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Abstract In multi-label classification problems, every

instance is associated with multiple labels at the same time.

Binary classification, multi-class classification and ordinal

regression problems can be seen as unique cases of multi-label

classification where each instance is assigned only one label.

Text classification is the main application area of multi-label

classification techniques.However, relevantworks are found in

areas like bioinformatics, medical diagnosis, scene classifica-

tion and music categorization. There are two approaches to do

multi-label classification: The first is an algorithm-independent

approach or problem transformation in which multi-label

problem is dealt by transforming the original problem into a set

of single-label problems, and the second approach is algorithm

adaptation, where specific algorithms have been proposed to

solvemulti-label classification problem. Through ourwork, we

not only investigate various research works that have been

conducted under algorithm adaptation for multi-label classifi-

cation but also perform comparative study of two proposed

algorithms. The first proposed algorithm is named as fuzzy

PSO-based ML-RBF, which is the hybridization of fuzzy PSO

and ML-RBF. The second proposed algorithm is named as

FSVD-MLRBF that hybridizes fuzzy c-means clustering along

with singular value decomposition. Both the proposed

algorithms are applied to real-world datasets, i.e., yeast and

scene dataset. The experimental results show that both the

proposed algorithms meet or beat ML-RBF and ML-KNN

when applied on the test datasets.

Keywords Multi-label classification � Fuzzy PSO �
Fuzzy SVD � RBF neural network

1 Introduction

Classification is a process in which each record in the

dataset is assigned to a particular class from the set of

classes. Classification can be single label or multi-label.

In single-label classification, learning is performed for a

set of examples that are associated with single-label c from

a set of disjoint labels L. For example, an instance will

belong either to class ‘‘C1’’ or class ‘‘C2’’ or class ‘‘C3’’

from the set of class {C1, C2, C3}. However, several

modern applications such as text categorization, medical

analysis, protein function categorization, music classifica-

tion and semantic scene categorization require examples to

be associated with a set of labels. For example, a text

document consisting information about the attacks of 26/11

can be categorized as news, movie and terrorist attack.

Similarly in medical diagnosis, a patient may be suffering

from cancer, diabetes and kidney failure at the same time.

In semantic scene classification, a snap can belong to more

than one conceptual class, such as beach, forest, city and

people at the same time. Similarly, a protein can perform

many functions simultaneously. For example, enzymatic

proteins increase metabolism for digestion in the stomach,

functioning of pancreas, blood clotting and convert

glycogen into glucose. Thus, in multi-label classification,

each example is associated with a subset of labels Yi in the
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given label set C, i.e., Yi ( C. Such classification prob-

lems can be solved either by problem transformation or by

algorithm adaptation approach.

The structure of this paper is organized as: Sect. 2

covers the problem transformation methods, and Sect. 3

briefly describes the work done by various researchers to

enhance the algorithm adaptation methods. Section 4 gives

detailed description of both the proposed algorithms, while

Sect. 5 reports experiments and results. Finally, Sect. 6

concludes the paper.

2 Problem transformation

Problem transformation approach generally transforms the

multi-label classification problem into several single-label

problems and then classifies it. The multi-label dataset can

be transformed into single-label dataset using various

simple transformation techniques [1] such as copy, copy

weight, select-max, select-min, select random and ignore.

Label powerset, pruned problem transformation, random

k-label set, binary relevance, ranking pairwise comparison

and calibrated label ranking are some problem transfor-

mation methods. Among them, label powerset (LP) is

simplest in which new classes for single-label classification

are formed by combining each set of labels in the multi-

label dataset. This leads to creation of many class labels,

and some of them may occur rarely. Tables 1 and 2 show

an illustration of transformed multi-label dataset using LP.

To overcome this drawback, pruned problem transfor-

mation (PPT) method is proposed in [2]. In PPT, all the

label sets that occur less than predefined threshold are

pruned.

In random k-label set (RAkEL) [3], small subsets of

label sets are obtained by randomly breaking large label

sets. For each of these subsets, LP classifier is trained.

In binary relevance (BR), the multi-label dataset is

divided into d-datasets one for each label that is present in

multi-label dataset and then, each single-label dataset so

formed can be classified using traditional classification

algorithms. Tables 3, 4, 5 and 6 illustrate the transformed

dataset using BR method.

The ranking by pairwise comparison (RPC) [4] works in

two phases: In the first phase, for each pair of label a binary

dataset is obtained by transforming the multi-label dataset.

The binary classifier is then trained for each of binary

datasets. In the second phase, ranking is obtained by

counting the votes received by each label.

Calibrated label ranking (CLR) [5] extends RPC by

providing additional information about ranking of labels. It

adds an additional calibrated label to deal with multi-label

ranking. The additional label acts as a split point between

relevant and irrelevant sets of labels.

3 Algorithm adaptation

The algorithm adaptation approach uses various algorithms

to directly handle the entire multi-level dataset. There exist

several algorithms which have been categorized into two

types: one that considers multi-label dataset as a whole and

operate on the entire dataset and labels simultaneously,

Table 1 Example of multi-label dataset

Objects Attributes Label set

A X1, X2, X3, X4 C1, C2, C3

B X1, X2, X3, X4 C1, C4

C X1, X2, X3, X4 C2, C3, C4

Table 2 Transformed dataset for label power set

Objects Attributes Label set

A X1, X2, X3, X4 C1,2,3

B X1, X2, X3, X4 C1,4

C X1, X2, X3, X4 C2,3,4

Table 3 Transformed dataset using binary relevance for label C1

Objects Attributes Label set

A X1, X2, X3, X4 C1

B X1, X2, X3, X4 C1

C X1, X2, X3, X4 :C1

Table 4 Transformed dataset using binary relevance for label C2

Objects Attributes Label set

A X1, X2, X3, X4 C2

B X1, X2, X3, X4 :C2

C X1, X2, X3, X4 C2

Table 5 Transformed dataset using binary relevance for label C3

Objects Attributes Label set

A X1, X2, X3, X4 C3

B X1, X2, X3, X4 :C3

C X1, X2, X3, X4 C3

Table 6 Transformed dataset using binary relevance for label C4

Objects Attributes Label set

A X1, X2, X3, X4 :C4

B X1, X2, X3, X4 C4

C X1, X2, X3, X4 C4

246 Neural Comput & Applic (2018) 29:245–256

123



while another set of algorithms first transforms the multi-

label dataset into single-label and then operate on the

transformed dataset. This section gives the brief review of

research work done under algorithm adaptation.

3.1 Boosting algorithms

The main idea behind boosting is to combine many weak

classifiers to produce a strong classifier. This is done by

iteratively selecting a training set where each instance is

assigned a label. Set of weights are uniformly distributed

‘‘Dt’’ over the instances and labels. These weights are then

fed to the weak learner which produces weak hypotheses.

Error is computed using summation of distribution ‘‘Dt.’’

Finally, based on this error value, the weights of incorrectly

classified instances are increased so that the examples that

were classified incorrectly are fed back to the algorithm

and the weak learner is forced to focus on the hard

examples in the training set, whereas correctly classified

examples are removed. Based on this concept, simplest

version of Adaboost (adaptive boosting) is proposed.

However, maintaining a set of weights over training

examples does not solve the problem of multi-class and

multi-label. So to deal with such problems, set of weights

are maintained over training examples and labels. During

boosting process, the training examples and their corre-

sponding labels get incrementally higher weights that are

difficult to predict, while lower weights are maintained

over the examples and labels that are easy to classify.

Schapire and Singer [6] proposed two extensions of Ada-

boost algorithms for multi-class, multi-label classification

problems. The first boosting algorithm, named as Ada-

boost.MH, is derived by reducing the multi-label data to

binary data. At next step, binary Adaboost is applied on

these binary data. The goal is to predict only correct labels.

It uses hamming loss and updated learning algorithms to

increase the accuracy of classification task. Adaboost.MR

is the second algorithm that performs label ranking such

that the correct labels receive the highest ranks. Classifi-

cation probabilistic accuracy is improved by ranking loss.

3.2 Generative models

Probabilistic generative models are generally used to gen-

erate a sequence of observable data using some probability

distribution. The naive Bayes model is a conditional

probability learning method that uses Bayes theorem.

Bayes theorem relates the probability of the occurrence of

an event to the occurrence or non-occurrence of an asso-

ciated event, i.e., the probability that an event A occurs

given that another event B has already occurred is equal to

the probability that the event B occurs given that A has

already occurred multiplied by the probability of

occurrence of event A and divided by the probability of

occurrence of event B. This conditional probability rela-

tionship between two events A and B is given by:

P AjBð Þ ¼ P BjAð ÞPðAÞ
P BjAð ÞP Að Þ þ P Bj �Að ÞPð �AÞ ð1Þ

Due to the fact that naive Bayes is fast and highly

scalable, it is being used for multi-label classification

Ueda and Saito [7] applied probabilistic generative

model for multi-label text categorization problem. To

detect multiple categories of text simultaneously, two

probability generative models, namely PMM1 (parametric

mixture model 1) and PMM2 (parametric mixture model

2), are proposed in their work. These proposed models use

word-based representation, Bag-Of-Words (BOW) repre-

sentation. It is based on the assumption that ‘‘mixture of

characteristic words which appear in single-labeled text

belongs to each category of multi-categories’’ [7]. In

PMM1, approximation of a class-dependent probability is

done. This is regarded as ‘‘first-order’’ approximation. But

according to author, PMM2 is a more flexible model. This

is because the parameter vectors of duplicate category are

also used to approximate class-dependent probability.

When experimented on real-world dataset, i.e., yahoo.com

Web pages, PMMs proved to be much faster than naive

Bayes, k-nearest neighbor and three-layer neural networks.

Nadia Ghamrawi et al. [8] proposed two models based

on conditional random field (CRF). The first model is

collective multi-label classifier (CML) that captures the

label co-occurrences but do not account for the presence of

particular feature values in objects. The second model

known as collective multi-label with features classifier

(CMLF) maintains parameters for observational features.

This can be understood by simple example, say a text

document can be categorized in one of the three classes

{ORANGE, MANGO, RICE}. The presence of a word

fruits in the document increases the likelihood of being

correctly classified to ORANGE and MANGO and reduces

the likelihood of belonging to RICE. The experimental

results show that the proposed model outperforms the

single-label counterparts on standard text corpora.

Multi-label classification algorithms discussed above

have high computational cost. In order to reduce compu-

tational cost, a novel multi-label classifier is proposed by

Zhihua Wei et al. [9]. In this research work, naive Bayesian

multi-label classification (NBML) algorithm is proposed

that incorporates two-step feature selection strategy. In

feature selection, subsets of discriminative features that

occur in training set are selected to improve classification

quality and reduce computational complexity. In the first

step, document frequency and X2 are used for feature

selection. In the second step, FCFB (fast correlation-based

filter selection) is applied on the results obtained in first
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step which leads to the reduction in feature dimensionality.

When experimented on real World Wide Web dataset,

NBML performs equivalent to other multi-label

algorithms.

All the methods mentioned above do not consider the

correlations among labels resulting into low classification

performance. Many researchers have worked upon to deal

with label correlations in multi-label classification problem

which is discussed in the following paragraphs.

In [10], a generative probabilistic model, the correlated

labeling model (Col Model) is proposed. The main aim of

Col Model is to capture the information conveyed in the

class membership, to exploit the in-depth relation between

the classes and words: via the latent topic factors and to

predict the potential classes in an unseen document clas-

sification. It is a supervised model and employs multi-

variate normal distribution to capture the correlation

between the classes. Experimental results show that Col

Model possesses good precision and recall values and

classification performance increases significantly when

correlation among classes is considered.

Zhang propose a multi-label naive Bayes (MLNB) [11]

method to deal with multi-label classification problem. The

author incorporates a two-stage filter wrapper feature

selection strategy to improve the performance of MLNB. In

the first stage, principal component analysis (PCA) is used

to eliminate irrelevant and redundant features. In the sec-

ond stage, genetic algorithm (GA) is used to optimize the

classification by explicitly considering correlations among

labels of different instances through fitness function.

Experiments show that the proposed approach performs

effectively on synthetic as well as on real-world datasets.

Though incorporation of PCA and GA improves the per-

formance, at the same time it increases the time complexity

for high dimensional dataset.

A second-order CRF (conditional random field) model is

proposed [12] for multi-label image classification, to cap-

ture the semantic associations between labels. In the pro-

posed model, the feature weights are initialized differently

and then voting technique is applied to improve the per-

formance. Multiple CRFs are obtained iteratively, and each

CRF vote for several labels. For each label, if the vote

number exceeds the predefined threshold, it is regarded as

final labels for an image. The results show the effectiveness

of this method when applied to MSRC dataset.

To address the inherent correlations among multiple

labels, Haiping Ma et al. [13] proposed a generative model

named labeled four-level pachinko allocation model (L-F-

L-PAM). The proposed algorithm is based on labeled LDA

model, and an additional latent correlations level is added

to enhance the performance. Apart from this, pruned Gibbs

sampling is used for inferring the unlabeled test documents

which results in reduced inference time in the test stage.

The results of the experiments conducted on text dataset:

Reuters-21578 corpus and Web pages from yahoo.com

show that by considering the relations between multiple

labels, the overall performance and computational effi-

ciency of multi-label classification task is improved.

3.3 Support vector machines

Support vector machines (SVM) is technically defined by a

hyperplane. The hyperplane is produced as an output of the

SVM algorithm. This hyperplane classifies the new

example in the labeled training dataset. An optimal

hyperplane is the one that passes as far as possible from all

points.

Elisseeff and Weston [14] present rank SVM for multi-

label classification. This is a linear model that uses ranking

loss as its cost function where ranking loss is defined as

average fractional pairs of labels that are ordered incor-

rectly. Rank SVM aims to minimize this cost function.

When experiments were conducted, rank SVM results in

improvements when compared to other multi-label algo-

rithms. However, the author reported that the worst case

space complexity of this proposed algorithm is mQ2, which

increases when Q is large.

The SVMs and other discriminative classification

methods are designed to assign an instance to one among

the set of disjoint classes, but high degree of correlation

and overlapping exist among classes in multi-labeled data.

In order to deal with this problem, Godbole and Sarawagi

[15] proposed two enhancements for support vector

machine. The first improvement is the algorithm that deals

with the correlation between classes. This is done by

extending original dataset with |C| extra features. The

binary classifiers are then trained on this extended dataset.

The second improvement is handling the overlapping

classes in multi-label classification by modifying the

margins of SVMs. This is achieved by one of the two

methods: (1) by removing similar negative instances that

lie very close to the resultant hyperplane and (2) removing

all the training instances of confusion classes in confusion

matrix.

In [16], two algorithms based on SVMs are proposed for

multi-label classification problem. The first algorithm is

based on ‘‘one against rest’’ strategy in which the multi-

label training set is decomposed into binary classifiers and

then k binary SVM sub-classifiers are trained and the

membership vector is obtained as per sub-classifiers

according to which classification of the text is performed.

The second algorithm HSMC is based on the hyper-sphere,

multi-label classification algorithm for classification of a

dataset having higher number of samples and more classes.

The experimental result made on Reuters 21578 shows the

effectiveness of both algorithms.
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Hariharan et al. [17] proposed a max-margin multi-label

classification formulation referred to as M3L. The author

incorporates the prior knowledge about densely correlated

labels to improve the performance to M3L. Further, SMO

(sequential minimal optimization) is adapted for optimiz-

ing the above formulation. Basically, SMO breaks large

quadratic programming (QP) problem into set of smallest

possible QP problems, each of which is solved analytically.

Experiments show that by incorporating prior knowledge,

M3L (max-margin multi-label classification) could

improve prediction accuracy over independent methods.

In order to overcome the drawback of rank SVM,

Jianhua Xu [18] proposed multi-label support vector

machine (ML-SVM) algorithm. In this novel algorithm, a

zero label is added to proposed SVM architecture derived

from rank SVM. A new form of cost function is also

introduced that reduces the computational cost. The multi-

label problem is first decomposed into several subproblems

by applying problem transformation technique, and then,

Frank-Wolfe method is used to train these subproblems.

When experiments were conducted, SVM-ML proved to be

stronger than the ML-KNN, ML-RBF, ML-NB, BP-MLL

and rank SVM.

3.4 k-Nearest neighbor

The k-nearest neighbor is based on instance-based learning.

The classification of a test tuple is done based on the

majority vote of the k neighbors that are closest to the test

tuple. Due to its simplicity and high performance when

subjected to large training set, it is applied to multi-label

classification.

Multi-label k-nearest neighbor (ML-kNN) is introduced

by Zhang and Zhou [19] which uses the basic concept of

k-nearest neighbor. For each test tuple, it first identifies its

k-nearest neighbors and according to the classes assigned

to these neighbors, test tuple is classified using maximum a

posteriori (MAP). Results of experiments prove that the

performance of ML-kNN is equivalent to rank SVM and

higher than boosting algorithms.

Spyromitros et al. [20] proposed k-NN in conjunction

with binary relevance (BR) problem transformation

method known as BR-kNN. When BR is paired with k-NN,

same process of calculating kNN is performed L (total

number of labels) times. In the proposed BR-kNN, inde-

pendent predictions are made for each label followed by

single k-nearest neighbor search. The author identifies two

extensions of BR-kNN to improve the performance. The

first extension known as BR-kNN-a handles the empty set

that may be produced as an output of BR. In such case, BR-

kNN-a outputs the label with highest confidence. The

second extension BR-kNN-b works in two steps: In the first

step, it calculates the average size of label set of k-nearest

neighbor, and in second step, the label with highest con-

fidence is produced. Results show that BR-kNN-a domi-

nates in the scene and the emotion dataset, whereas BR-

kNN-b dominates in yeast dataset.

In [21], multi-label k-nearest Michigan particle swarm

optimization (ML-KMPSO) hybridizes MPSO (Michigan

particle swarm optimization) and ML-kNN (multi-label

k-nearest neighbor). At first, MPSO breaks the MLC into

subclassification problems without considering the label

correlation. And then ML-kNN is used to establish the

correlation among classes. When experimented on two

real-world datasets: yeast and scene, the proposed algo-

rithm outperforms other multi-label classification

algorithms.

3.5 Neural network

An ANN (artificial neural network) is a computational

model that is analogous to the human brain. An ANN is

constructed with few basic building blocks, called nodes

or neurons. These neurons are connected to each other

with the help of connection link. Each connection link is

associated with weights that store information. This

information is then used by ANN to solve the particular

problem. Due to their ability to solve complex problems

for which algorithmic solutions do not exist, ANN has

become very popular for solving multi-label classification

problem.

Zhang and Zhou [22] proposed first neural network-

based algorithm for multi-label classification and named it

as backpropagation for multi-label learning (BP-MLL). In

this work, a single hidden layer feed-forward BP-MLL

neural network is used with sigmoidal neurons and bias

parameters in the hidden and input layers. The number of

output layer neuron is equal to the number of labels.

Training is based on the traditional BP (backpropagation)

algorithm. But to deal with the correlation between labels,

a global error function is proposed in this paper:

E ¼
Xm

p¼1

P
r;sð Þ2Yp� �Yp

e� c
p
r�c

p
sð Þ

Yp � �Yp
ð2Þ

Here, m is number of multi-label instances in training set.

Yp � Y is set of labels assigned to pth training instances. Cq
p

is the actual output of the qth neuron. �Yp is the comple-

mentary set of Yp.

If the output value of neuron is higher than predefined

threshold value, then corresponding label belongs to the

input instance else not. Experiments in functional genomics

and text categorization dataset show that it performs better

than well-established multi-label learning algorithms.

In [23], author proposes some modifications in the error

function proposed in [22]. The first modification is the
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incorporation of the threshold value into the error function

used in BP-MLL. A generalization of error function is done

by adding independent thresholds for different labels. The

results show that proposed modification improves the

performance of multi-label classifiers based on neural

network.

In [24], radial basis neural network for multi-label (ML-

RBF) learning is proposed. The training procedure of ML-

RBF is a two-stage process. In first step, k-means clustering

is applied on set of samples of each possible class. The

centroids so obtained are then used to determine the

parameters of the basis functions. In the second stage,

weights are adjusted to minimize the sum-of-square error

function. This algorithm when applied to three real-world

datasets proves its efficiency as well as its effectiveness in

comparison with other algorithms.

Apart from RBF, ART (adaptive resonance theory) is

also applied for multi-label classification. Sapozhnikova

[25] presents the extension of fuzzy ARTMAP for multi-

label classification called multi-label-FAM. In the pro-

posed methodology, a best category set with high activa-

tion values are produced based on the fact that if the

relative difference in activations of a category lies below a

predefined threshold, then it is included in the set. After

normalizing these activation values, the resultant predic-

tion is obtained by calculating weighted sum of individual

predictions. Postprocessing filter is used to produce the

labels, having score more than predefined fraction of the

highest score. When experimented on yeast dataset, the

performance of the proposed classifier is comparable with

the performance of other multi-label classifiers except for

ML-kNN.

Data mining system-based new hierarchy extraction

(HE) algorithm is proposed in [26] in which fuzzy ART-

MAP is hybridized with HE. The proposed HE algorithm

deals with the hierarchies that exist between classes, taking

into account relationships between the labels assigned by

the classifier by building association rules from label co-

occurrences. The main advantage of this data mining sys-

tem is that it enables HE for sparse multi-label data even if

many instances remain single-labeled. Experimental results

show that the proposed approach is suitable for extracting

class hierarchies from predicted multi-labels.

De Souza et al. [27] proposed an effective machine

learning technique which provides fast training and test-

ing along with simple implementation for automatic

multi-label text categorization systems known as VG-

RAM WNN (virtual generalizing random access memory

weightless neural networks). RAM-based neural networks

use RAM to store knowledge instead of connections. The

networks input values are used as the RAM address, and

the value stored at this address is the neuron’s output.

When tested on two real-world datasets, i.e.,

categorization of free text descriptions of economic

activities and categorization of Web pages, VG-RAM

WNN outperforms ML-kNN.

Implementation simplicity and high computational

speed during the training phase of probabilistic neural

network (PNN) motivates Ciarelli et al. [28] to propose a

modified version of PNN to solve the multi-label classifi-

cation problem. Basically, PNN is an implementation of a

statistical algorithm called kernel discriminant analysis in

which the operations are organized into a multilayered

feed-forward network with four layers. However, the pro-

posed version of PNN is composed of three layers but like

original PNN requires only one training step. Comparative

experimental evaluation on a yahoo and economic activi-

ties database proved that PNN is superior to other

algorithms.

Chen et al. [29] proposed an algorithm that consists of

two stages of a multilayer perceptron (MLP), named multi-

instance multi-label neural network (MIMLNN). The first

stage of MLP is used to establish the relationship between

image regions and labels, whereas the second stage of MLP

captures the label correlation needed for multi-label clas-

sification. The training of MIMLNN is done by Rprop,

which is a refined form of backpropagation algorithm.

Results of experiments conducted on synthetic dataset and

the popular coral dataset demonstrate the superior perfor-

mance of MIMLNN for multi-instance multi-label image

classification.

Although many approaches have been proposed by

different researchers to solve multi-label classification

problem, population-based meta-heuristics approaches are

yet to be explored. So, this paper introduces two new

algorithms for multi-label classification: The first algorithm

is fuzzy PSO-based ML-RBF in which fuzzy PSO algo-

rithm is used to optimize the RBF networks connection

weights w, whereas in the second algorithm, RBF is trained

using traditional training method singular value decompo-

sition (SVD) and is named as FSVD-MLRBF.

4 Proposed methodology

The proposed algorithms are based on ML-RBF (multi-

label radial basis function) neural network as shown in

Fig. 1. The training of ML-RBF [24] can be done in two

stages: At the first stage, we determine the centers and RBF

(radial basis function) by applying fuzzy c-means cluster-

ing and Gaussian activation function, respectively. This

leads to the formation of nodes in the hidden layer. In the

second stage, we determine the weights between hidden

layer and output layer. In our proposed methods, we have

trained the neural network using two different approaches:

In the fuzzy PSO-based ML-RBF, we use fuzzy PSO
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(fuzzy particle swarm optimization) to obtain optimized

weights, whereas in FSVD-MLRBF, the weights are

determined using traditional SVD.

4.1 Phase 1: determination of hidden layer

LetD be amulti-label dataset and L = 1, 2,…,L be the label

set, such that D ¼ xi; Yið Þj1� i�mf g, where xi is a single

instance and Yi�L is the set of labels to which xi belongs.

In the first step, fuzzy c-means clustering is applied on

the set of instances with label l 2 L so as to obtain kl
clustered groups and j centroids for each l 2 L. The num-

ber of clusters in each case is determined using following

formula used in [24], i.e.,

kl ¼ a� jUlj ð3Þ

where a is a fraction of the number of instances Ul. kl and cj
together form the basis function. Here, Gaussian activation

function is used as the basis function which is given by:

Uj xið Þ ¼ exp �
dist xi; cj
� �2

2r2

 !
ð4Þ

Here distðxi; cjÞ is the Euclidean distance between xi and

the jth centroid cj. r is the smoothing parameter, and for all

the centroids, its value remains same and is calculated using:

r ¼ l�
PK�1

p¼1

PK
q¼pþ1 distðcp; cqÞ

KðK � 1Þ=2

 !
ð5Þ

where l is the scaling factor. Thus, for each label kl, basis

functions are obtained. Hence, the total number of basis

functions hold on to the hidden layer is given as

K ¼
PL

l¼1 kl. All the basis functions so obtained are then

put together and re-indexed.

4.2 Phase 2: determination of weights

between hidden layer and output layer

Different methods can be applied to train a neural network.

The two methods that are used in our proposed work are

described in the next paragraph.

4.2.1 Weight adjustment using fuzzy PSO algorithm

In fuzzy PSO [30], instead of only one best particle in the

neighborhood, multiple particles in the neighborhood are

allowed to influence other particles. Each group member is

assigned with the multiplier known as charisma which is a

fuzzy variable. The influence of each best particle to others

is calculated using this charisma variable, and summation

is then applied to the original formulation. Thus, each

particle will update its position and velocity using fol-

lowing two formulas:

xid ¼ xid þ Vid ð6Þ

Vid ¼ wVid þ c1 � randðÞ � pid � xidð Þ þ
Xk

h¼1

c2 � randðÞ

�W phdð Þ phd � xidð Þ
ð7Þ

where w is the inertia weight, c1 and c2 are the acceleration

coefficients, rand() is independent random number, and

W(phd) is charisma function and is defined as follows:

WðphÞ ¼
1

1þ l
f phð Þ�f pgð Þ

f pgð Þ

� �2
ð8Þ

f(�) is the fitness function, and l is a user-specified param-

eter. The key of the fuzzy PSO algorithm is to choose the

fitness function. Here, sum-of-square error is used as a

fitness function as shown below:

E ¼ 1

2

Xm

i¼1

XL

l¼1

yl xið Þ � til
� �2 ð9Þ

In this formula, tl
i is the desired output of xi on the lth

class. yl(xi) is the actual output of xi on the lth class and is

given by yl xið Þ ¼
PLþ1

j¼1 wjlUjðxiÞ.
The objective is to find such a particle that minimizes

the output of the fitness function. At first step, initialize the

position and velocity of each particle. Set the values of k

and l. At second step, calculate the fitness of each particle

using fitness function according to formula (9). In each

iteration of neural network training, the particle with

smallest fitness function value is considered as gbest,
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Fig. 1 Proposed architecture of fuzzy PSO-based ML-RBF and

FSVD-MLRBF for multi-label classification
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which is best position of all the particles till now. Each

particle will update its position and velocity using Eqs. (6)

and (7), respectively. This process terminates when the

minimum fitness function value is achieved or maximum

number of iterations is met.

4.2.2 Weight adjustment using SVD

Due to the quadratic nature of the error function, it can be

solved using set of linear equations. In order to find the

solution, differentiate Eq. (9) with respect to wjl and set the

derivative to zero. This gives the normal equation for the

least sum-of-square problem:

UTU
� �

W ¼ UTT ð10Þ

Here, U has dimensions m 9 (K ? 1) with elements

Uj xið Þ, W has dimensions (K ? 1) 9 L with elements wjl,

and T has dimensions m 9 L with elements til. The weights

are calculated using Eq. (8) using linear matrix inversion

techniques of SVD.

Correlation between the classes in RBF is achieved as all

the nodes in the hidden layer are connected to all the nodes in

the output layer. Thus, information present in the hidden

layer nodes is completely used to determine the optimized

weights as well as for predicting instances for class l.

5 Experiments

5.1 Dataset

The performance of the two proposed approaches is eval-

uated on the yeast dataset and scene dataset. Yeast dataset

describes the genes of Yeast saccharomyces cerevisiae.

Each gene is described by the concatenation of micro-array

expression data and phylogenetic profile and is associated

with a set of functional classes whose maximum size can

be potentially more than 190. In order to make it easier,

Elisseeff and Weston [14] preprocessed the dataset where

only the known structure of the functional classes is used.

Actually, the whole set of functional classes is structured

into hierarchies up to 4 levels deep3. In this paper, the same

dataset as used in the literature [14] is adopted. In this

dataset, only functional classes in the top hierarchy are

considered. The resulting multi-label dataset contains

2,417 genes each represented by a 103-dimensional feature

vector. There are 14 possible class labels, and the average

number of labels for each gene is 4:24 ± 1:57.

The scene dataset is composed of 2407 instances each of

which is represented by 294 feature vector. This dataset

contains the scenes data. There are 6 classes used in this

dataset. The summary of both the datasets is given below

(Table 7).

5.2 Parameter setting

For comparative study, we coded these methods by using

the java-based eclipse. For our experimental tests, we used

i3-2330 processor @2.20 GHz and with 3 GB RAM. The

values of different parameters used are discussed in

Table 8.

The other parameters that govern the performance of

RBF neural network are a and l, whose value is set to

a = 0.01 and l = 1 as in [24]. Fuzzy PSO search dimen-

sion (RBF networks weights number) is the product of

number of nodes in the hidden layer and number of nodes

in the output layer of the neural network. Here, the number

of hidden nodes is obtained as a result of clustering, and the

number of output nodes is equals to the number of classes

in the dataset. So for yeast dataset, number of nodes in

output layer are 14, and in case of scene dataset, they are 6.

Results are obtained in 50 runs of fuzzy PSO. The termi-

nation criterion of fuzzy PSO is either 1000 iterations or till

the value of fitness function reaches 0.001.

The experimental results are obtained by performing

tenfold cross-validation on the yeast and scene dataset. In

detail, the original dataset is randomly divided into ten

parts each with approximately the same size. In each fold,

Table 8 Values of various

parameters used in experiments
Parameter Range

w 0.4

c1 2

c2 2

k 3

l 1.6

E 0.001

m 1.25

Vmax 0.5, 1, 2

Number of particles 20

Table 7 Multi-label datasets statistics (LCard—label cardinality, LDen—label density, DL—distinct label sets, PDL—proportion of distinct

label)

Dataset Domain Instances Distinct label LCard LDen DL PDL

Yeast Biology 2417 14 4.237 0.303 198 0.081

Scene Multimedia 2407 6 1.074 0.179 15 0.006
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one part is held out for testing and the learning algorithm is

trained on the remaining data. The above process is iterated

ten times so that each part is used as the test data exactly

once, where the averaged metric values out of ten runs are

reported for the algorithm.

5.3 Classification results

The performance of multi-label classifier is measured using

five evaluation measures which are: Hamming loss, one

error, coverage, ranking loss and accuracy.

1. Hamming loss is defined as the number of times an

instance is misclassified. It is given by

HL ¼ 1

n

Xn

i¼1

jZiDYij
L

ð11Þ

D is the symmetric difference between two sets. Zi is

the set of labels predicted by the classifier, and Yi is the

desired set of labels for a given test instance xi.

2. One error measures the number of times top-ranked

label is not in the set of labels of an instance. It is given by

OE ¼ 1

n

Xn

i¼1

o argmaxf xi; lð Þ½ � 62 Yð Þi ð12Þ

Here, q is a function that produces 1 if the argument is

true and 0 otherwise.

3. Coverage is used to determine the number of steps

needed to cover all the proper labels of the instance,

given by

Coverage ¼ 1

n

Xn

i¼1

max rank xi; lð Þ � 1 ð13Þ

4. Ranking loss determines the number of label pairs that

are reversely ordered for an instance. It is given by

RL ¼ 1

n

Xn

i¼1

jDij
Yij jj �Yij

ð14Þ

where �Yi is complementary of Yi, while

D ¼ l1; l2ð Þjf xi; l1ð Þ� f xi; l2ð Þ; l1; l2ð Þ 2 Yi � �Yif g:

All the performance measures described above have best

performance when value is zero which implies that smaller

the value, the better the performance of the classifier.

Table 9 shows the experimental results of proposed

algorithms, ML-RBF and ML-KNN on yeast dataset. The

values of ML-RBF used in Tables 9 and 11 have been

taken from [24] and of ML-KNN used in Tables 9 and 11

have been taken from [19]. The results have been reported

as mean ± SD.

Table 10 shows statistical unpaired t test (at 95 %

confidence interval) results of all the four algorithms. As

shown in the tables, for each evaluation metric, A\B

indicates that performance of B is significantly better than

that of A.

From the experimental results of Tables 9 and 10, the

two proposed algorithms, i.e., fuzzy PSO-based MLRBF

and FSVD-MLRBF, outperforms ML-RBF and ML-KNN

in terms of one error and performs equally on the other

three measures. In terms of one error, fuzzy PSO-based

MLRBF is outperforming FSVD-MLRBF, while in case of

Table 9 Comparison of performance (mean ± SD) on yeast dataset

Evaluation measures Fuzzy PSO-based ML-RBF (A1) FSVD-MLRBF (A2) ML-RBF (A3) ML-KNN(A4) (k = 8)

Hamming loss 0.260 ± 0.110 0.291 ± 0.151 0.195 ± 0.011 0.195 ± 0.010

One error 0.181 ± 0.076 0.306 ± 0.382 0.233 ± 0.037 0.233 ± 0.032

Coverage 5.277 ± 0.570 3.743 ± 2.145 6.352 ± 0.244 6.291 ± 0.0238

Ranking loss 0.298 ± 0.170 0.224 ± 0.157 0.169 ± 0.017 0.169 ± 0.016

Table 10 Statistical analysis of

each algorithm on yeast dataset
Algorithm Hamming loss One error Coverage Ranking loss

Fuzzy PSO-based ML-RBF—FSVD-MLRBF A1 	 A2 A1 [A2 A1\A2 A1 	 A2

Fuzzy PSO-based ML-RBF—ML-RBF A1 	 A3 A1[A3 A1 [A3 A1\A3

Fuzzy PSO-based ML-RBF –ML-KNN A1 	 A4 A1 [A4 A1 [A4 A1\A4

MLRBF—ML-KNN A3 	 A4 A3 	 A4 A3 	 A4 A3 	 A4

FSVD-MLRBF—ML-RBF A2 	 A3 A2 	 A3 A2[A3 A2 	 A3

FSVD-MLRBF—ML-KNN A2 	 A4 A2 	 A4 A2 [A4 A2 	 A4

Total order : (fuzzy PSO-based ML-RBF(2) = FSVD-MLRBF(2))[(ML-RBF(-2)[ML-KNN(-2))
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coverage, FSVD-MLRBF is outperforming fuzzy PSO-

based MLRBF on yeast dataset.

Taking the above situation into consideration, a score is

assigned to each compared algorithm in order to give an

overall performance assessment of the algorithm as stated

in [24]. Concretely, for each evaluation metric and each

possible pair of algorithms A and B, if A[B holds, the

score of A is added by 1 and that of B is subtracted by 1

accordingly. With the accumulated score of each algo-

rithm, a total order ‘‘[’’ can be defined on the set of all

compared algorithms as shown in the last lines of

Tables 10 and 12. Here, A[B denotes that A outperforms

B on the corresponding dataset and the accumulated score

of each algorithm is reported in the parentheses. From this

score, it is clear that both the proposed algorithms out-

perform ML-RBF and ML-KNN.

Tables 11 and 12 show experimental results and statis-

tical unpaired t test (at 95 % confidence interval) results of

all the four algorithms on scene dataset.

Experimental results on scene dataset as shown in

Tables 11 and 12 allow us to conclude that the two pro-

posed algorithms, i.e., fuzzy PSO-based MLRBF and

FSVD-MLRBF either meets or beats its competitors ML-

RBF and ML-KNN in terms of all the three measures

Hamming loss, one error and coverage except ranking loss.

This may be because we have more number of instances of

scene dataset compared to [24]. Overall score shows that

the performances of all the algorithms are equivalent when

compared to scene dataset.

5. Accuracy (A): Accuracy for each instance is defined as

the proportion of the predicted correct labels to the

total number (predicted and actual) of labels for that

instance. Overall accuracy is the average across all

instances.

A ¼ 1

n

Xn

i¼1

Yi \ Zi

Yi [ Zi

����

���� ð15Þ

where Zi is the set of predicted labels for Xi, L is the set of

finite set of possible labels, n is the total number of test

samples, and Yi is the proper label set for an instance X’i.
For the optimum performance, the accuracy of the algo-

rithm must be high.

Table 13 reports the comparative results of average

accuracy of all the four algorithms on yeast and scene

dataset which were obtained on 10 independent runs.

Experimental result shows that both the proposed algo-

rithms outperform ML-RBF and ML-KNN, and among the

two, FSVD-MLRBF gives superior performance on the

basis of accuracy.

Table 11 Comparison of

performance (mean ± SD) on

scene dataset

Criteria Fuzzy PSO-based ML-RBF (A1) FSVD-MLRBF (A2) ML-RBF (A3) ML-KNN(A4)

Hamming loss 0.211 ± 0.097 0.226 ± 0.119 0.163 ± 0.015 0.169 ± .016

One error 0.150 ± 0.183 0.196 ± 0.214 0.294 ± 0.033 0.300 ± .046

Coverage 0.901 ± 0.595 0.892 ± 0.711 0.904 ± 0.087 0.939 ± .100

Ranking loss 0.503 ± 0.162 0.552 ± 0.113 0.158 ± 0.020 0.168 ± .024

Table 12 Statistical analysis of

each algorithm on scene dataset
Algorithm Hamming loss One error Coverage Ranking loss

Fuzzy PSO-based ML-RBF—FSVD-MLRBF A1 	 A2 A1 	 A2 A1 	 A2 A1 	 A2

Fuzzy PSO-based ML-RBF—ML-RBF A1 	 A3 A1[A3 A1 	 A3 A1\A3

Fuzzy PSO-based ML-RBF—ML-KNN A1 	 A4 A1 [A4 A1 	 A4 A1\A4

FSVD-MLRBF—ML-RBF A2 	 A3 A2 [A3 A2 & A3 A2\A3

FSVD-MLRBF—ML-KNN A2 	 A4 A2[A4 A2 	 A4 A2\A4

MLRBF—ML-KNN A3 	 A4 A3 	 A4 A3 	 A4 A3 	 A4

Total order: fuzzy PSO-based ML-RBF(0) = FSVD-MLRBF(0) = ML-RBF(0) = ML-KNN(0)

Table 13 Comparison of

accuracy of each algorithm on

yeast and scene dataset

Dataset Fuzzy PSO-based ML-RBF FSVD-MLRBF ML-RBF ML-KNN

Yeast 0.515 0.539 0.464 0.435

Scene 0.679 0.714 0.581 0.576
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6 Conclusion

Multi-label classification is a generalization of multi-class,

where each instance is assigned to a subset of labels.

Researchers have worked to solve the multi-label problem

using both the approaches, i.e., via problem transformation

and algorithm adaptation. However, through this paper, we

have focused on the work under algorithm adaptation and

concluded that the algorithms described here handle various

issues of multi-label classification, especially the exploita-

tion of correlations among labels, predictingmultiple classes

for unseen instances, minimization of ranking as well as

Hamming loss.

In this paper, we have also proposed two approaches:

fuzzy PSO-based MLRBF and FSVD-MLRBF. The exper-

iments were conducted on two real-world datasets, i.e., yeast

and scene dataset. Results of experiments show that both

these algorithms can be successfully used for solving multi-

label classification task. The analysis of results proves that

both the proposed fuzzy PSO-based MLRBF and FSVD-

MLRBF algorithms are equally efficient and effective when

applied on RBF network to solve multi-label classification

problem. However, the proposed FSVD-MLRBF algorithm

gives more accurate results on both the datasets as compared

to all the other three algorithms. In future, one can also use

other multi-label datasets of varying complexity to fully

evaluate the performance of both the proposed algorithms.
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