Þ2 þ 1 � x1ð Þ2 2 [-1.2, 1.2]

F6 Rosenbrock2 Fmin ¼ 100 x21 � x2ð Þ2 þ 1 � x1ð Þ2 2 [-10, 10]

F7 Rosenbrock3
Fmin ¼

PD

i¼1

100 x2
1 � x2

� �2þ 1 � x1ð Þ2
� � 3 [-10, 10]

F8 Hyper Sphere
Fmin ¼

PD

i¼1

x2
i

6 [-5.12, 5.12]

Neural Comput & Applic (2018) 29:309–327 319

123



5.3 Experiment 3

In this experiment, the FATLBO algorithm is compared

with TLBO and ABC variants in a small scale to a large

scale by considering the dimensions 20, 30, and 50 for all

the benchmark functions. In this part of the work, TLBO

and I-TLBO are tested on 13 unconstrained benchmark

functions, an approach that was first attempted by Li et al.

[40] and later by Rao and Patel [27].

The complete formulation of these benchmark func-

tions is given in Table 7. All functions have the global

minimum 0 on every dimension except the Schwefel

function (F8). The first seven functions (F1–F7) are cat-

egorized as unimodal, and the remainder (F8–F13) is

multimodal.

Each benchmark function is tested 30 times with the

FATLBO algorithm, and the results are obtained in the

form of mean solution and standard deviation. The maxi-

mum number of function evaluations is 40,000. The pop-

ulation size of FATLBO is 10 for all functions except F5,

F12, and F13, which use a population of 40.

Table 8 shows the comparative results of FATLBO,

I-TLBO, TLBO, GABC, ABC, and I-ABC algorithms for

13 functions with the maximum of 40,000 function eval-

uations. Except for FATLBO, the rest of the results are

obtained from the previous works. The experiment

revealed that the FATLBO algorithm outperformed the rest

of the considered algorithms. FATLBO achieved the

highest score in finding solutions more effectively than

others (26) and surpassed the newly developed I-TLBO

(19), I-ABC (17), and the original TLBO (9). It can be

noted that FATLBO produces a better solution precision,

especially in solving the Step function as well as the

Quartic function. It is also possible to see that the success

of FATLBO in solving the benchmark functions is not

over-sensitive to the function dimension or the function

characteristic. FATLBO performs well in various dimen-

sions and unimodal or multimodal functions.

Table 9 shows the statistical results of FATLBO com-

pared with those of other algorithms using an unpaired

t test with a statistical significance value a = 0.05. The last

row of Table 9 presents the total count of the three statis-

tically significant conclusions of performance comparison

between FATLBO and the other algorithms from the t test

(a/b/c). According to the table, FATLBO outperforms the

other algorithms, including the ABC and variants, the

original TLBO, and the improved version of TLBO (I-

TLBO). In comparison with FATLBO, the second best

algorithm is I-TLBO where FATLBO has significantly

better performance in 14 functions, statistically similar

performance in 18 functions, and significantly worse per-

formance in 7 functions.

Table 6 Comparative results of

TLBO and other algorithms in

Experiment 2

De Jong Goldstein and price Branin Martin and Gaddy

MNFE Success % MNFE Success % MNFE Success % MNFE Success %

SIMPSA – – – – – – – –

NE-SIMPSA – – – – – – – –

GA 10,160 100 5662 100 7325 100 2488 100

ANTS 6000 100 5330 100 1936 100 1688 100

BA 868 100 999 100 1657 100 526 100

GEM 746 100 701 100 689 100 258 100

TLBO 1070 100 452 100 443 100 422 100

I-TLBO 722 100 288 100 367 100 233 100

FATLBO 514 100 443 100 302 100 163 100

Rosenbrock

(D = 2)

Rosenbrock

(D = 2)

Rosenbrock

(D = 4)

Hyper Sphere

(D = 6)

SIMPSA 10,780 100 12,500 100 21,177 99 – –

NE-SIMPSA 4508 100 5007 100 3053 94 – –

GA 10,212 100 – – – – 15,468 100

ANTS 6842 100 7505 100 8471 100 22,050 100

BA 631 100 2306 100 28,529 100 7113 100

GEM 572 100 2289 100 82,188 100 423 100

TLBO 669 100 1986 100 21,426 100 417 100

I-TLBO 522 100 964 100 17,696 100 376 100

FATLBO 454 100 887 100 6841 100 321 100

The number in italics indicates the best value
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5.4 Experiment 4

This experiment is intended to identify the performance of

FATLBO in solving complex and high-dimension

problems. The same thirteen benchmark functions from

Experiment 3 are tested using the FATLBO and TLBO

algorithms, each with 500 and 1000 dimensions, which Shi

et al. [41] originally solved. For 500-D functions, 2.5E6

Table 9 Statistical comparison

of FATLBO with other

optimization algorithms

using an unpaired t test in

Experiment 3

No. Function D t value with a = 0.05 and degree of freedom = 58

ABC I-ABC GABC TLBO I-TLBO

F1 Sphere 20 16.042a N/Ab 23.643a N/Ab N/Ab

30 3.389a N/Ab 31.748a N/Ab N/Ab

50 4.864a N/Ab 11,316.582a N/Ab N/Ab

F2 Schwefel 2.22 20 10.342a N/Ab 38.546a N/Ab N/Ab

30 12.551a N/Ab 15.299a N/Ab N/Ab

50 17.672a N/Ab 20.971a N/Ab N/Ab

F3 Schwefel 1.2 20 14.406a 9.244a 10.092a 1.502b N/Ab

30 22.564a 28.690a 23.230a 2.168a N/Ab

50 38.748a 34.902a 38.707a 1.890a N/Ab

F4 Schwefel 2.21 20 15.833a -Infc 1.686a Infa -Infc

30 23.776a Infa 25.988a Infa N/Ab

50 63.755a 24.638a 57.444a Infa N/Ab

F5 Rosenbrock 20 -17.374c 22.600a -11.041c 34.315a 11.151a

30 -18.228c 16.400a -3.920c 27.318a 7.352a

50 0.513b 13.856a -3.088c 17.051a 1.597b

F6 Step 20 17.987a 16.226a 17.935a 2.167a 8.209a

30 3.706a 9.066a 31.827a 2.800a 1.805a

50 4.257a 5.792a 8.387a 5.417a 4.729a

F7 Quartic 20 17.505a 14.336a 22.705a 9.152a 5.169a

30 18.348a 11.356a 16.602a 10.321a 10.255a

50 24.968a 18.914a 28.518a 10.574a 13.316a

F8 Schwefel 20 4.291a 4.120a 1.781a 8.624a 7.610a

30 15.030a 10.351a 8.233a 6.318a 8.732a

50 32.822a 31.786a 22.448a 17.870a 8.726a

F9 Rastrigin 20 1.907a N/Ab N/Ab 4.604a N/Ab

30 4.819a N/Ab 1.002b 1.538b N/Ab

50 17.128a N/Ab 11.125a 2.036a N/Ab

F10 Ackley 20 6.008a -28.964c 34.895a -6.498c -12.095c

30 7.072a -20.852c 14.300a -5.225c -8.053c

50 7.588a -20.134c 15.669a -3.951c -7.465c

F11 Griewank 20 3.074a N/Ab 1.479b N/Ab N/Ab

30 2.470a N/Ab 1.687a N/Ab N/Ab

50 3.309a N/Ab 2.079a N/Ab N/Ab

F12 Penalized 20 23.519a 20.882a 26.635a 5.382a 2.26E?007a

30 1.677a -2.693c -3.336c 1.442b 2378.450a

50 0.864b -3.699c -4.316c 4.906a -4.252c

F13 Penalized 2 20 1.166b -1.448b 1.308b 5.348a 3.882a

30 -2.568c -2.568c -2.568c 1.204b -2.568c

50 -2.123c -2.107c -2.141c 4.777a -2.139c

Total (a/b/c) 32/3/4 18/13/8 28/4/7 23/13/3 14/18/7

a FATLBO is significantly better than the compared algorithm
b FATLBO has no significant performance difference with the compared algorithm
c FATLBO is significantly worse than the compared algorithm
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maximum function evaluations are used. For 1000-D

functions, 5E6 maximum function evaluations are used. To

ensure that the comparison is consistent, the same maxi-

mum number of function evaluations was used to test both

TLBO and FATLBO algorithms.

Each benchmark function is tested 30 times with TLBO

and FATLBO algorithms, and results are obtained in the

form of mean value and standard deviation. The population

of TLBO and FATLBO consists of 50 individuals. In this

experiment, both algorithms are compared with DE vari-

ants. Except for the TLBO and FATLBO algorithms, the

rest of the results are taken from those previous works. The

comparative results of TLBO, FATLBO, and DE variants

are shown in Table 10.

It can be seen from the results that the FATLBO algo-

rithm has found 22 solutions that are better than others.

Meanwhile, TLBO, DECC-G, DECC-C, and SaNSDE

found only 16, 6, 7, and 0 solutions better than others,

respectively. This shows that FATLBO is not only capable

of handling low-dimension problems, but that it can also

solve large-scale optimization problems. Meanwhile,

FATLBO is able to outperform TLBO in F4, F5, F7, F12,

and F13. For comparison purpose, the convergence

graphics of TLBO and FATLBO algorithms for solving

F13 are shown in Fig. 8. With the improved convergence

characteristics provided by FATLS and a remedial opera-

tor, FATLBO is able to identify promising search regions

faster than the regular TLBO.

6 Conclusion

This paper develops a new advanced metaheuristic algo-

rithm so-called fuzzy adaptive teaching–learning-based

optimization (FATLBO). FATLBO presents three new

strategies to enhance the performance of TLBO, namely a

status monitor, fuzzy adaptive teaching–learning strategies

(FATLS), and a remedial operator. Two new parameters,

teaching rate (TR) and learning rate (LR), are proposed to

present the probability rate for a student to enter teacher

Table 10 Comparative results of FATLBO and other algorithms in Experiment 4

No Function No. of Dim’s SaNSDE mean DECC-O mean DECC-G mean TLBO mean FATLBO mean

F1 Sphere 500 2.41E-11 2.28E-21 6.33E-27 0.00E?00 0.00E?00

1000 6.97E?00 1.77E-20 2.17E-25 0.00E?00 0.00E?00

F2 Schwefel 2.22 500 5.27E-02 3.77E-10 5.95E-15 0.00E?00 0.00E?00

1000 1.24E?00 Inf 5.37E-14 0.00E?00 0.00E?00

F3 Schwefel 1.2 500 2.03E-08 2.93E-19 6.17E-25 0.00E?00 0.00E?00

1000 6.43E?01 8.69E-18 3.71E-23 0.00E?00 0.00E?00

F4 Schwefel 2.21 500 4.07E?01 6.01E?01 4.58E-05 6.87E-196 1.00E-323

1000 4.99E?01 7.92E?01 1.01E-01 7.23E-137 1.00E-323

F5 Rosenbrock 500 1.33E?03 6.64E?02 4.92E?02 5.27E?02 4.73E?02

1000 3.31E?03 1.48E?03 9.87E?02 1.11E?03 9.83E?02

F6 Step 500 3.12E?02 0.00E?00 0.00E?00 0.00E?00 0.00E?00

1000 3.93E?03 0.00E?00 0.00E?00 0.00E?00 0.00E?00

F7 Quartic 500 1.28E?00 1.04E?01 1.50E-03 9.28E-03 3.32E-04

1000 1.18E?01 2.21E?01 8.40E-03 8.46E-03 6.09E-04

F8 Schwefel 500 -201,796.5 -209,491 -209,491 -209,491 -209,491

1000 -372,991 -418,983 -418,983 -418,983 -418,983

F9 Rastrigin 500 2.84E?02 1.76E?01 0.00E?00 0.00E?00 0.00E?00

1000 8.69E?02 3.12E?01 3.55E-16 0.00E?00 0.00E?00

F10 Ackley 500 7.88E?00 1.86E-11 9.13E-14 7.99E-15 7.99E-15

1000 1.12E?01 4.39E-11 2.22E-13 7.99E-15 7.99E-15

F11 Griewank 500 1.82E-01 5.02E-16 4.40E-16 0.00E?00 0.00E?00

1000 4.80E-01 2.04E-15 1.01E-15 0.00E?00 0.00E?00

F12 Penalized 500 2.96E?00 2.17E-25 4.29E-21 4.57E-01 9.53E-07

1000 8.97E?00 1.08E-24 6.89E-25 6.21E-01 7.89E-09

F13 Penalized 2 500 1.89E?02 5.04E-23 5.34E-18 2.98E-01 9.36E-07

1000 7.41E?02 4.82E-22 2.55E-21 4.47E-01 8.30E-08

Count of solution better than others 0 7 6 16 22

The number in italics indicates the best value
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and learner phases. According to the mathematical

benchmark function results, it is proven that the FATLBO

has a better performance than the TLBO, the ABC, the DE,

and the PSO, as well as their variants. When it was applied

to benchmark problems, the FATLBO had the capacity to

generate much better solutions regarding the global opti-

mization than other metaheuristic algorithms. Based on the

obtained results, we conclude that the FATLBO has the

capacity to achieve more optimal results with less function

evaluations than previously tested algorithms.

The integration of three new modifications into an

existing TLBO algorithm adds huge advantages to the

searching capability of TLBO. The status monitor mea-

sures the productivity of students during the teacher and

learner phases. FATLS adapts the current teaching–learn-

ing strategy into either a more teacher-centered orientation

or more student-centered orientation based on the produc-

tivity information collected from the status monitor. The

remedial operator applies random perturbation using

Gaussian distribution principle when no fitness improve-

ment occurs for a long time or the entire population

converges in one solution. The status monitor and FATLS

increase the efficiency of knowledge transfer to each stu-

dent and thus improve the optimization precision and

convergence speed. Meanwhile, the remedial operator

prevents the stagnation and avoids being trapped in local

optima. We can conclude that the three new elements

introduced here improve the quality of the results and

increase the convergence speed of the basic TLBO algo-

rithm. Thus, the novel FATLBO algorithm is proven to be

a strong alternative for solving global optimization.

In addition, this paper defines a new understanding of

parameter adaptation that may be described as one potential

method for the parameter tuning process of FATLBO. More

work is required to gather further evidence for possible

shortcomings of the proposed algorithm. Meanwhile, opti-

mizing the membership functions of each input variable can

be a fruitful research agenda to further enhance the perfor-

mance of the proposed algorithm. Finally, the application of

the present fuzzy parameter adaptation to emerging meta-

heuristic algorithms like Jaya algorithm, SOS, and MVO

could be a thought-provoking approach for future research.
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