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Abstract The performance drop of typical automatic

speech recognition systems in real applications is related to

their not properly designed structure and training proce-

dure. In this article, a growing modular deep neural net-

work (MDNN) for speech recognition is introduced.

According to its structure, this network is pre-trained in a

special manner. The ability of the MDNN to grow enables

it to implement spatiotemporal information of the frame

sequences at the input and their labels at the output layer at

the same time. The trained network with such a double

spatiotemporal (DST) structure has learned valid phonetic

sequences subspace. Therefore, it can filter out invalid

output sequences in its own structure. In order to improve

the proposed network performance in speaker variations,

two speaker adaptation methods are also presented in this

work. In these adaptation methods, the network trains how

to move distorted input representations nonlinearly to their

optimal positions or to adapt itself based on the input

information. To evaluate the proposed MDNN structure

and its modified versions, two Persian speech datasets are

used: FARSDAT and Large FARSDAT. As there is no

frame-level transcription for large vocabulary speech

datasets, a semi-supervised learning algorithm is explored

to train MDNN on Large FARSDAT. Experimental results

on FARSDAT verify that implementing the DST structure

besides speaker adaptation methods achieves up to 7.3 and

10.6 % absolute phone accuracy rate improvement over the

MDNN and typical hidden Markov model, respectively.

Likewise, semi-supervised training of the grown MDNN on

Large FARSDAT improves its recognition performance up

to 5 %.

Keywords Deep neural networks � Modular neural

networks � Pre-training � Nonlinear filtering � Double
spatiotemporal � Speaker adaptation � Continuous speech
recognition

1 Introduction

Many successful commercial automatic speech recognition

(ASR) systems have been developed over the past few

decades. However, they cannot handle a wide range of

variability as humans do [1–3]. Therefore, there is an open

research area to develop speech recognition systems that

operate well in speech variations.

Most current ASR systems use hidden Markov models

(HMMs) to model the sequence structure of speech rep-

resentations into speech units. In each HMM state, Gaus-

sian mixture models (GMMs) are used to model spectral

representations of the speech signal. Some advances have

been proposed during the years to improve the recognition

accuracy of GMM-HMM systems [4–6]. Two decades ago,

some developments were achieved using artificial neural

networks (ANNs) with one or two nonlinear hidden layers

and hybrid ANN-HMM models in speech recognition

[7–12]. However, neither the high-speed hardware products

nor the learning methods for training deep neural networks

existed. Therefore, the performance of ANNs was kept

limited. Subsequently, HMMs were implemented more

than ANNs for acoustic modeling.

Recently, progresses in learning methods explored for

ANNs with more than two hidden layers and in high-speed
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hardware products have led to implementing deep struc-

tures in speech recognition. Using deep neural network

(DNN) models for speech recognition on many different

datasets has shown that DNNs can outperform GMMs in

hybrid structures with HMMs [3, 13–17].

In this paper, a growing modular deep neural network

(MDNN) is proposed. The main novelty of this network is

that it can be grown to learn the sequential structure of the

speech signal. Moreover, two innovative speaker adapta-

tion methods are proposed to improve this network per-

formance in speaker variability. In this paper, we illustrate

the ingredients of the growing MDNN, describe the pro-

posed learning procedure for it, investigate the proposed

adaptation methods, and analyze how different design

choices affect the network recognition performance. To the

best of our knowledge, the proposed MDNN is the first

DNN that can be trained to model both short time repre-

sentations and temporal variability of the speech signal in

an integrative manner.

1.1 Previous works on using DNNs in speech

recognition

Hybrid structures of DNNs with graphical models like

HMMs or conditional random fields (CRFs) are widely

used for phone recognition [15, 17–20]. In these models, as

it is shown in Fig. 1, the output of the trained static DNN

on a moving window of sequential frames is combined

with the graphical models. Graphical models are used to

deal with linear dependencies associated with the DNN

outputs. In fact, the variations along the time axis are

handled by a HMM or CRF. In such speech recognition

systems, DNNs are implemented as acoustic models and

the graphical models are used as phonetic models that are

trained separately.

DNNs used as acoustic models typically contain many

nonlinear hidden layers with the same number of neurons in

each layer and a nonlinear output layer with many neurons.

The large output layer is considered to accommodate the

large number of HMM states. Therefore, there are many

parameters to be trained. Although layer-wise pre-training

methods have been proposed to make the training of these

networks feasible [21, 22], training of each layer is time

consuming and requires a massive memory. Recently, con-

volutional neural networks (CNNs) have been investigated

to reduce DNN parameters by using replicated weights

across time and frequency dimensions of speech signal [23].

However, experimental results have shown that CNNs

approach their best performance when their number of

parameters matches the DNN parameters [24].

Speech recognition is a sequential learning program, and

discriminative information at sequence level improves

recognition accuracy [25]. Therefore, many algorithms

have been explored lately to train sequential information to

DNNs [25–29]. However, all of the proposed algorithms

are applicable for hybrid structures of DNNs. None of the

proposed methods considers a unified DNN structure that

extracts phonetic sequence as well as acoustic information

from the training data. If such a unified neural network

could be designed and trained effectively, both acoustic

and phonetic information would be able to interact with

each other to access the best recognition results.

DNN-based ASR systems like other statistical tech-

niques may fail to show the same level of performance in

mismatched test conditions. Thus, performing effective

speaker adaptation for DNNs has become very important.

Speaker adaptation methods adapt either the model or

acoustic feature vectors to reduce the mismatches between

training and test conditions. Several speaker adaptation

methods have been proposed for ANNs. A comprehensive

review of these methods can be found in [30]. Here, those

techniques that motivated the work conducted in this article

are reviewed. Some of the model adaptation methods

modify the ANN structure, e.g., by adding some layers to it

or by feeding it with speaker data [31–33]. In such cases,

during adaptation, only new parameters are calculated

using adaptation data. However, these methods cannot be

used in conditions that no adaptation data exist. The pre-

sented speaker adaptation method in [34] modifies the

ANN structure by adding speaker information to its first

hidden layer. Although this method does not require any

adaptation data, it has been tested on a very small dataset.

The other group of methods transforms the input feature

space. These methods such as vocal tract length normal-

ization (VTLN) and feature space maximum likelihood

linear regression (fMLLR) can be directly used to nor-

malize input acoustic features prior to DNNs [35, 36].

Although indicated feature space transformations improve

the recognition performance of DNNs, they are linear and

cannot deal with nonlinear variations of the speech signal.

In the nonlinear feature normalization method proposed in

[37], a feed-forward neural network is first trained to map

the input representations into both phonetic and speaker

codes. Then, a training speaker with the highest phone

accuracy is considered as the reference speaker. Subse-

quently, input features are normalized using the error back-

propagation algorithm to be adapted to the reference

speaker speech.

1.2 Introducing MDNN for speech recognition

In this paper, in order to step forward to achieve efficient

DNN architectures for speech recognition, which can do

both acoustic and phonetic modeling, a growing MDNN is

proposed. The initial structure of this network has been

explored in [38]. This network implements some concepts
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developed in DNNs and modular neural networks. It con-

sists of a deep structure with a series of feature detector

units in each layer. Each feature detector is a filter applied

on a small local part of the previous layer nodes to process

the dynamic information of that part. However, in the first

hidden layer, dynamic information of the input is not

considered. In this layer, each input representation is pro-

jected to the corresponding higher dimensional feature

detector to be processed further. Lower layers detect simple

features and feed them into higher layers which in turn

detect more complex features. Sharing the same weights

among all the filters applied on one layer not only

decreases the training parameters, but also makes the filters

robust to inaccurate phonetic transcribed speech data.

The proposed MDNN is hard to optimize. Therefore, it

must initially be pre-trained to be located in a much better

starting point for the global fine-tuning phase. In this

article, a proportional pre-training method for the presented

network is introduced. In this method, the network is

trained layer-wisely. Due to the modular structure of this

network and shared weights between the modules of one

layer, only one module of each layer is trained. Conse-

quently, the trained weights are replicated for other similar

modules.

One of the key characteristics of the MDNN is that it

can be grown. When it is required to train the network with

more complex information (like phonetic sequence infor-

mation or word information) than it was trained before, it is

grown. Growing of the network enables it to consider the

spatiotemporal sequence of acoustic frames in its input and

the spatiotemporal sequence of their corresponding pho-

netic labels in the output layer, at the same time. The

grown structure in this way is a MDNN with double spa-

tiotemporal (DST) structure. By training the MDNN with

DST structure properly, it learns the valid phonetic

sequence subspace of frames. Thus, it becomes able to

filter out invalid output sequences in its own structure.

It is possible to use the MDNN expanded to DST

structure as one module of a DNN-based large vocabulary

continuous speech recognition (LVCSR) system. However,

it must be tuned on the large vocabulary dataset at first. In

all usages of DNNs in combination with HMMs for

LVCSR tasks, they are initially tuned on large datasets

[3, 10, 17, 39]. Since there is no frame-level transcription

for large datasets, baseline GMM-HMMs trained on those

datasets are used to obtain the required transcriptions

through forced alignment. Thus, a trained GMM-HMM

model on each large dataset must exist. In this paper, a

Fig. 1 Hybrid DNN-HMM

model used in most previous

works applying DNNs to speech

recognition tasks. In this model,

the output of the DNN over a

sliding window on speech

frames is combined with HMM

to model their linear

dependencies
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semi-supervised learning algorithm for tuning the neural

networks on large datasets is introduced. This algorithm

uses only available information and does not require any

other trained model on the large datasets.

It has been shown that the robust performance of the

human perception system relates to the special mode of

signal processing in the brain. Some of the characteristics

of this mode of processing are: (1) handling the informa-

tion in both forward and backward passes, (2) the ability of

analyzing linear and nonlinear components of its input, and

(3) omitting the effect of each component if necessary

[37, 40, 41]. According to this information, two speaker

adaptation methods are proposed to approach a MDNN that

can handle speaker variability. These methods are as

follows:

1. Nonlinear feature normalization method. In this

method, input features are normalized iteratively to

be located in a proper position with respect to the

speech recognition model. To this end, the speech

recognizer must be trained on how to move distorted

inputs toward the best positions at first. After each

training epoch, feature normalization is performed

based on the information extracted from the current

trained network.

2. Model adaptation method. The basic idea of this

method is to apply speaker information extracted by a

separate speaker recognition network to the MDNN

layers. The speaker recognition network has been

trained to recognize each speaker based on its acoustic

features. The connection weights from speaker to

speech recognition network must be trained using

whole training data. In the test phase, the speaker

recognition network yields the similarity between the

acoustic spaces of the test speaker with each of the

training speakers. Then, this information is fed to the

speech recognition model to produce nonlinear trans-

formation in the model space. This method does not

require any adaptation data. Therefore, it can be used

in online adaptation of MDNN.

The performance of the proposed MDNN, its grown

version into DST structure and speaker adaptation methods

were evaluated on two Persian speech datasets: FARSDAT

and Large FARSDAT. Experimental results have shown

that training the MDNN with DST structure significantly

improves its recognition performance. Moreover, the pre-

sented speaker adaptation methods further increase the

recognition results achieved by the grown MDNN. The

remainder of this paper is organized as follows: in Sect. 2

the proposed growing MDNN for speech recognition is

introduced. Section 3 describes how the MDNN is expan-

ded into DST structure to learn sequence information in an

integrative manner. In Sect. 4, the suggested pre-training

and fine-tuning procedures for these structures are descri-

bed. The recommended speaker adaptation methods to

improve the performance of the proposed MDNN in

speaker mismatches are presented in Sect. 5. The experi-

mental results and their analyses are given in Sect. 6.

Finally, the paper is concluded in Sect. 7.

2 Modular deep neural networks (MDNN)

A modular neural network is an ANN including a series

of independent neural networks (NNs) managed through

some moderators. Each independent neural network,

called a module, operates on a separate section of the

input to perform some subtasks of the main task. The

basic structure of the proposed growing MDNN for phone

recognition is illustrated in Fig. 2. This network like other

DNNs has L nonlinear hidden layers. As it is shown in

Fig. 2, each feature detector in each layer, shown by a

cuboid, contains a number of neurons to detect different

features from its input. Moreover, each feature detector

has a limited receptive field and shares the same weights

with other feature detectors in the same layer. A feature

detector with its input acts as a module in the MDNN. All

the modules in the MDNN, unlike the common modular

neural networks, interact with each other during training.

Each time, a context window of some successive speech

representations or speech frames is fed to the network.

The network outputs its recognized phone for the central

frame of the input.

This special structure of MDNN is designed based on

the following reasons: (1) as it has been indicated in

[7, 42], distinguishing sounds in phone recognition are

short in duration. Thus, each feature detector only analyzes

the information of a small input receptive field. (2) The

network’s replicated structure in the time domain enables it

to be invariant to local translations of the input. Moreover,

this structure reduces its trainable parameters. In this way,

it is possible to scale the network to a larger and more

effective one without much increment in required time and

computations. (3) The first hidden layer feature detectors

receive input only from one frame of the input represen-

tations. This projection from the input space to another

space makes it possible for the network to analyze each

representation vector separately. This transformation from

each input representation to each feature detector not only

decreases the required learning time of fully connected

networks, but also improves the learning ability of the

network. Moreover, this projection is similar to the tono-

topic organization of the human peripheral auditory system

[43]. Therefore, it has been used in many ANN structures

for speech recognition in diverse researches [37, 43, 44].
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(4) After projecting input representations to the first hidden

layer, the higher layer detectors detect dynamic informa-

tion of their inputs and feed them into higher layers. Lower

layer detectors explore simple dynamic features, so their

receptive field is small. This is while higher layer detectors

detect more complex features from the small dynamics.

3 Stages of growing MDNN into double
spatiotemporal (DST) structure

Assume that the proposed MDNN is to be used in a typical

speech recognition system as an acoustic model. Thus, it

must be combined with a phonetic model like HMM to

model the sequential property of the speech signal. Fig-

ure 1 illustrates this hybrid architecture. In this construc-

tion, acoustic and phonetic models are trained

independently. However, in this article, it is claimed that

by expanding the MDNN to DST structure as shown in

Fig. 3, and training it, the sequential information of pho-

netic labels can be learned by the network. Therefore, in

this model, acoustic and phonetic information are not

separated and can interact with each other to recognize an

accurate phone for the input sequence.

Since the introduced MDNN is expandable, it can be

simply grown in its number of nodes in the input and all the

other layers to consider phonetic sequences of frames in its

output layer. If the enlarged structure can be trained effi-

ciently, the phone recognition network that is achieved by

shortening this structure to the primary MDNN structure

has learned not only the acoustic information of each

frame, but also the temporal dependencies between pho-

netic sequences of frames. Therefore, in each time, for each

sequence of frames fed as input to this network, it yields

the recognized phone based on the information it extracts

from the input representations as well as the information

that its structure has obtained from the phonetic sequences

subspace.

The growing procedure of the MDNN is as follows: as it

is illustrated in Fig. 4, in order to generate phone sequence

of I frames, the basic MDNN slides on the speech signal for

I frames to yield its recognized phone of its central frame at

each time. If it is required that the network recognizes the

sequence of frames at the same time, it must be grown to

consider all I central frames in its input. Thus, it is possible

to apply the phonetic information of these I successive

frames to train the expanded network. To this end, the

speech representations of these frames with their right and

Fig. 2 Basic structure of the

modular deep neural network

(MDNN). In this structure, each

feature detector including a

sequence of neurons is

displayed by a cuboid. Each line

in this figure illustrates

weighted connections between

sequences of nodes or neurons

in the lower and higher layers
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left context must be fed to the network input. If I is set to a

large value, the phonetic sequence information corre-

sponding to these I successive frames is complex. In such a

condition, in addition to the units of each layer, the hidden

layers of the network must be increased based on the

complexity of the target organization.

Fig. 3 MDNN with double

spatiotemporal (DST) structure,

obtained by growing MDNN in

Fig. 2

Fig. 4 Growing of the MDNN

to consider sequence of labels in

its output layer
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4 Training MDNNs

4.1 Pre-training stage

Training of DNNs is not often converged. This is related to

the local minima problem which is more notable when the

number of layers is increased. Therefore, pre-training

methods have been proposed to initialize the DNN weights.

In these methods, each layer’s weights are trained sepa-

rately to get rid of the local minima problem [21, 22]. One

of the pre-training methods that have been presented for

initializing deep auto-associative neural networks is the

layer-by-layer method [45]. In this method, each layer’s

weights are calculated through a single-hidden-layer auto-

associative neural network. The input vector of each auto-

associative neural network is, in fact, the previous layer

output. Based on this information, in this section, a layer-

wise pre-training method is introduced for initializing the

proposed MDNN weights. This pre-training procedure is

designed such that it extracts efficiently the information

existing in the training data in each layer to retain the

maximum information required for recognition. To this

end, each layer’s weights are trained as if the recognition

results are based on that layer’s outputs. However, since

input representations to the network are extracted from the

speech signal through some pre-processing steps, it is

required for the network to initially analyze their infor-

mation. Then, the information extracted in this stage is

used to exploit the discriminative information required for

recognition in the following stages. According to the

architecture of the MDNN with shared weights between the

modules of one layer, in the presented pre-training method,

only the weights of one module are trained and they are

replicated for the other modules of the same layer.

The proposed pre-training procedure is as follows:

MDNN is decomposed into some single-hidden-layer neural

networks. In order to train the weights of the first hidden

layer that analyzes input information, an auto-associative

NN is considered. This NN nonlinearly decomposes the

input data into components and then reconstructs the input at

the output layer. Thus, it is trained so that the information

loss does not occur in data analysis and reconstruction

phases. Consequently, the nonlinear projection of inputs to

the first hidden layer is calculated. The projected inputs to

the first hidden layer are implemented as the inputs for the

other single-hidden-layer NN. Since the remaining hidden

layers perform multistage transforms to achieve recognition

results, their weights must be trained to extract components

with higher importance in recognition. Therefore, some

single-hidden-layer hetero-associative neural networks, one

for each layer, are trained. Each hetero-associative network

receives its input from the calculated output of the previous

hidden layer, and its output is the recognition layer. Figure 5

displays the proposed pre-training procedure to train the

MDNN hidden layer weights.

As it is illustrated in Fig. 5, each NN consists of the

weights that belong to one module of the lth layer of the

MDNN (Wl) and auxiliary weights (Vl) used for finding

out each module weights. To train single-hidden-layer

NNs, a cost function must be defined. In this paper, mean

Fig. 5 Proposed pre-training procedure for training the hidden layer weights of MDNN. In this method, from each layer one module is trained,

then the trained weight is copied for the same modules of that layer

Neural Comput & Applic (2017) 28 (Suppl 1):S1177–S1196 S1183

123



square error (MSE) represented by Eq. (1) is selected as the

cost function. Also, the delta rule is used to optimize this

function.

EðWlÞ ¼ 1

2

XJl

j¼1

dlj � zlj

� �2
ð1Þ

To calculate W1, the auto-associative NN weight, J1 is the

number of output layer units that equals the input compo-

nents. In addition, d1 is the desired output vector, which is

equal to the input representation vector and z1 is the output

vector that auto-associative NN reconstructs. Toward

training Wl (l[ 1), the input weight for each hetero-as-

sociative NN and the weight of the lth layer modules, Jl in

Eq. (1) is the number of speech phones, dl indicates the

target phone of the central frame of each module, and zl is

the actual NN output of its confidence level to each phone.

zl in hetero-associative networks is calculated as follows:

zl ¼ f f
Xsl

m¼1

Hl�1
m Wl

m

 !
� bl

 !
Vl � cl

 !
ð2Þ

where, bl and cl are bias vectors for each feature detector in

the lth layer and the recognition layer, respectively. For

notational simplicity, bias vectors are added to the end of

the related weight matrices. Each hidden unit typically uses

the sigmoid activation function defined as:

f hð Þ ¼ 1

1þ e�h
: ð3Þ

As it is illustrated in Fig. 2, the receptive field of each

feature detector in the lth layer, shown by sl, is selected as

an odd number in this paper. Given that nl�1 is the number

of feature detectors in layer l - 1, Hl�1 is a matrix with

nl�1 rows that are the feature detector outputs of that layer

and Hl�1
m is the mth feature detector output. When Wl is

calculated for each layer, it is replicated for the modules in

the same layer.

4.2 Fine-tuning stage

After the pre-training stage, the initialized weights are

inserted into the MDNN. Then, for fine-tuning the weights,

global training of MDNN is performed. The stochastic

gradient descent algorithm is used to optimize the global

MSE cost function defined in Eq. (4).

E Wð Þ ¼ 1

2

XI

i¼1

XJ

j¼1

dij � hLij

� �2
ð4Þ

where W denotes all connection weights in the MDNN. If

the basic MDNN is fine-tuned, I is 1. Therefore, frame-

level fine-tuning is conducted. Sequence level fine-tuning

is performed by using the DST architecture when I is the

number of sequences that the DST structure considers in its

output layer at the same time. In this case, the output layer

has I groups of units, each recognizes its central frame. hLij
is the network confidence level to the jth phone for the ith

frame.

In both the delta and stochastic gradient descent algo-

rithm, weight correction is done iteratively in the reverse

direction of the gradient of the MSE cost function with

respect to the weights.

DWl ¼ �c
oE

oWl
ð5Þ

where c is the learning rate. In the stochastic gradient

descent algorithm, the gradient of the MSE cost function

with respect to each layer’s weights is calculated as

follows:

oE

oWl
¼
Pnl

m¼1 Hl�1
m ;Hl�1

mþ1; . . .;H
l�1
mþsl ; 1

� �0
Erlm

nl
ð6Þ

where H0 is the input frame sequence (X) and HL contains

the output values of I groups of neurons in the output layer.

Hl�1
m ;Hl�1

mþ1; . . .;H
l�1
mþsl ; 1

� �
is constructed by concatenating

the outputs of sl feature detectors in layer l - 1 besides the

bias neuron in a vector. This vector is projected to the lth

layer feature detectors by Wl. Since Wl is shared for nl

modules in layer l, the gradient of the MSE cost function

with respect to that weight is averaged. ErLm, the error

vector of the mth group of neurons in the output layer is

computed as follows:

ErLm ¼ HL
m � 1�HL

m

� �
� Dm �HL

m

� �
; m ¼ 1; . . .; nL ð7Þ

In the above equation, � stands for elements-wise multi-

plication between two matrices with equal dimensions. In

this equation, 1 is a vector that all of its components are 1.

Error vectors of each feature detector in the lower layers

are calculated by accumulating back-propagated errors of

different feature detectors of higher layers getting input

from that feature detector. Therefore, the error vectors of

the lower layer are calculated as follows:

Erlm ¼ Hl
m � 1�Hl

m

� �
�Gl

m for l\ L; m ¼ 1; . . .; nl

ð8Þ

where, Gl
m is calculated as follows:

Gl
m ¼

Xslþ1

p¼1

Xnlþ1

q¼1

Erlþ1
q Wlþ1

p

� �0� �
� d ðmþ 1Þ � ðpþ qÞð Þ

ð9Þ

where Wlþ1
p is the connection weight of the pth feature

detector in the lth layer which is in the receptive field of the
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qth feature detector in layer l ? 1. dð�Þ is the Kronecker

delta function. When m equals p ? q - 1, this function

gives 1 and otherwise, its output is zero.

Therefore, all the error vectors of the spatiotemporal

output layer that are back-propagated to the modular layers

are summed in their central modules. This gives the net-

work the potential to learn spatiotemporal information in

the output layer. Figure 6 displays the error vectors back-

propagating in a structure with correlated inputs. In this

figure, the size of the receptive field of the feature detectors

in all the layers is set to 3. As it is shown in this figure, each

connection weight is trained based on the error back-

propagated from the frame-level phonetic information, as

well as the sequence level information in the output layer.

Generally speaking, global training of the MDNN with

DST architecture or in the other word, sequence level

training, can be considered as back-propagating error

D1 tð Þfð �HL
1 tð Þ; . . .;DI t þ Ið Þ �HL

I t þ Ið ÞgjX t : t þ Ið ÞÞ,
while in frame-level training of the basic MDNN

d tð Þ � hL tð Þ
� 	

jX tð Þ
� �

is back-propagated.

4.3 Semi-supervised training of MDNNs

As it was discussed in Sect. 1, in order to implement the

trained MDNN for LVCSR tasks, it must be tuned on

large vocabulary datasets at first. Almost any of the large

vocabulary datasets has a lexicon that includes the

phonemic transcription of its words. In this paper, a

semi-supervised learning algorithm is proposed to fine-

tune the MDNN on datasets without any frame-level

phonetic transcription. This algorithm does not need any

GMM-HMM models trained on those datasets to deliver

frame-level labeling using forced alignment. The pro-

posed approach makes one assumption that is the exis-

tence of a smaller dataset including frame-level labeling

with similar phonetic characteristics with the large

dataset. The smaller dataset can be a part of the large

speech datasets.

The main steps that the proposed semi-supervised

learning algorithm involves are demonstrated in Fig. 7.

Primarily, MDNN is trained on the smaller dataset at first.

Subsequently, the trained network is used to generate a

frame-level phonetic transcription for each word of the

large dataset. Extracted frame-level labels of each word are

accumulated in bui array. However, since this network has

not been trained on larger dataset, it has some failures.

Hence, the knowledge of the trained network on the

smaller dataset is not enough on its own and some other

knowledge must be exploited. Another canonical tran-

scription for each frame can be generated from the

phonemic transcription of the large dataset lexicon. To do

this, the average length of each phone ( phmj j) of the smaller

dataset is computed through dividing the number of frames

dedicated to this phone by the total number of frames.

Then, by using this information besides the phonemic

transcription of each word, frame-level transcription of that

word is achieved. Assume the phonemic transcription of

the ith word (ui) with the time length of uij j is

ph1; ph2; . . .; phluif g, where lui is the number of phonemes

in this word. Thus, the frame-level transcription of this

Fig. 6 Error back-propagation in a sample modular NN with

replicated structure in time and limited correlated receptive fields

for feature detectors as in MDNN structure. As it is illustrated, e.g., in

training weight W1, the error back-propagated from ER1 (frame-level

information) as well as ER1 ? ER2 ? ER3 (sequence-level informa-

tion) are involved
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word is accumulated in aui array as it is shown in Eq. (10).

In this array, each phone is repeated for nphm frames.

aui ¼ ph1; . . .; ph1; ph2; . . .; ph2; . . .; ph �luij j; . . .; ph �luij j
n o

nphm ¼ phmj j
Plui

j¼1 phj


 

� uij j ð10Þ

It is obvious that in this transcription, the estimated

times in which transition of phones occur are not accu-

rate. Therefore, it is required to take advantage of the

information obtained by both frame-level transcriptions to

accomplish the optimal one. The achieved transcription

based on the average length of each phone includes partly

accurate phonetic information of each word. On the other

hand, the transcription obtained using the MDNN recog-

nition results contains more reliable information about

phonetic transition times in each word. In order to share

the information, the transcription in array aui is compared

with the transcript in array bui by using dynamic pro-

gramming (DP) to achieve the best compliance between

these arrays. Based on the results, the time of phonetic

transitions in array aui can be modified. Consequently, the

modified transcription a for all the training words is used

to fine-tune MDNN. After some training epochs, the

trained network in this stage is used to generate a new

frame-level transcription. This procedure is continued

until the training convergence.

5 Modifying MDNNs for nonlinear filtering
of speaker variability

The proposed MDNN is trained on large amounts of data

from different speakers. However, mismatches between

training and test conditions such as speaker and environ-

ment differences degrade its recognition performance in

test situation. Thus, in order to improve this network effi-

ciency against the mismatched conditions, either the model

or the input features must be adapted. In this section, two

speaker adaptation methods for MDNN are introduced.

These methods exploit the existent neural network struc-

ture efficiently and implement proportional methods for

training the network with additional information. There-

fore, they become capable of filtering out speaker changes

nonlinearly and improving the network performance.

5.1 Nonlinear normalization of input patterns

In this speaker adaptation method, a kind of normalization

is applied to the input representations against speaker

changes. To this end, input representations for each phone

are normalized nonlinearly based on the recognition results

of the network. Therefore, the network must be trained on

how to compensate the speaker information influencing the

speech recognition results.

At first, the speaker-independent MDNN (SI-MDNN) is

trained using speech signals from different speakers and

linearly normalized input representations as follows:

bXt ¼
Xt � lTotal

rTotal
ð11Þ

lTotal ¼
PT

t¼1 Xt

T
ð12Þ

rTotal ¼
PT

t¼1 Xt � lTotalj j
T

ð13Þ

where Xt is the central frame in time t and bXt is its nor-

malized version. lTotal and rTotal are the mean and norm 1

vectors extracted from the training data, respectively. T is

the total number of training frames. The trained model

forms decision regions corresponding to each phone in

input space. By using these regions, the MDNN approxi-

mates the phonetic label of each test representation. Since

diverse speakers articulate each phone differently, their

representations must be normalized with respect to each

speaker’s articulatory characteristics to achieve good

phone recognition results. Accordingly, the normalization

must be performed separately for each phone and in a

nonlinear manner. To have control on phonetic and speaker

information of the input representations, input normaliza-

tion is performed in a step-by-step manner.

Fig. 7 Proposed semi-supervised learning algorithm. In this algo-

rithm, two phonetic transcriptions for each word of the large dataset

(Xb, U) are achieved through different ways. Since these two

transcriptions include complementary information, one of them is

modified implementing the other one. The modified phonetic

transcription is used for training MDNN on large dataset
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In order for the MDNN to learn how to normalize each

feature vector nonlinearly, it must be trained speaker

adaptively at first. During speaker adaptive training, the

network learns how to move the input representations in a

direction in which besides maintaining their phonetic

knowledge, their speaker information is filtered out. This

can be achieved by normalizing the representations based

on the recognition results of the trained MDNN at each

iteration and in the next iteration, the MDNN is trained

based on these normalized representations. This training

procedure continues until the convergence is achieved.

Figure 8 shows how this speaker adaptation method is

conducted.

To clarify this, assume that each time a sequence of

representations from the rth training utterance with the

central frame Xrt and length Tr is fed to the MDNN input.

The MDNN outputs its estimated phone for the central

frame of this sequence. In fact, if the kth neuron has

maximum value among all other output neurons, then the

estimated output will be the kth phone. Following this

procedure, the normalization parameters of each phone in

this utterance can be achieved as shown in Eqs. (15–17).

Afterward, the input representations are normalized such

that their position in acoustic space moves to the recog-

nized phone position computed from whole training data.

The following equation shows how this normalization is

accomplished.

bXrt ¼
Xrt � lTotal � lrk � llkð Þ

r
s:t: argmax HL Xrtð Þ

� �
¼ k

ð14Þ

where lrk is the mean vector of all the representations in

the rth utterance that the network recognizes as the kth

phone. It is computed as follows:

lrk ¼

PTr
t¼1jargmaxðHL Xrtð ÞÞ¼k

Xrt

Nrk

Nrk ¼ num Xrtj argmaxðHLðXrtÞÞ ¼ k
� �

ð15Þ

And llk as it is computed in Eq. (16), is the mean vector of

those representations of training data for which the label is

phone k.

llk ¼
PT

t¼1jD Xtð Þ¼k
Xt

Nlk

Nlk ¼ numðXtj argmax DðXtÞÞ ¼ kð Þ
ð16Þ

In addition, r is computed as follows:

r ¼

PTr
t¼1jargmaxðHL Xrtð ÞÞ¼k

Xrt � lTotal � lrk � llkð Þj j
Nrk

ð17Þ

During the test phase, input representations of each test

utterance are normalized iteratively via modified MDNN

recognition results. The modified MDNN is the speaker

adaptively trained MDNN which has learned the ways to

move each distorted input to the optimum location. The

procedure of normalizing the input representations and

recognizing the normalized representation in the test phase

is continued until the recognition results converge.

5.2 Model adaptation

In this adaptation strategy, the speaker information

extracted by a speaker recognition network is fed to all

hidden and output layers of the original speech recognition

network through a set of connection weights. The trained

speech recognition network has created decision regions

for each phone using all of the training data. The connec-

tion weights between speaker and speech recognition net-

works are trained on whole training data to learn how to

change each phone decision region based on the speaker

information. An advantage of this adaptation method is that

computational complexities in the training phase are

reduced as only the new connection weights are trained and

there is no need to train speech or speaker recognition

networks adaptively. Moreover, this method does not

require any adaptation data.

Fig. 8 Nonlinear normalization

of the input representations in

training and test conditions in

the normalizing-based speaker

adaptation method
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In the proposed adaptation method, as it is shown in

Fig. 9, speaker and speech recognition networks are

implemented separately on the same sequence of input

representations. The speaker recognition network extracts

speaker information of its input central frame from the

context. Then, an inverse network processes the extracted

information and feeds them to the speech recognition net-

work. In this way, speaker information is used to adapt the

speech recognition network toward any new speaker. The

scheme of connecting the inverse network output to all of

the hidden and output layers is similar to the results

achieved in [33, 46]. In [33], it has been shown that con-

necting the speaker code to one of the hidden layers is not

as efficient as connecting it to all the layers.

Due to the modular structure of the proposed speech

recognition network, the procedure of applying speaker

information to different modules is important. The simplest

way is to compute speaker information of the central input

frame of the speech recognition network and feed it to all

the modules in different layers. However, each module

processes the speech information of different local recep-

tive fields in the time axis. Moreover, speaker information

is time variant. Therefore, the speaker information impor-

ted to each module must be extracted from the central input

frame of that module. Figure 10 illustrates how this

adaptation scheme is implemented to the proposed MDNN.

As it was indicated, in this adaptation method, only the

connection weights and the weights of the inverse network

are trained from the training data to adapt SI-MDNN.

Therefore, both speech recognition and speaker recognition

networks are trained independently before adaptation.

Then, the connection between two networks through the

inverse network connection weights which are initialized

randomly is established. In the training phase, several

epochs of the stochastic gradient decent using the training

data are run to train the inverse network weights. Assume

that the connection weights from the inverse network

output to each layer of the basic MDNN be denoted by fWl.

Therefore, each feature detector in each layer gets input

from both the lower layer nodes in its receptive field and

the inverse network. In this case, the output values of each

module m in each layer l are computed as follows:

Hl
m ¼ f

Xmþsl�1

j¼m

Hl�1
j ; 1

h i
Wl

j�mþ1

 !
þ H

L

mþ
Pl

r¼1

sr�1
2

� �
fWl

 !

for m ¼ 1; 2; . . .; nl
� 	

:

ð18Þ

where H
L

mþ
Pl

r¼1

sr�1
2

is the output vector of the inverse

network. This vector is extracted from the speaker recog-

nition network when it is located on the input sequence, the

central frame of which is the same as that of the mth

module. The central frame of the mth module of the

MDNN is the (mþ
Pl

r¼1
sr�1
2
th frame of the network input.

Using the back-propagation algorithm, the error gradient

with respect to fWl is calculated as follows:

oE

ofWl
¼ 1

nl

Xnl

m¼1

H
L

mþ
Pl

r¼1

sr�1
2

� �0
ERl

m ð19Þ

where ERl
m stands for the error vector back-propagated to

the mth feature detector in the lth layer of the MDNN

Fig. 9 Block diagram of the proposed model-based adaptation method
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calculated as it is described in Eq. (7). In the same way, the

gradient with respect to the inverse network weights

denoted by fWl is computed as follows:

oE

oW
l
¼
Pn1

i¼1 H
l�1

i

� �0
ER

l

i

n1
for 1\l� L ð20Þ

oE

oW
1
¼
Pn1

i¼1
€H
L�1

i

� �0
ER

1

i

n1
ð21Þ

where €H
L�1

i is the output vector of the top most hidden

layer of the speaker recognition network for the input

sequence for which the central frame is the ith frame of the

MDNN input. ER
l

i is calculated as follows:

ER
L

i ¼ H
L

i � 1�H
L

i

� �
�

XL

l¼1

Xnl

j¼1

ERl
j
fWl
� �0� � 

�d i� jþ
Xl

r¼1

sr � 1

2

 ! !!
ð22Þ

ER
l

i ¼ H
l

i � 1�H
l

i

� �
� ER

lþ1

i W
lþ1

� �0� �
for 1� l\L

ð23Þ

where d :ð Þ equals 1 when the central frame of the speaker

recognition network is identical with the central input

frame of the jth module in the lth layer of the MDNN. The

gradients computed in Eqs. (20) and (21) are used to

update the weights associated with the inverse network.

In the test phase, the speaker recognition network

extracts speaker information of each input sequence of

frames. The extracted information shows the similarities

between the acoustic characteristics of the central frame of

this sequence with those of the training speakers. This

information is processed by the inverse network and fed to

the relevant modules of the MDNN. Consequently, MDNN

displaces its decision regions for each phone based on the

applied information.

6 Experimental results

To evaluate the proposed methods for developing DNN-

based speech recognition systems, the experiments were

conducted on two Persian speech datasets: FARSDAT [47]

and Large FARSDAT [48].

The speech data were analyzed using a 23-ms window

with a fixed frame rate of 12.5 ms. In the following

experiments, the speech signal was represented using

Logarithm of Hanning Critical Band filter Bank (LHCB)

parameters with 18 coefficients distributed on a bark-scale.

Different researches have shown that these representations

Fig. 10 Assigning the proposed model adaptation method for the

introduced MDNN. The speaker recognition network extracts speaker

information of each frame as a central frame of a context. The inverse

network processes the extracted speaker information and applies the

relevant information to each module

Neural Comput & Applic (2017) 28 (Suppl 1):S1177–S1196 S1189

123



are suitable for ANNs used in speech recognition systems

[37, 46, 49]. However, typical speech recognition systems

use Mel-Frequency Cepstral Coefficient (MFCC) repre-

sentations. One of the main assumptions in the process of

forming MFCCs is using discrete cosine transform (DCT)

to decorrelate Mel-spectral vectors. This property of

MFCCs is suitable for HMMs. Since, in the independence

assumption made by HMM models, the output observation

in time t depends only on the current state and is inde-

pendent of the previous observations and states. However,

as ANNs are capable of making use of less pre-processed

representations [15], the DCT transformation eliminates

useful information for ANNs. So, LHCB parameters were

preferred in the following experiments. The input repre-

sentations were normalized using longitudinal normaliza-

tion of norm 1 as it is depicted in Eq. (11).

In all of the experiments, the Viterbi algorithm was used

to decode the sequence of phones as it had been imple-

mented in [50], where each phone was assumed to be

represented by a multistate HMM. The emission likeli-

hoods of the HMM states were assumed equal and were

derived from the associated output of the MDNN. In this

algorithm, bi-phone language model (LM) scores were

used as transition parameters between phones. In the fol-

lowing experiments, these scores were estimated from the

training set. In the first proposed development strategy for

the basic MDNN, output sequence information was

implemented to fine-tune the MDNN enlarged to DST

structure. Consequently, the network was expected to

contain information about phonetic sequences. Hence, to

evaluate how much phonetic sequence information this

network had learned, at first the recognition results were

calculated by applying the Viterbi decoder without using

LM scores. Then, in order to compare the best recognition

results of the MDNN network trained with DST structure

with basic MDNN and GMM-HMM, bi-phone LM was

used in Viterbi computations.

The decoding results of the Viterbi decoder may be

improved by using the insertion penalty parameter. This

parameter is implemented into the decoder through modi-

fying transition parameters as presented in Eq. (24).

aij ¼ GSF � aij þ IP ð24Þ

where aij is the transition parameter between phone i and

phone j, which is replaced with the bi-phone language

model. GSF is the grammar scale factor and regulates the

influences of bi-phone LM information on the decoder. In

this equation, IP is the insertion penalty.

In this section, at first the proposed MDNN structure and

its development approaches are evaluated on the FARS-

DAT dataset. Afterward, Large FARSDAT is used to

evaluate the efficiency of the proposed methods on a large

dataset.

6.1 Experiments on FARSDAT

FARSDAT [47] is a well-known Persian speech dataset. It

includes recorded Persian speech data collected from 304

speakers with gender, age, dialect and academic degree

differences. In this dataset, each speaker speaks 20 sen-

tences in two sessions. The sentences are phonetically

balanced and provide allophones in all possible phonetic

contexts. This dataset has been registered in European

Language Resource Association (ELRA) with the ID:

ELRA-S0112. Moreover, FARSDAT is nearly equal to the

TIMIT dataset for English [37]. This dataset has been

implemented extensively in researches such as:

[37, 51–54]. In this work, the speech data of 297 speakers

were selected for the training set and the rest for the test

set. In total, 5940 sentences are allocated for the training

phase and 140 sentences for the test phase. This dataset

includes both phonetic and word transcriptions.

6.2 Performance of MDNN on FARSDAT

The basic MDNN structure that was used in this article is

shown in Table 1.

The motivation of selecting such structure is as follows.

In [55], it has been shown that in order to provide a phone

recognition network with some information about the

acoustic content of a frame, a context window of 7–25

frames must be considered in its input. This length of con-

text enables the phone recognition network to consider the

information of both short and long phones. Mohamed has

achieved similar results in [15]. In [15], it has been indicated

Table 1 Implemented structure

of the basic MDNN in this

article

Layer Number of input vectors/

feature detectors

in each layer

Number of nodes in

each input vector/

feature detector

Each feature detector

receptive field

Input 23 18 –

First hidden layer 23 64 1

Second hidden layer 15 512 9

Third hidden layer 1 62 15

Output 1 36 1
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that the context window of 11–27 frames, i.e., the average

size of phones or syllables, is suitable for a phone recogni-

tion network. Thus, the proposed MDNN structure considers

a context window of 23 frames as its input. By comparing

the phone recognition results that have been achieved in [37]

with those in [46], it can be concluded that a TDNN with a

semi-connected first hidden layer converges much faster

than its full-connected version without losing its perfor-

mance much. The connections in the semi-connected first

hidden layer are such that each frame is processed inde-

pendently. Since the extracted feature vectors from the

speech signal have a dimension of 18 for each frame, much

more neurons are considered in the first hidden layer to be

able to detect multiple features from each speech frame. In

[37, 44, 53], 32 neurons were considered for processing of

each frame. However, since the implemented training data in

this article are larger, the number of neurons can be exten-

ded to 64. Increasing the number of neurons in this layer

improves the discrimination of inputs. Thus, the first hidden

layer includes 23 sequences of 64 neurons or feature

detectors. Moreover, as it was discussed in Sect. 2, the

MDNN is designed such that lower layers explore smaller

dynamic features and higher layers detect larger dynamic

information. Thus, the information extracted from nine

consecutive frames in the first hidden layer is processed by a

series of neurons (512 neurons) in the second hidden layer.

The processing of these small dynamics (with the width of

9) is performed to detect distinguishing sounds in phone

recognition. Thus, 15 sequences of feature detectors in the

second hidden layer are considered to extract the informa-

tion from short sequences of the first hidden layer neurons.

Afterward, the extracted features in this layer are combined

and processed by a series of neurons (62 neuron) in the third

hidden layer. In this layer, large dynamics (with the width of

15) of its input is processed. Thus, the feature detectors in

this layer have a receptive field with size 15. Finally, pho-

netic recognition is achieved in the output layer. Thus, 36

neurons in the output layer correspond to the 36 Persian

phones.

This network was pre-trained layer-wisely with the

recipe indicated in Sect. 4 using the stochastic gradient

descent algorithm. For the auto-associative neural network

used to train first hidden layer weights, 1000 epochs of

training with learning rate annealing started with 0.1 were

run. While, for training second and third hidden layer

weights, two single-hidden-layer hetero-associative net-

works were used as illustrated in Fig. 5. The second and

third single-hidden-layer networks were trained with

learning rate annealing started with 0.1. Figure 11 shows

the MSE of the training data for the single-hidden-layer

networks used to train second and third hidden layer

weights for the same number of epochs. As it is noticeable

in this figure, the second network yields less training error.

This result indicates that the information extracted by the

third hidden layer weights is more abstract and efficient for

the final recognition purpose.

The trained weights were substituted into the MDNN.

For fine-tuning of this network, the stochastic gradient

descent algorithm with the learning rate of 0.1 was used.

The momentum was always kept fixed at 0.7. In order to

compare the performance of the proposed MDNN with

graphical models, a monophone GMM-HMM model that

includes a set of multistate GMM-HMMs for each of the

Persian phones was trained using HTK toolbox version 3.4

[56]. In order to achieve the best recognition results of the

monophone GMM-HMM model, eight mixture Gaussians

for each state of the HMM models were used. Moreover,

according to the conditional independence assumption in

HMM models, MFCC features were implemented to be

trained to these models. Besides, the first- and second-order

time derivations of MFCCs were used to consider dynamic

information in training the GMM-HMMs.

In Table 2, the best recognition performance of the basic

MDNN is compared with that of the GMM-HMM model.

Furthermore, in order to investigate the effect of the fully

connected output layer, a two-hidden-layer neural network

with a similar structure as the MDNN but without the top

layer was trained separately. The results in Table 2 show

that post-processing of the combined outputs of different

modules achieves slightly better recognition results.

Moreover, the results confirm that the basic MDNN per-

forms 3.3 % better than the GMM-HMM.

Fig. 11 Mean square error (MSE) of training two single-hidden-layer

networks used to pre-train second and third hidden layer weights of

MDNN on FARSDAT

Table 2 Comparing phone recognition rate of different structures of

MDNN with GMM-HMM on FARSDAT (bi-phone LM is used)

Phone recognition model Phone recognition rate (%)

MDNN with three hidden layers 76.5

MDNN with two hidden layers 69

GMM-HMM 73.17
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6.2.1 Performance of MDNN trained with DST structure

on FARSDAT

After the MDNN was trained based on the frame-level

MSE training criterion, its structure was expanded to DST

architecture to be trained on phonetic sequences. There-

fore, its structure characteristics were changed as it is

shown in Table 3. In this experiment, the MDNN was

grown to DST structure to extract phonetic sequence

information of 15-frame sequences. This information was

not so abstract to require a deeper neural network. There-

fore, the number of MDNN hidden layers was not changed.

However, if it was required to extract complex information

of long phonetic sequences, the MDNN had to be grown in

its hidden layers as well as each layer nodes.

Training of the MDNN with DST structure was con-

ducted as discussed in Sect. 4. Training started with an

initial learning rate of 0.1. As the MDNN was grown to

DST structure to become able to be trained on phonetic

sequence information, in the test phase there was no need

for the added modules. Therefore, by removing added

modules to the network after training it, the DST-MDNN

structure shrank to the basic MDNN structure. However,

the remained MDNN included phonetic sequence infor-

mation. Experimental results shown in Fig. 12 demonstrate

that the MDNN trained with DST structure outperforms

both MDNN trained based on frame-level information by

4.5 % and GMM-HMM model by 7.9 %. Phone recogni-

tion results achieved without using bi-phone LM scores in

the Viterbi decoder display that the DST structure has

accomplished to model phonetic sequences well. The sig-

nificant improvement achieved by learning 15 sequences of

phones to the model shows that the network becomes

capable of filtering invalid phonetic sequences in its own

structure and only yields valid ones.

6.2.2 Performance of the speaker adaptation methods

on FARSDAT

In this set of experiments, the proposed methods to

improve the performance of the MDNN trained with DST

structure under the mismatches between training and test

conditions are examined.

a. Performance of nonlinear normalization method

In this experiment, the MDNN was first trained with DST

structure. Then, as it was indicated in Sect. 5, the network

was trained adaptively with the nonlinearly normalized

input representations. In this training procedure, the

stochastic gradient descent algorithm with a fixed learning

rate of 0.1 was used. After training convergence, nonlinear

normalization of test representations was carried out. Two

iterations of nonlinear normalization were found sufficient

to achieve the recognition convergence. Table 4 shows the

nonlinear normalization performance. The results indicate

that the proposed normalization method improves the

phone accuracy rate of the MDNN trained speaker inde-

pendently with DST structure by 2.8 % when bi-phone LM

is implemented.

Different situations were also investigated in training

and test phases. In one situation, the SI network was not

trained speaker adaptively before being used in the test

phase. However, nonlinear normalization was conducted in

the test phase. In another situation, the network was trained

speaker adaptively in the training phase, but only the linear

normalization was applied in the test phase. The results

show that the network performance improves when training

and test conditions are consistent with each other. More-

over, the speaker adaptively trained network in test phase is

crucial in this adaptation method. This can be explained

because by speaker adaptive training, the network can learn

Table 3 Structure of the

expanded MDNN into DST-

MDNN

Layer Number of input vectors/

feature detectors

in each layer

Number of nodes in

each input vector/

feature detector

Each feature detector

receptive field

Input 37 18 –

First hidden layer 37 64 1

Second hidden layer 29 512 9

Third hidden layer 15 62 15

Output 15 36 1
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Fig. 12 Phone recognition rate of basic MDNN, MDNN trained with

DST structure and GMM-HMM in two conditions of using bi-phone

LM in decoding and without it on FARSDAT
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nonlinear paths to move the distorted inputs to the optimum

locations and use the trained paths to normalize test

representations.

b. Performance of model adaptation method

In this subsection, the proposedmodel adaptationmethod for

adapting speaker independent MDNN to speaker variability

is examined. To do this, a speaker recognition network was

used. This network structure as shown in Table 5 is a TDNN

with a semi-connected first hidden layer as the MDNN. The

initial structure of this neural network was used in [34]. Each

time, a window of 23 consecutive frames is imported to this

network. The information of each frame is processed by a

series of neurons (32 neuron) in the first hidden layer, so

23 9 32 neurons are in the first hidden layer. In this layer,

different acoustic representations of each speaker are

extracted from his speech frames. Subsequently, the

extracted information is processed through a hidden layer of

512 neurons and an output layer of 298 neurons, respectively.

The output layer has 298 neurons to indicate the training

speaker codes. For each of the 297 training speakers, one

neuron takes the value of 1 and the others take zero. The

298th neuron is used to consider silence. Since silence

frames have no speaker information, this neuron is activated

when no speaker information is fed to the network input.

After training the network, it was applied by the proposed

model adaptation method as shown in Fig. 9. Then, the

inverse network and the connectionweights betweenMDNN

and speaker recognition networks were trained.

The outcomes in Table 6 verify that the proposed model

adaptation method improves the recognition performance

of the MDNN trained with DST structure by 1.6 %.

Moreover, Table 6 shows that the information extracted

from the top most hidden layer of the speaker recognition

network is more effective than what is obtained from its

output layer in adapting MDNN.

c. Comparing with another speaker adaptation method

In this experiment, the proposed adaptation methods are

compared with a well-performed speaker-code-based

adaptation method suggested in [33]. This method has

shown better results in adapting DNNs with a small amount

of adaptation data in comparison with many adaptation

methods, such as those presented in [31, 32, 36]. In the

conducted experiment in this work, cross-validation was

used to implement this adaptation method and to test it for

each speaker. Each speaker in FARSDAT dataset has

spoken in two sessions. Therefore, in one run of the

adaptation, the first session of each test speaker was used

for adaptation and another session was used for test. In the

other run, adaptation and test sections were alternated. The

reported phone recognition result is the average of the

results achieved in both runs. The results displayed in

Fig. 13 demonstrate that this method improves the recog-

nition accuracy of the speaker independent MDNN model

trained with DST structure by 0.7 %. However, the pro-

posed adaptation methods in this article, not only achieve

more significant recognition improvement, but also do not

require any adaptation data and adapt the MDNN online.

Table 4 Phone recognition rate of the speaker-independent MDNN

trained with DST structure (SI MDNN), adapted using nonlinear

normalization method in different conditions: when the network is

trained speaker adaptively (SA) or not in training phase and when

nonlinear normalization is applied in test phase or not (bi-phone LM

is used)

Phone recognition network ? test frames Phone recognition rate (%)

SI MDNN ? linearly normalized frames 81.05

SA trained MDNN ? nonlinearly normalized frames 83.83

SI MDNN ? nonlinearly normalized frames 80.53

SA trained MDNN ? linearly normalized frames 80.26

Bold value indicates the nonlinear normalization adaptation method is effective when the MDNN has been trained speaker adaptively before

Table 5 Implemented structure of the speaker recognition network

Layer Number of nodes in each layer

Input 23 9 18

First hidden layer 736

Second hidden layer 512

Output 298

Table 6 Phone recognition rate of MDNN adapted with the proposed

model adaptation method on FARSDAT in two different choices of

extracting the speaker information from the output layer (case 1) or

the top most hidden layer (case 2) of speaker recognition network (bi-

phone LM is used)

Phone Recognition network Phone recognition rate (%)

SI MDNN 81.05

SI MDNN ? case 1 82.32

SI MDNN ? case 2 82.66

The result in bold represents that when the speaker information is

extracted from the top most hidden layer of the speaker recognition

network, the performance of the adapted model is improved
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6.3 Experiments on large FARSDAT

Large FARSDAT is a large Persian speech dataset. It

includes the speech data of 100 speakers with age, gender,

dialect and educational level differences. Each speaker has

read about 20 pages of various texts of newspapers in an

office room. The texts cover a variety of fields such as

politics, culture, economics and sports. This dataset con-

tains a lexicon with phonemic transcription. In the fol-

lowing experiments, the speech signal of 95 speakers is

dedicated for the training set and the remained data for the

test.

6.3.1 Semi-supervised training of MDNN with DST

structure on Large FARSDAT

In order to fine-tune the MDNN with DST structure on

Large FARSDAT, the same procedure indicated in Fig. 7

was adopted. Sequentially trained MDNN on FARSDAT as

shown in Fig. 12 has a highly acceptable performance.

Therefore, this network was used to decode each word and

obtain the phonetic frame-level transcription bui . Besides,
the other transcription aui was achieved based on the

average length of each phone on FARSDAT. Then, aui was
aligned with bui by using DP algorithm. Consequently, aui
was modified based on the information attained from bui .
As insertion and deletion costs obtained by applying DP

were dependent on the phone transition times, they were

compensated in aui . However, substitution cost was mostly

dependent on the differences between the phonemic tran-

scription (aui ) and the phonetic one (bui), so it could not be

made up. Consequently, the network was trained using the

modified transcription aui . When its training was con-

verged, the above procedure was conducted once more

based on the recognition results of the trained network till

then. Table 7 displays phoneme recognition rate of the

MDNN with DST structure trained on Large FARSDAT

using the semi-supervised training procedure. To illustrate

the effects of using two information resources to obtain the

frame-level transcription, in the other experiment the

transcription aui was used to train the network individually.

Experimental results demonstrate that the proposed semi-

supervised training strategy enables the network to be

trained on Large FARSDAT.

Since Large FARSDAT has only phonemic transcription

for each word, in order to evaluate the network perfor-

mance, the recognition results of the network for each

utterance were given to the Viterbi decoder to yield the

phonetic sequence of its input. Therefore, the obtained

phonetic sequence of that utterance was compared with its

phonemic sequence. In this way, phoneme recognition rate

of the network was calculated.

6.3.2 Performance of the speaker adaptation methods

on Large FARSDAT

In this section, the proposed adaptation methods are

implemented to adapt the trained MDNN in the previous

subsection on Large FARSDAT. Performing the nonlinear

normalization method required frame-level transcription.

Thus, the optimal phonetic transcription that was achieved

in the previous section was implemented. Then, nonlinear

normalization was performed as it was indicated in Sect. 5.

In order to perform the model-based adaptation method,

since the training speakers in this dataset are fewer than

those of FARSDAT, a speaker recognition network with

fewer neurons was used. The output layer of this network

had 96 neurons, and its top most hidden layer had 256

neurons. Table 8 shows the results obtained by performing

these adaptation methods on Large FARSDAT. As it is

illustrated in this table, the nonlinear normalization method

can not greatly increase the phoneme recognition rate of

the MDNN. This may be due to the sensibility of this

method to recognition results of the speech recognition

network. Therefore, the method becomes inappropriate for

not accurately phonetic transcribed datasets. However, the

model adaptation method improves MDNN performance

by 1 %.
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Fig. 13 Comparison of the proposed adaptation methods in this

article with a well-performed adaptation method proposed in [33]

Table 7 Comparing the MDNN performance on Large FARSDAT

when it is trained only on FARSDAT dataset with when it is fine-

tuned on Large FARSDAT by using two semi-supervised learning

algorithms

Semi-supervised learning algorithm Phoneme recognition rate

Not using 53

Based on phone length averages 64

Based on combining the information 69
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7 Conclusions

In this article, a growing modular deep neural network for

continuous speech recognition is proposed. The special

structure of this network and the suggested pre-training

procedure for that, make it efficient for both aspects of

speech recognition accuracy and training cost. By

expanding this network into a double spatiotemporal

architecture, it can be trained sequentially to learn the

phonetic sequences subspace. Therefore, this sequentially

trained network improves the recognition accuracy. As far

as we know, it is the first time that both sequential and

acoustic information are trained to an integrated network.

Afterward, to improve the recognition performance of the

proposed network, two speaker adaptation methods moti-

vated by a special mode of signal processing in the human

brain are proposed. The first method relies on nonlinear

normalization of speech representations iteratively. In the

second method, the phone recognition model adapts its

decision regions based on the information extracted from a

separate speaker recognition model. The proposed MDNN

structure and the strategies proposed for developing it are

examined on two Persian speech datasets: FARSDAT with

frame-level phonetic transcription and Large FARSDAT

without that. Since there is no frame-level phonetic tran-

scription for Large FARSDAT, a semi-supervised learning

algorithm is suggested to train the MDNN and its extended

structure on this dataset. Experimental results have shown

that all of the developmental strategies are effective for a

continuous speech recognition task on both FARSDAT and

Large FARSDAT.

In future works, we would like to develop the deep

modular neural network such that it can recognize syllables

and words in an integrative manner when it moves on the

speech signal. Due to the complexities that these speech

units have, besides growing the network, some additive

modules that feed the grown network with useful infor-

mation seems to be required. Moreover, it appears that in

the second adaptation method, speech recognition network

also has an influence on the speaker recognition results. So,

for future works, there can be a modification in this method

that strongly will have a significant effect on speech

recognition accuracy.
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