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Abstract In recent years, soft sets and neutrosophic sets
have become a subject of great interest for researchers and
have been widely studied based on decision-making
problems. In this paper, we propose a new concept of the
soft sets that is called interval-valued neutrosophic
parameterized interval-valued neutrosophic soft sets (ivn-
pivn-soft sets). It is a generalization of the other soft sets
such as fuzzy soft sets, intuitionistic fuzzy soft sets, neu-
trosophic soft sets, fuzzy parameterized soft sets, intu-
itionistic fuzzy parameterized soft sets, neutrosophic
parameterized neutrosophic soft sets. Also, we proposed
ivnpivn-soft matrices which are representative of the ivn-
pivn-soft sets. We then developed a decision-making
method on the ivapivn-soft sets and ivnpivn-soft matrices.
Then, we proposed a numerical example to verify validity
and feasibility of the developed method. Finally, the pro-
posed method is compared with several different methods
to verify its feasibility.
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1 Introduction

Smarandache [31, 32] introduced the notation of neutro-
sophic set to reflect the truth, indeterminate and false
information simultaneously in real problems. Additionally,
since neutrosophic sets were difficult to be applied in
practical problems, single-valued neutrosophic sets which
are an extension of intuitionistic fuzzy sets [4] and fuzzy
sets [40] are introduced by Wang et al. [38]. The theory is
characterized by a truth-membership, indeterminacy-
membership and falsity-membership that describe by crisp
numbers in real numbers. Then, interval neutrosophic sets
defined by Wang et al. [37] which can be described by
three real unit interval in [0, 1]. However, because of the
ambiguity and complexity of in the real world, it is difficult
for decision-makers to precisely express their preference
by using these sets. Therefore, Molodtsov developed the
concept of soft sets by using parameter set for the inade-
quacy of the parameterization tool of the theories. In the
literature, many conclusions and propositions are obtained
to use in decision-making problems; some of them are
given in [1-3, 20, 29, 34-36, 39, 41].

After Molodtsov, many researchers combines the soft
sets with the fuzzy sets, intuitionistic fuzzy sets, interval-
valued fuzzy sets and neutrosophic sets. For example,
fuzzy soft sets [22], fuzzy parameterized soft sets [6, 8, 9],
intuitionistic fuzzy soft sets [7, 23], intuitionistic fuzzy
parameterized soft sets [12], interval-valued intuitionistic
fuzzy parameterized soft sets [13], intuitionistic fuzzy
parameterized fuzzy soft sets [16], neutrosophic soft sets
[11, 21], interval-valued neutrosophic soft sets [14], inter-
val-valued neutrosophic parameterized soft sets [10] and
neutrosophic parameterized neutrosophic soft sets [15]
have been studied by researchers. In these set theories,
many conclusions and propositions are obtained to use in
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decision-making problems; some of them are given in
[7, 11, 18, 26, 30, 33].

In this paper, we define a kind of soft sets called inter-
val-valued neutrosophic parameterized interval-valued
neutrosophic soft sets (ivnpivn-soft sets) which is gener-
alization of npn-soft set [15]. The rest of paper is organized
as follows. In Sect. 2, we review basic notions about
neutrosophic sets, interval-valued neutrosophic sets, soft
sets and neutrosophic parameterized neutrosophic soft sets.
In Sect. 3, ivnpivn-soft sets and their operations are given.
In Sect. 4, ivnpivn-soft matrices which are representative
of the ivnpivn-soft sets have been introduced. In Sect. 5, we
proposed a similarity measure and distance measures on
ivnpivn-soft sets. In Sect. 6, we developed a decision-
making method for ivnpivn-soft sets and give two illus-
trative example. In Sect. 7, the proposed method is com-
pared with several extant methods to verify its feasibility.
Finally, the conclusions are drawn.

2 Preliminary

In this section, we give the basic definitions and results of
neutrosophic sets [31, 38], interval-valued neutrosophic
sets [37], soft sets [28] and neutrosophic parameterized
neutrosophic soft sets [15].

Definition 1
A in U is characterized by a truth-membership function TX’

[38] Let U be a universe. A neutrosophic set

an indeterminacy-membership function IZ and a falsity-
membership function F. TfAv(u); IX(M) and Fz(u) are real

standard or nonstandard element of ~[0,1]*. It can be
written as

A= {(u, (T (), I (), F~ (u))) - u € U}

There is no restriction on the sum of 7~(u); I~(u) and
FX(M)’ so 0< TX(M) + IX(M) + Fx(u) <3t

Example 1 Suppose that the universe of discourse
U = {uy,uz,u3}. It may be further assumed that the values
of uy, uy and u3 are in ~ [0, 1]". Then, Aisa neutrosophic
set of U, such that,

A = {{u1,(0.5,0.6,0.9)), (u, (0.4,0.2,0.7)), (u3, (0.8,0.3,0.6)) }

Definition 2 [37] Let U be a universe. An interval value
neutrosophic set A in U is characterized by truth-mem-
bership function T4, a indeterminacy-membership function
I4 and a falsity-membership function F4. For each point
u€cU; Ty, Iy and Fy C [0, 1]

Thus, an interval value neutrosophic set A over U can be
represented by

@ Springer

A= {(Tx(u),Ix(u), Fa(u))/u:uc U}

Here, (T4(u),14(u), F4(u)) is called interval value neutro-
sophic number for all u € U and all interval value neu-
trosophic numbers over U will be denoted by IVN(U).

Example 2 Suppose that the universe of discourse U =
{u1,uy} where u; and characterizes the quality, u, indi-
cates the prices of the objects. It may be further assumed
that the values of u; and u, are subset of [ 0, 1 ] and they
are obtained from a expert person. The expert construct an
interval value neutrosophic set the characteristics of the
objects as follows;

A = {([0.1,1.0],[0.1,0.4],[0.4,0.7]) /uy, {[0.6,0.9],
[0.8,1.0],0.4,0.6]) /us}

Definition 3 [37] Let A and B be two interval-valued
neutrosophic sets. Then, for all u € U,

1. A is empty, denoted by A :@, and is defined by
0 = {([0,0], [1,1],[1, 1)) /u: u € U}

2. A is universal, denoted by A = X, and is defined by
X = {<[1» 1]7 [07 O]a [Ovo]>/” S U}

3. The complement of A, denoted by A, is defined by

A? = {([infFr(u),supFa(u)],[1 — supls(u), 1 — infl (u)],
[infT (u), supTa(u)])/u:u € U}

4. ACB & [infTy(u) <infTp(u), supTy(u)<supTp(u),
infl, (u) > inflg(u), suply(u)>suplp(u), infF,(u)>
infFp(u), supFa(u) > supFp(u)].

5. Intersection of A and B, denoted by A a) B, is defined
by
AAB={{[min(infT} (u), inf Ty (u)), min(supTy (1), supTs ()],

[max (infl, (), inflp («)), max(suplA(x), suplp(u))],
[max(infFu (u),infFg(u)), max(supFa (u), supFp(u))])
Ju:ueU}

6. Union of A and B, denoted by A UB, is defined by

AUB={([max(infT} (u),infTg(u)),max (supTy (u),supT; ()],
[min(infls («),inflg(u)), min(supls (u),suplp(u))],
[min(infF, (u),infFp(u)), min(supF, (u),supFg(u))])

Ju:ueU}

Definition 4 [17] -norms are associative, monotonic and
commutative two valued functions 7 that map from [0, 1] x
[0, 1] into [0, 1]. These properties are formulated with the
following conditions: Va, b, c,d € [0, 1],

1. #0,0) =0 and t(a,1) =t(1,a) = a,
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If a<c and b <d, then t(a,b) <t(c,d)
3. t(a,b) =t(b,a)
4. t(a,t(b,c)) =t(t(a,b),c)

Definition 5 [17] t-conorms (s-norm) are associative,
monotonic and commutative two placed functions s which
map from [0, 1] x [0, 1] into [0, 1]. These properties are
formulated with the following conditions: Va,b,c,d
€ [0,1],

1. s(1,1) = lands(a,0) = 5(0,a) = a,

2. ifa<cand b<d, then s(a,b) <s(c,d)
3. s(a,b) =s(b,a)

4. s(a,s(b,c)) =s(s(a,b),c)

Definition 6 [28] Let U be a universe, X be a set of
parameters that are describe the elements of U and P(U) be

the power set of U. Then, a soft set f over U is a function
defined by

f:X— P(U)

In other words, the soft set is a parameterized family of
subsets of the set U. A soft set over U can be represented
by the set of ordered pairs

f={&f(x)) :x e X}

Example 3 Suppose that U = {u;, ua, u3, us, us, ug} is the
universe contains six house under consideration in a real
agent and X = {x; = cheap,x, = beatiful,x; = green
surroundings, x4 = costly, x5 = large}.

If a customer to select a house from the real agent, then
he/she can construct a soft set f that describes the
characteristic of houses according to own requests. Assume
that f(x1) = {ur,u2}, f(x2) = {ur}, f(x3) =0, f(xs) = U,

{u1,uz,us,us,us} then the soft set f is written by
f = {(-x17 {Lt], MZ})7 (_Xz, {Mlv U4, Us, uﬁ})7 (.X4, U)7
(x57 {ula Uz, U3, U4, MS})}

Definition 7
U. Then,

[28] Let f and g be two soft sets over

1. fis called an empty soft set, denoted by Dy, if f(x) =
0, for all x € X.

2. f is called a universal soft set, denoted by f;, if
f(x)=U, for all x € X.

3. Im(f) = {f(x): x € X} is called image of f.

4. fis a soft subset of g, denoted by f C g, if f(x) C g(x)
for all x € X.

5. fand g are soft equal, denoted by f = g, if and only if
f(x) = g(x) for all x € X.

6. (fUg)(x) =f(x)U g(x)forallx € X is called union of
fand g.

7. (fNg)(x) =f(x) Ng(x)forallx € X is called intersec-
tion of f and g.

8. f°(x) = U\ f(x)forallx € X is called complement of f.

Definition 8 [15] Let U be a universe, N(U) be the set of
all neutrosophic sets on U, X be a set of parameters that
describe the elements of U and K be a neutrosophic set over
X. Then, a neutrosophic parameterized neutrosophic soft
set (npn-soft set) N over U is a set defined by a set valued
function fy representing a mapping

v K — N(U)

where fy is called approximate function of the npn-soft set
N. For x € X, the set fiy(x) is called x-approximation of the
npn-soft set N which may be arbitrary; some of them may

be empty and some may have a nonempty intersection. It
can be written a set of ordered pairs,

N = {(<x, Ty(x),Iy(x), Fy(x) >, { <u, Tp, (1),

A (W), Fryw() > :u e U}) :x € X}
where
F(x), v (x), Ty (), Ty () (), Iy (2 (), Fipy ) () € [0, 1]
Example 4 Let U = {uy,up,uz,us}, X = {x1,x2}. Nbe a
npn-soft sets as

N :{(<x1, (0.1,0.2,0.3)), {(u1, (0.4,0.6,0.6)),

us,(0.6,0.0,0.1
us, (0.5,0.6,0.2

( ), (u3,(0.3,0.4,0.4)),
(
(u1,(0.3,0.8,0.6
(

s ((x2,(0.9,0.1,0.5)),
), {u2,(0.7,0.6,0.5)),

), (ug,(0.4,0.1,0.5)), })}

~— — ~— ~—

u3, (0.6,0.6,0.9

Definition 9
Then,

[15] Let N, Ny and N, be three npn-soft sets.

1. Complement of an npn-soft set N, denoted by NE¢, is
defined by

N° = {(<X7FN(X)’1 _IN(X)vTN(x»v{<M7Ffzv(x)(u)a
1 _IfN(x)(u)anN(x)(M» u e U}) X e X}

2. Union of N; and N,, denoted by N; = N,UN,, is
defined by

N3 = {(<x7 Ty, (x)71N3 ()C), Fy, (x)>7 {<u7 7}N3(x) (u)v
Iy (W), Fy (W) su € U}) s x € X}

@ Springer
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where

T, (x) = S(TNI (x)1 T, (x))v TfNS(x) (”)
Iy, (x) = t([M (x)vINz (x))’ If}v3(x) (”) = t(lf}vl(x> (u)’lf’\lz(x) (u))7
Fy, (x) = t(FM (x)vFN: (x))7 Ff;@g)(“) = t(Ffwlm(u)vFﬁvz(A) (”))

3. Intersection of N; and N, denoted by Ny = N; NN, is
defined by

Ny= { (<x’ TN4 (x) 7IN4 (x)’FM (x)>7 {<u’ 7}N4(x) (u)7IfN4(x) (”)a

Fr o) :ueU}):xeX}

where

A (x) = ( (x) Ty, (x ))7 Tf/v‘t(*)(”) :t(Tle(x) (u)7TfN2(r) (“))7
Ing(x) = s(In, (%), 05, (%)), I, ) () = (I, () Ip, ) (),
Fy, (x) = S(FM (x)vFNz (x))7 F.f;V4(.v) (M) = S(Fle(x) (u)7FfN2(x) (”))

3 ivnpivn-soft sets

In this section, we present concept of “interval-valued
neutrosophic parameterized interval-valued neutrosophic
soft sets” is abbreviated as “ivapivn-soft sets”. Then, we
introduce some definitions and operations on ivnpivn-soft
set and some properties of the sets which are connected to
operations have been established.

In the following, some definitions and operations are
defined on npn-soft set in [15] and on interval-valued
neutrosophic soft set in [14] and we extended these defi-
nitions and operations to ivapivn-soft sets.

Definition 10 Let U be a universe, IVN(U) be a set of all
interval-valued neutrosophic sets over U, X be a set of
parameters that are describe the elements of U and K be a
interval-valued neutrosophic set over X. Then, an ivapivn-
soft set F over U is a set defined by a set valued function
f representing a mapping
f:K—IVN(U)
where f is called approximate function of the ivnpivn-
soft set F. For x € X, the set f(x) is called x-approxi-
mation of the ivapivn-soft set F which may be arbitrary;
some of them may be empty and some may have a
nonempty intersection. It can be written a set of ordered
pairs,
F = {((x, Tr(x), Lr (x), Fr (), {lTpe o) (), Loy (),
Frooy(uw)/u:ueU}):xeX}

.F

where

T]:(x)7F]:()C),I].'(X), Tff(x) (M),Iff(x) (u),Fffm(u) - [O, 1]

@ Springer

= S(Tf/v, ® (M)7 Tszm (u))v

and

Tr(x) = [infTx(x), supTx(x)],

Ir(x) = [infl£(x), suplx(x)],

Fr(x) = [infFr(x), supFz(x)],

Tjp () (u) = [infTy, (4 (w), SUPTfm)( w)l,
Ip, (x) () = [infly; ) (), suply () (u)],
Fpp () () = [InfFy, (1) (u), SUpFy, () (u)]

From now on, the set of all ivapivn-soft sets over U will
be denoted by F.

Example 5 Assume that U= {u;,up,us} and

X = {x1,x2,x3}, then an ivapivn-soft set can be written as

F = {((x1,]0.3,0.4],[0.5,0.6], [0.4,0.5]), {([0.5,0.6],
[0.6,0.7],[0.3,0.4]) /uy, {[0.4,0.5],[0.7,0.8],[0.2,0.3]) /us,
([0.6,0.7],0.2,0.3],[0.3,0.5]) /u3 }), ({x2, [0.1,0.2], [0.3,0.4],
[0.6,0.7]), {([0.7,0.8],0.3,0.4], [0.2,0.4]) /uy, {[0.8,0.4],
[0.2,0.6],[0.3,0.4]) /u3, ([0.4,0.5],[0.1,0.3],[0.2,0.4]) /us }),
((x3,]0.2,0.4],[0.4,0.5],0.4,0.6]), {((0.2,0.3], [0.1,0.4],
[0.3,0.6]) /u1, {[0.2,0.5],[0.1,0.6], [0.5,0.8]) /uz, {[0.3,0.7],
[0.1,0.3],10.6,0.7]) /us}) }

Definition 11 Let F € F. Then, F is called

1. An empty ivapivn-soft set, denoted by O, is defined as:

O = {({x,[0,0], [1, 1], [1, 1]), {([0,0], [1, 1], [1, 1])
JuiueU}):xeX}

2. a universal ivnpivn—soft set, denoted by U,
U = {({x.[1,1],[0,0],[0,0), {([1, 1], 10,0}, [0,0])
Ju:ué€ U} :xeX}

Definition 12 Let F, F,,F, € F. Then,

1. F, is a sub—ivnpivn-soft set of F,, denoted by
F1CFy, if and only if
infTr, (x) <infTg, (x),
inflr, (x) > inflx, (x),
infFz, (x) >infFr,(x),
inf7y,,, <u><infow<u>7
infly,

supTr, (x) < supTr, (x),
suplr, (x) > supl, (x),
supFr, (x) > supFr, (x),
Suprfl(x) (u) < suprfz(x) (u),
suply, . (u) >suply, . (u),

infFy, supFy, (u) > supF, o (u).

2. Complement of F, denoted by .7-';, is defined by

Fo = {0 Fr(a), 1 — Ir(), Tr (), {(Fpy o (),
L= Iyt (), Ty (W) fu: w € U}) 2 x € X}
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where

Tr(x) = [infTx(x), supT(x)],

L= 1r(x) = [1 — suplr(x), 1 — inflr(x)],

Fr(x) = [infFr(x), supFr(x)],

T () () = [InfTf () (), SUPT (1) (1)),

1 — Iff(x)(u) =[1- suplff(x)(u), 1 —infly, (w)],

Fy= {(<x1, 0.6,0.7],[0.2,0.9],[0.7,0.8]), {{[0.1,0.5],

0.7,0.9],[0.4,0.7]) /uy, ([0.1,0.3], [0.2,0.4], [0.8,0.9]) /us,
([0.3,0.5),[0.7,0.9], [0.6,0.7]) /us }), ({x2, [0.1,0.4],
0.2,0.4],[0.5,0.8]), {([0.2,0.3],[0.6,0.8], [0.1,0.2]) /uy,
([0.5,0.9],0.4,0.6], 0.7,0.9]) /us, {[0.1,0.2], [0.3,0.4],
[0.5,0.6]) /us}), ((x3,[0.3,0.9],0.5,0.7], 0.3, 0.6)),

Fir (1) = [infFpy () (1), SUPFy () ()] {([0.3,0.5],[0.2,0.6], [0.4,0.8)) /uy,
3. Union of F; and F», denoted by F5 = FUF,, is ([0.3,0.7],10.2,0.8], [0.6,0.9]) /uz, {[0.4,0.9], [0.2,0.5],
defined by 0.6,09))/ })}
.0, 0. us

F3= {(<x7 Tfs(x)vlfs (x)’Ffs(x)>7 {<Tff3(;) (u)a

If}';(x) (”)vaf3(,x) (”)>/u HRGS U}) ‘X € X} Then,
where ~
Tr,(x) = [s(infTr, (x), infT5, (x)), s(supT, (x), supTs, (x))], (F) = {((xl, [0.4,0.5],]0.5,0.4],[0.3,0.4]), {{[0.3,0.4],
Ir, (x) = [1(infl, (x), infl, (x)), 1(supl, (x), suplz, (x))], [0.4,0.3],[0.5,0.6]) /uy, ([0.2,0.3],[0.3,0.2],

Fry(x) = [1(infFr, (x), infFz, (x)), 1(supF 7, (x), supF, (x))],

Ty o () = [SGnfTy, (1), 00T, (1), (04,0.5])/u2, {[0:3,0.5],[08,0.7], [0.6,0.7) /us}),

(u
S(SUPT; (1), 50pTy, (1)) ({x2,[0.6,0.7],[0.7,0.6], 0.1,0.2]), {([0.2, 0.4],
Iff}(x)(u) [(mﬂfﬂ (u), i infly,., (), t(SUPIf;TI(,)(u)7 [0.7,0.6],[0.7,0.8]) /uy, ([0.3,0.4],[0.8,0.4],
suply,, (1)) 0.8,0.4)) /s, ([0.2,0.4],0.9,0.7], [0.4,0.5]) /u3 }),
(

Fy,. ., () = [t(infFy,  (u),infFy;,  (u)),t(supFy, (), ({x3,[0.4,0.6],[0.6,0.5],[0.2,0.4]), {{[0.3,0.6],
supFy, ., (u))]. [0.9,0.6],[0.2,0.3]) /uy, ([0.5,0.8],[0.9,0.4],

4. Intersection of F; and F», denoted by F4 = FNF>, [02,0.5])/uz, ([0.6,0.7], [0.9,0.7], [0'3’0'7]>/”3})}

is defined by

Fa = {((x, Tr, (x), Ir, (), F£, (), {(T,.., () Let us consider the t-norm min{a,b} and s-norm
PSR D TRAED Wil max{a,b}. Then,
Ifﬂu) (u)’Ffm(x) (u)>/u HR S U}> HR S X}
where FiUF, = {((xl, [0.6,0.7],[0.2,0.6],[0.4,0.5]),
T, (x) = [t(infTr, (x), inf T, (x)), 1(supTr, (x), supTz, (x))], {(0.5,0.6],[0.6,0.7],0.3,0.4]) /uy, ([0.4,0.5],
Iz, (x) = [s(inflF, (x), inflr, (x)), s(supl, (x), suplz, (x))], [0.2,0.4],[0.2,0.3]) /uz, ([0.6,0.7], 0.2, 0.3],

Fr,(x) = [s(infFr, (x),infF £, (x)), s(supF, (x), supF z, (x))],

Tjy o () = [t(inf Ty, (u),infTy,  (u)), 1(supTy,  (u),
supTy,., ., (u))],

Iy, () = [s(infly,,  (u),infly,,  (u)),s(suply,, , (1),
suply,, ., (u))],

Fy, () = [s(infFy,  (u),infFy, (), s(supFy, (),
supFy,, . (u))].

[0.3,0.5]) /us}), ((x2, [0.1,0.4],[0.2,0.4], [0.5,0.7]),
{([0.7,0.8],[0.3,0.4],[0.1,0.2]) /uy, {[0.8,0.9],
[0.2,0.6], [0.3,0.4]) /u3, ([0.4,0.5],0.1,0.3],
[0.2,0.4]) /us}), ((x3,[0.3,0.9],[0.4,0.5], [0.3,0.6]),
{([0.3,0.5],[0.1,0.4], [0.3,0.6]) /uy, ([0.3,0.7),
[0.1,0.6],[0.5,0.8]) /us, ([0.4,0.9],[0.1,0.3],

[0.6, 0.7]>/u3})}

Example 6 Let U = {u,up,us}, X = {x1,x2,x3}, F1 be
given as in Example 5 and F, be given as follows

and
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FiAF, = {((xl, 0.3,0.4],[0.5,0.9],[0.7,0.8]), {([0.1,0.5],

[0.7,0.9],[0.4,0.7]) /u1, ([0.1,0.3],[0.7,0.8],
[0.8,0.9])/u2, ([0.3,0.5],0.7,0.9], [0.6,0.7)) /u3 }),
((x2,[0.1,0.2],[0.3,0.4], [0.5,0.8]), {([0.2,0.3],
[0.6,0.8],0.2,0.4]) /uy, ([0.5,0.4],[0.4,0.6],
[0.7,0.9]) /uz, ([0.1,0.2],0.3,0.4], [0.5,0.6]) /uz }),
((x3,[0.2,0.4],[0.5,0.7], [0.4,0.6]), {([0.2,0.3],
[0.2,0.6],[0.4,0.8]) /uy, ([0.2,0.5],[0.2,0.8],

[0.6,0.9]) /us, ([0.3,0.7],[0.2,0.5], [0.6, 0.9]>/u3})}

Proposition 1 Let F € F. Then,

L (F)' =F
2. O°=U
3. FCU
4. OCF
5. FCF

Proposition 2 Let F,F,, F3 € F. Then,

1. F 5.7:2/\.7:2 §f3 = Fi 5.7:3
2. Fi=F ) NFr=F3 Fi=F;
3. .7:15.7:2/\.7:2§.7:1$.7:1=]:2

Proposition 3 Let F,F;,, F3 € F. Then,

L. FIUF =F,

2. FLUO0=F,

3. FidU=U

4. FIUF,=F,U0F,

5. (flgfz)gfg FiU (]:QUfs)

Proposition 4 Let F,F,, F3 € F. Then,

L. FiNFi=7F

2. F1NO0=0

3. FinU=F,

4. FINF,=F,NF

5. (FINF)NF; =F 10N (F2NF3)

Proposition 5 Let 7, F; € F. Then, De Morgan’s laws
are valid

L (FIUFR) =FAFS
2. (FiNF) =F{UF;
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Proposition 6 Let F,F,, F;3 € F. Then,

1. FinN
2. FiuU

(fz U.7:3)
J(FaNF3) =

(F1NFs)
(F1UF>)

U (F1 N F3)
N (F1UF;3)

4 ivnpivn-soft matrices

In this section, we presented ivapivn-soft matrices which are
representative of the ivnpivn-soft sets. The matrix is useful
for storing an ivnpivn-soft sets in computer memory which
are very useful and applicable. In the following, some defi-
nitions and operations on npn-soft sets are defined in [15]; we
extend these definitions and operations to ivnpivn-soft sets.

13 Let
X, } and

Definition
{x1,x2, ..+,

F = { (i, Tr(xi), e (x2), Fr () s LT ) (), Doy (1),
) (u])>/u, uj € U}):xi € X}

U={u,u,.. un}, X =

be an ivnpivn-soft set over U. Where

Tr(x;) = [infTr(x;), supTr(x;)] € [0, 1],
I7(x;) = [infl£(x;), suplz(x;)] C [0, 1],
Fr(x;) = [infFr(x;), supFr(x;)] € [0, 1],

T () (1) = [inf T ) (1), SUPT ;) (7))
Iffx)( [mflff (uj) suplff(x)(u])] -
Fpy () () = [infFy, (1) (1), SupFy, () (17)] C

If o = (Tr(x), Ir(xi), Fr(xi)) and Vi = (T () (), I
(xi) (), gy (x) (7)), then the F can be represented by a

c [0,1],
[0, 1],
[0, 1].

matrix as in the following form

041 V11 V12 e Vlm

0%} V21 V22 ce V2m
Flnxm] =

Ol an VnZ o Vnm

which is called an n x m ivapivn-soft matrix (or ivnpivns-
matrix) of the ivnpivn-soft set F over U.

According to this definition, an ivapivn-soft set F is
uniquely characterized by matrix F[n x m]. Therefore, we
shall identify any ivnpivn-soft set with its ivapivas-matrix
and use these two concepts as interchangeable.

From now on, the set of all n X m ivnpivns-matrix over

U will be denoted by F .

Example 7 Let U = {uy,up,uz}, X = {x1,x2,x3}, F be
given as in Example 5. Then, the ivnpivns-matrix of F is
written by
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Definition 14 Let Fln x m] € Foxm. Then, F [n x m] is
called

1. A zero ivnpivn-soft matrix, denoted by O[n x m], if
o = <[O7 O]? [17 1]7 [15 ]]> and Vll = <[0’ 0]’ [15 1]7 [17 1]>
fori=1,2,...mandj=1,2,...,n.

2. A universal ivapiva-soft matrix, denoted by U[n x ml,
if o; = ([1,1],[0,0],[0,0]) and V; = ([1,1],[0,0],
[0,0]) fori=1,2,....mandj=1,2,...,n.

Example 8 Let U = {uy,up,u3}, X = {x1,x2,x3}. Then, a
zero ivnpivn-soft matrix is written by

infTr, (x;) <infTr, (x;)
inflz, (x;) > inflz, (x;)
infFr, (x;) > infFr, (x;)
infof, 1) (”J) < infofz(A,) (u])
infly, . (w) >infly,  (u;)
infFy, (u;) > infFy, (uj)

supT'z, (x;) <supTr, (x;)
suplr, (x;) > suplr, (x;),
supFr, (x;) > supFr,(x;)
supTy, . () <supTy, (),
suply, . () > suply, . (),
supFy, (u;) > supFy, ., (u;).

fori=1,2,....mandj=1,2,...,n.
3. Fi[n xm] and F;[n x m] are equal —ivnpivn-matrix,
denoted by Fi[n x m] = Fa[n x m], if

Definition 15 Let F[n x m|, Fa[n x m] € F xm- Then
1. Filnxm] is a sub—ivapivn-matrix of Fln x m],
denoted by F[n x m] C Fa[n x m], if

infTr, (x;) <infTr, (x;) supT'r, (x;) <supTr, (x;)

infTz, (x;) = infTx, (x;)
inflz (x;) = inflz, (x;)
infFr (x;) = infFr,(x;)
infoflo,-) () = infofz(x,) (u7)
infly, . (w)=infl, ()

supT'z, (x;) = supT'x, (x;)
suplr, (x;) = suplr, (x;),
supFr, (x;) = supFr, (x;)
supTy;, ., () = supTy, ., (1)),
suply, . (w;) = suply, . (i),

inflr (x;) >inflr, (x;)
infFr (x;) > infF g, (x;)
infTy, () <infTy, ()
infly, () >infly,  (u;)
infFy, () >infFy, ()

fori=1,2,....mandj=
2. Filnxm] is a proper

suplr, (x;) > suplr, (x;),
SupFr, (x;) > supFr, (x;)
supTy, ., (u;) <supTy, . (u)),
suply, . (w;) >suply, . (),

Supr}'] ) (u/) 2 Suprfz(x,») (u/)

1,2,...,n.

sub—ivnpivn-matrix  of

Faln x m], denoted by F[n x m]CFa[n x m], if

ianffl(m (uj) = ianff:(x,-) (u.i) suprfl(ﬁ) (uj) = suprfz(ﬁ) (uj)‘

fori=1,2,...mandj=1,2,...,n

Definition 16 Let Fln x m|,Fi[n X m], Faln x m] €
j—"nxm . Then

1  Union of Fi[nxm] and F,[n x m], denoted by
Filn xm] = Fi[n x m] U Faln x m), if
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Tr,(x;) = [s(nfTx, (x;),infTx, (x;)), s(supTz, (x;), supT'z, (x;))],
Ir,(x;) = [t(inflx, (x;),inflx, (x;)), 1(suplx, (x;), suplz, (x;))],
Fr,(x;) = [t(infF £, (x;),infF £, (x;)), t(supF £, (x;), SupF £, (x;))],
Tff3(,v,) (M/) = [S(infofl ) (”1)7 infofz(x,-) (uj)),s(suijtfl(Xi] (”j)v

If}'3 ™) (wj) = [t(inflffl () (), inf[ffz(r,) (7)), [(Supr}'I ) (u7),

suprfz(x,) (uj))]v

Sup]f}'z(v,v) (u/))}v

Fff}(*"i) (Mj) = [t(ianffl(-\z) (uj), ianffZ("i) (I/tj))7
l(suprf,(x,-) (uj)7 Suprfz(x,-) (MJ))}

fori=1,2,....mandj=1,2,...,n.

2. Intersection of F[n x m| and F;[n x m|, denoted by

Faln xm| = Fi[n x m| O Faln x m), if

T;(xi) = [infFr(x;), supFr(x;)],
Ifj(xi) = [1 — suplr(x;), 1 —inflz(x;)],
Ffj(x[) = [infT#(x;), supTx (x;)],

Ty () () = [infFy, (v (u7), SUpF, (v (7)),

Fe

I~ (1) = [1 = $Uplyr ) (), 1 = inflpy o) (1)),
Fr ~ () = [infTe () (1), UPT} ~x) (1))

fori=1,2,...mandj=1,2,...,n

Example 9 Consider Example 6. For t-norm and s-norm
we use min{a,b} and max{a,b}, respectively. Then,
Fi3x3]=Fi[3x3]UF2[3x3], F4a3x3]=F; 3x

3] A F4[3 x 3] and FE[3 x 3] is given as

([-6,.7],].2,.6],[4,.5]) | {[.5,.6],].6,.7],].3,.4]) ([4,.5],].2,.4],[.2,.3)) {([6,.7],[2,.3],].3,.3])

Fs3x3]=|(1,.4],[.2,4],[5.7) | {[7,.8],[3,4],[.1,.2]) ([.8,.9],].2,.6],[.3,.4]) ([4,.5],].1,.3],[.2,.4])
| ([.3,.9],[4,.5],[.3,.6]) | ([.3,.5],[.1,4],[.3,.6]) ([.3,.7],[.1,.6],[.5,.8]) ([4,.9],[.1,.3],[.6,.7]) |
[([.3,.4],[.5,9],[.7,.8)) | {[.1,.5],[.7,.9],[4,.7)) {([.1,.3],[.7,.8],[.8,.9]) ([3,.5],[.7,.9],[.6,.7]) ]

Fa3x3]=|(1,.2],[.3,4],[.5,.8]) | ([2,.3],[6,.8],[.2,.4]) ([5,.4],[4,.6],[.7,.9]) ([.1,.2],].3,.4],[.5,.6])
| ([2,4],[.5,.7],[4,.6]) | ([2,.3],[2,.6],[4,.8]) ([2,.5],[2,.8],[.6,.9]) ([.3,.7],[2,.5],[.6,.9]) ]

and

N ([4,.5],[4,.5],1.3,4]) | {[.3,4],[4,.3],].5,.6]) (2,.3],[.3,.2],[.4,.3)) {(3,.5],[8,.7],[.6,.7])

Fi3x3]= [([.6, 71, 1.6,.7],[.1, .2]) 2,4),17,.6],[.7,.8)) ([3,.4],[8,.4],[.8,4]) ([2,.4],[.9,.7],]4,.5])

([4,.6],]5,.6],[.2,.4]) | {[3,.6],].9,.6],[.2,.3]) ([5,.8],]9,.4],[2,.5]) ([6,.7],[.9,.7],[.3,.7])

Tf4 (xf) = [t(infT]:] (xf)v infoz (xi)) ) t(suprl (xi) ) Suprz (xi))]v

Proposition 7 Let F € F nxm- Then

Ir,(xi) = [s(infl 7, (xi), infl, (x;)), s(suplr, (xi),suplr, (x:))]; ~

Fr,(x;) = [s(infF £, (x;),infF £, (x;)), s(SupF £, (x;), supF =, (x;))],
Tiy ) ) = [t(inf Ty, (), inf Ty, (),

t(supTy,, . (u;),supTy, . ()],
Iy, () = [s(infly,  (u;),infly,  (u;)),s(suply, . (),

Sup]fq(m (uj))]v

Fy, ., (w) = [s(infFy, (), infFy,  (u;)),s(supFy,, . (),

Suprfz(m (Mj))] .

fori=1,2,...mandj=1,2,...,n.
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Complement of F[n x m]|, denoted by f:[n x m], if

({T[m x n)) = Flm x n
2. O°m x n] =U[m X n]

Proposition 8 Let F[m X n],Fa[m x n], F3[m x n] €
:7-:,,Xm . Then

1. Filmxn] C Ulm x n]

2. Omxn|C Fimxn]

3. Filmxn]CFi[mxn

4. Filmxn)C Falmxn] A Falmxn] C Falmxn] =
Film x n] C Fs[m x n
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Proposition 9 Let F[m X n], Fa[m x n],Fs[m x n] €

j:nXm.Then

1. Fijmxn]=Fmxn] and Fa[m x n] = Fz[m x n]
& Film x n] = Fs[m x n]

2. Filmxn)C Falmxn] and Falm x n] C Fi[m x n]
& Film x n] = Falm x n|

Proposition 10 Let F[m x n], Fa[m X n|, F3[m x n] €

.%nXm.Then

1. Fijm x n]U f[mxn] Fi[m x n]

2. FilmxnUO[m x n] = F[m x n]

3. Filmxn]UU[m x n] =Um x n

4. fl[mxn]UN}"Z[mxn]:fg[mxn}gfl[mxn]
5. (Fi[m x n)UFy[m x n])UF3im x n] = F[m X n]

U (Fa[m x n] U F3[m x n))

Proposition 11 Let F[m X n], Fa[m x n], F3|m X n] €

“Fuxm - Then

1. Filmxn)AFifmxn] =F[mxn

2. FilmxnNO[mxn]=Om x n

3. fl[mxn]qlzl[mxn]:fl[mxn] N

4. Fi[m x n)NFalm x n] = Falm x n] N\ Flm X n]

5. (Film x n)NFam x n)) N Fs[m x n] = Fi[m x n] O

(Falm x n] ﬁ]—}[m x n))

Proposition 12 Let Fi[m x n|, Falm X n] € Fnsem-
Then, De Morgan’s laws are valid

1. (fl[manG}'Q[mxn])C:fl[mxn]cﬁ
Falm x n]*

2. (fl[mxn]ﬁfz[mxn])?zfl[mxn]?tj
Falm x ]

Proposition 13 Let F[m X n], Fa[m x n], F3[m x n] €

]N-"nxm.Then
1. Fi[m x n) O (Fafm x n) U F3lm x n]) = (Fi[m x n]
ﬂfz[mxn]) J(F1[m x n] O F3m x n))
2. fl[mxn] (}' [m x n] N F3[m x n]) = (F[m x n]
U Falm x n]) N (Fi[m x n] U Fa[m x n])
([3,4],[:5, 6], [5,.6]) | ([5,-6],[.6,.7],[.3, 4])
Fi[3 x 3] ([.1,.2],[.3,.4],[.6,.7)) | {[.7,.8],[3,4],[-2, 4])

5 Similarity measure on ivnpivn-soft sets

In the following, some definitions and operations on soft
set is defined in [24], we extend these definitions and
operations to ivnpivn-soft sets.

Definition 17 Let U = {u,u,, ...,
E={x1,x2,...,x,} be a set of parameters fl[mxn]

Falm x n] € Frp. 1 T5] || #0 or ||IIJH #0 or ”Fl]”
= 0 for at least one i € {1,2,...,n} andj € {1,2,...,m},
then similarity between Fi[m x n] and Fy[m x n] is
defined by

u,} be a universe,

i 2 V2Tl - Tl - T
Sy Syt max (1T 1 T3 1 T3}

S(Fi[m x n], Falm x n]) =

where

71.2) = (inf7; - infT? + supT} - supT}, infl - infI}
—&-sup]il . sup]iz7 ianl.1 . iani2 + supF[.1 . supFiz)
Tij) = (inf Tl.l1 + supTil1 — infTﬁ — supTﬁ,infTil2
+supT), — infT5 —
infT}, + supT,, — infT}, — supTy,)

2
supTy, .. .,

E; = (inf]l.l1 + supIil1 — ianl.zl — supli21 , ianil2
+supl}, — infl} — supl5, . . .,
1nflllm + supIilm — ianl.zm — suplizm)
Fij = (mfFil1 + supFil1 — ian2 — supFizl, ianl.l2
+supF}, — infF5 — supF5, ...,
ianl —|— supFlm 1ani2m — supF?m)
Note: 1t [T, [7,1 . Fyll = 0 foralli € {1,2,...,n} and
je{l,2,...,m} or Fi[mxn]=F,ymxn], then

S(Fy[m x n],}"z[m xn))=1.

Definition 18 Let Fy[m x n], Fa[m x n] € Fyxm. Then,
Fi[m x n] and Fa[m x n] are said to be a-similar, denoted
Film x n] =* Falm xn], if and only if S(Fi[m x
n], Falm x n]) = o for a € (0,1).

We call the two ivnpivn-soft sets significantly similar if
S(Film x n], Falm x n]) > 1.

Example 10 Consider Example 6. If two ivapivn-matrices
F1[3 x 3] and F,[3 x 3] are written by
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and
(l.6,.7],[2,9],1.7,.8]) | {[.1,.5],].7,.9],[4,.7]) ([1,.3],].2,.4],[8,.9]) 3,.5,[.7,.9],[.6,.7])
fZBX?’] <[17'4]7[27'4]7[5a'8]> [273L[678L[172D [53 9]7[43 '6]7[7a 9]> [17'2}3['37'4]3[5"6]>
([.3,9],1.5,.7],[.3,.6]) | {[.3,.5],].2,.6],]4,.8)) (3,.7],].2,.8],[.6,9]) {([4,.9],]2,.5],]6,.9])

Then, we can obtain
0.5,0.5,0.5) = [Ty =v0.75,

1.0,-0.2,0.6) = |Ty] = V14,
-0.3,-03) = |[|Ty| =027,

(

(

(-0
i=1, (- 0309 LY = |yl =v211,
i=2, (-0.7,-02,-03) = |L| =+0.62,
i=3, (-03,-03,-03) = || =027,
i=1, (-04,-12,-05) = ||Fy|| =185,
i=2 (03 09 —0.5) = ||Fy| = V1.15,
i=3, (-03,-02,-02) = |[Fy|=+0.17.
and
i=1, =(0.46,0.64,0.82) = |V?|| =+/1.2936,
i=2, V2=(0.09,0.22,0.86) = |VZ|| =+0.7961,
i=3, V?=(0.38,0.55048) = |V} =+0.6773,

Now the similarity between F;[3 x 3] and F3[3 x 3] is
calculated as

Definition 19
the distances
defined as,

Let Fi[m x n], Falm x n] € Fpym. Then,
between Fi[m xn| and Fa[m x n] are

1. Hamming measure,

n

S MIAZ

=1 j=1

d(F[m x n], Fa[m X n])

[\)

where

Vi = infT + supT! — infT? — supT} + inflI]
+ supll.l — ianl.2 — supIi2 + iani1 + supFl.1
— infF’ 12 — supFi2

and

— infT2 — supT2 + 1an1

) 2 1
— inflj; — suplj; + infF;; + supF ij

Vj = infT} + supT}}
+ suplj;
- ianizj — supFizi

v1.29361/0.75/2.111/1.85

++/0.79611/1.4/0.62v/1.15 + 1/0.67731/0.271/0.27+/0.17

S(Fi[3x3],F23x3]) =

1,954 0.89 +0.09

=0.78
3.78

max{0.75,2.11,1.85} + max{1.4,0.63,1.15} + max{0.27,0.27,0.17}

Proposition 14 Let F[m X n], Fa[m x n], F3[m x n] €

F axm - Lhen, the followings hold;
() S(Fi[m x n], Fa[m x n]) = S(Fa[m x n],
fl[m X n]),
(ii.) O S(Fi[mxn], Falmxn])<1,
Gii.)  S(Fim xn],Fi[m xn]) = 1.

Proof Proof easily can be made by using Definition 10.

Now we give distance measures between F[m x n] and
Fa[m x n] with propositions by using the study of Jiang
et al. [19]. O
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2. Normalized Hamming measure,
1
I(F1[m x n],Fam x n)) :—nd(]:l [m x n], Fa[m x n])
3. Euclidean distance,

e(Fi[m x n], Falm x n]) = (i y |V,~.Vij|>
i=1 j=1
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where

Vi = (infT} + supT} — infT} — supTl.z)2

+ (inf]il + supll.l - inf[i2 - sup]iz)2
+ (ian,.1 + supFl.l — iani2 — supF[.z)2
and

V= (me' + supT; 11‘1fT2 — supT2>

+ <ianl_.1]. + suplilf — inﬂé - supI§>

2
+ (ianilj + supFl-lj — iani — supFl_.zi>
4. Normalized Euclidean distance,

q(F1[m x n], Fr[m x n]) =Lne(]:1 [m X n],Falm x n))

Example 11 Consider Example 10. Now we give distance
measures between F[3 x 3] and F,[3 x 3] as,

1. Hamming measure,
Vi=—-06+0-04=—1
=—-0240.140=-0.1
V;=-06—-03+01=-08

and
Vii=05-03-04=-02
Vi =05+09-0.1=02
Vi3=05-11-05=—1.1

Vai=1-07+03=0.6
Vo =—02-02-09=-13
Va3 =0.6—03—05=—-02

V3 =-03-03-03=-09
Vi =—-03-03-02=-038
V3 =-03-03-02=-038

Then, we can obtain Hamming measure between
F1[3 x 3] and F3[3 x 3] as,

3 3
ZZ|V1‘~VU|

i=1 j=1

d(F\[3 x 3], F23 x 3]) =

Nl*—‘

1
25(0.2+0.2+ 1.1+0.6+0.13+0.02 4 0.72

+0.64 +0.64) = 1.855
2. Normalized Hamming measure,

I(F1[3 % 3], F2[3 x 3))

1
= ﬁd(fl 3 3], F[3 x 3]) = 5 1.855 =2 0.2061

3. Euclidean distance,

Vi=036+0+0.16 =0.52
V> =0.04+0.01 + 0 = 0.05
V3 =0.36 4+ 0.09 + 0.01 = 0.46

and

Vit =0.25+0.09 4+ 0.16 = 0.50
Vip =025+0.81 + 1.44 = 2.50
Vi3 =025+121+025=1.71

Vo =1+0.49 +0.09 = 1.58
Va = 0.04 +0.04 4 0.81 = 0.89
Va3 =0.36 + 0.09 4 0.25 = 0.70

V31 = 0.09 +0.09 + 0.09 = 0.27
V3, = 0.09 +0.09 + 0.04 = 0.22
V33 = 0.09 + 0.09 + 0.04 = 0.22

Then, we can obtain Euclidean distance between
F1[3 x 3] and F3[3 x 3] as,
2(7:1 [3 X 3}7.7:2[3 X 3])

~(Snm)

2
V.V, ) (2.4492 + 0.1585 + 0.3266)}
i=1 j=1

= (2.9343)F =~ 1.713

4. Normalized Euclidean distance,

q(F1[3 x 3], F2[3 x 3))
1
= 33¢F 1B x 3, Fa3 x 3]) = 5 1.713 20,19

Theorem 1 Let Fy[m x n], Fa[m x n] € F .. Then, the
followings hold;

()  d(Fi[m x n],Falm x n])

<
(i) UFi[mxn], Fa[m x n]) <1
(iii.)  e(Fi[m x n], Falm x n]) < /mn
(v.)  q(Film x n], Falm x n]) <1

Proof Proof easily can be made by using Definition 6. [

Definition 20 Let F[m x n|, Fo[m X n] € Fnxm. Then,
by using the distances, similarity measure of F[m X n]
and F[m x n] is defined as,

1

Sk(Fi[m x n],Falm x n]) = 1+ K(F[m x n], Fa[m x n))

where K € {d,l,e,q}.

Example 12 Consider Example 11. Now we give simi-
larity measure of F[3 x 3] and F,[3 x 3] by using the
distances of Example 11 as,
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1
Sd(jfl[3 X 3],.7:2[3 X 3]) = 1 +d(f1[3 X 3],f2[3 X 3])

1
=—— =~ (.35
1+ 1.855
1
SUF1[3 % 3], Faf3 x 3]) =5 FUF B %3], 53 < 3))
1
T 1402061

Se(fl[f} X 3],.7:2[3 X 3]) =

~ 0.83

1
1+ e(F1[3 x 3], F2[3 x 3])
:ﬁ ~ (0.37
Sq(F1[3 %3], F2[3 % 3]) =7 +q(F1[3 ><13},J-'2[3 % 3])
1
T1+019

~ (0.84

6 Decision-making method

In this section, we construct a decision-making method that
is based on the similarity measure of two ivnpivn-soft sets.
The algorithm of decision-making method can be given as:

Step 1. Construct an ivapivn-soft set F; over U for
problem with the help of a expert,

Step 2. Construct an ivnpivn-soft set F, based on a
responsible person for the problem,

Step 3. Write ivapivn-matrices F1[m x n] and F[m X n]

for 7| and F, according to Definition 13,
respectively,

Step 4. Calculate the similarity between F[m x n] and
F2m x n] according to Definition 17,
Step 5. Determine result by using the similarity.

Now, we can give an application for the decision-making
method. The similarity measure can be applied to detect
whether an ill person is suffering from a certain disease or
not.

6.1 Application

Let us consider the decision-making problem adopted from
[24]. In this applications, we will try to estimate the pos-
sibility that an ill person having certain visible symptoms is
suffering from cancer. For this, we first construct an ivn-
pivn-soft set for the illness and an ivapivn-soft set for the ill
person. We then find the similarity measure of these two
ivapivn-soft sets. If they are significantly similar, then we
conclude that the person is possibly suffering from cancer.

Example 13 Assume that our universal set contain only
two elements cancer and not cancer, i.e. U = {uj,us}.
Here the set of parameters X is the set of certain visible
symptoms, let us say, X = {x,x2,Xx3, X4, X5, Xg,X7,X8, X0 }
where x; = jaundice, x, = bone pain, x3 = headache, x; =
loss of appetite, xs = weight loss, x¢ = heal wounds , x; =
handle and shoulder pain, x3 = lump anywhere on the body
for no reason and x9 = chest pain.

Step 1. We construct an ivapivn-soft set F over U for
cancer with the help of a medical person as:

Fi= {((xl, [0.5,0.7],[0.1,0.2],[0.7,0.8]), {{][0.5,0.6],[0.1,0.3],]0.8,0.9]) /uy, {[0.4,0.6],[0.1,0.3], [0.4,0.5]) /uz } ),

((x2,[0.7,0.8],0.0,0.1],]0.1,0.2]),
((x3,[0.3,0.6],0.2,0.3], 0.3, 0.4]),
((x4,[0.6,0.7],[0.1,0.2], [0.2,0.3]),
({xs,[0.4,0.5],0.2,0.3],]0.3,0.4]),
({x6,[0.3,0.5],0.7,0.8],0.2,0.6]),
((x7,[0.3,0.8],0.6,0.7],0.5,0.9]),
(s, [ Al ], I
(

{
{
{
{
{
{
x3,[0.2,0.6],[0.3,0.4], [0.5,0.7]), {
{

([0.6,0.7],]0.1,0.2], [0.1,0.3]) /uy, ([0.6,0.7], [0.3,0.4], [0.8,0.9]) /u2}),
([0.5,0.6],[0.2,0.3],[0.3,0.4]) /uy, ([0.4,0.5],0.2,0.4],[0.7,0.9]) /uz}),
([0.6,0.7],[0.1,0.2], [0.2,0.3]) /uy, ([0.3,0.6], [0.3,0.5], [0.8,0.9]) /u2}),
([0.4,0.6],]0.1,0.3

([0.5,0.7],]0.3,0.5], [0.4,0.8]) /uy, ([0.2,0.6], [0.5,0.6],[0.3,0.7]) /uz}),
([0.5,0.9],]0.5,0.8], [0.7,0.9]) /uy, ([0.3,0.7],[0.8,0.9], [0.4,0.5]) /us}),
([0.4,0.7],]0.7,0.9], [0.3,0.6]) /uy, {[0.6,0.7], [0.2,0.4], [0.1,0.5]) /us}),

[ 1) /i ([ J N 1)/u2})
[ 1) /1 ([ ] N [)/u2})
[ 1) /i ([ ], [ I [)/u2})
[0.2,0.4]) /uy, {[0.7,0.9],[0.2,0.3], [0.4,0.5]) /us }),
[ 1) /ur ([ ], [ Al I)/u2})
[ 1) /ur ([ ] I [ [)/u2})
[ 1)/ ([ I ][ [)/uz})
)

(x9,[0.1,0.2],0.5,0.6], [0.1,0.6]), {([0.3,0.4], [0.2,0.3], [0.4,0.6]) /us, ([0.6,0.9], [0.4,0.7], [0.6, 0.8]>/u2})}
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Step 2.

We construct an ivapivn-soft sets F» based on
data of ill person as:

,[0.3,0.4],[0.5,0.6],[0.4,0.5]), {([0.1,0.9], 0.1, 0.5],[0.2,0.6]) /u;, ([0.0,0.9],[0.1,0.2], [0.0,0.1]) /uz }),

({x2,[0.1,0.2],10.3,0.4],[0.6,0.7]), {{[0.0,0.1], [0.5,0.7], [0.8,0.9]) /u1, {([0.1,0.3],[0.0,0.2], [0.8,0.9]) /uz } ),
({x3,[0.2,0.4],10.4,0.5],[0.4,0.6]), {{[0.1,0.3],[0.4, 0.6], [0.6,0.7]) /u;, {[0.8,0.9],[0.9, 1.0, [0.6,0.7]) /uz } ),
((x4,10.5,0.6],[0.6,0.7],[0.3,0.4]), {{[0.0,0.9],[0.2,0.3], [0.0,0.1]) /u;, {[0.5,0.8], [0.1,0.4],[0.7,0.9]) /u2 } ),
({xs,[0.3,0.5],10.7,0.8],[0.2,0.3]), {{[0.9,0.1],[0.5,0.8], [0.1,0.2]) /u;, ([0.8,0.9],[0.1,0.3], [0.2,0.4]) /uz } ),
({xs,[0.6,0.7],10.2,0.3],[0.3,0.5]), {{[0.1,0.3],[0.8,0.9], 0.9, 1.0]) /uy, {[0.8, 1.0],[0.8,0.9], [0.1,0.2]) /uz } ),
((x7,10.7,0.8],[0.3,0.4],[0.2,0.4]), {{[0.8, 1.0],[0.7,0.8], [0.0,0.1]) /u1, {[0.6,0.7], [0.0,0.1], [0.6,0.9]) /u2 } ),
({xs,]0.8,0.9],[0.2,0.6],[0.3,0.4]), {{[0.6,0.9],[0.8, 1.0], [0.3,0.4]) /u;, {[0.0,0.1], [0.0,0.2],[0.9, 1.0]) /u2 } ),
({x9,[0.3,0.4],10.7,0.9],[0.1,0.2]), {{[0.8,0.9], [0.7,0.8], [0.5,0.6]) /u;, ([0.0, 1.0], [0.0,0.3], [0.7, 0.9}>/u2})}
Step 3. We construct ivapivn-matrices F[9 x 2] and
F2[9 x 2] for F, and F,, respectively as:

[([0.5,0.7],[0.1,0.2],[0.7,0.8]) | {([0.5,0.6],[0.1,0.3],[0.8,0.9]) ([0.4,0.6],[0.1,0.3],[0.4,0.5]) ]
([0.7,0.8],[0.0,0.1],[0.1,0.2]) | {[0.6,0.7],]0.1,0.2],[0.1,0.3]) (][0.6,0.7],[0.3,0.4],[0.8,0.9])
([0.3,0.6],[0.2,0.3],[0.3,0.4]) | ([0.5,0.6],]0.2,0.3],[0.3,0.4]) ([0.4,0.5],]0.2,0.4],[0.7,0.9])
([0.6,0.7],[0.1,0.2],[0.2,0.3]) | {[0.6,0.7],]0.1,0.2],[0.2,0.3]) (][0.3,0.6],[0.3,0.5],[0.8,0.9])

F119 x 2] = | ([0.4,0.5],[0.2,0.3],[0.3,0.4]) | ([0.4,0.6],[0.1,0.3],[0.2,0.4]) ([0.7,0.9],]0.2,0.3],[0.4,0.5])
([0.3,0.5],[0.7,0.8],[0.2,0.6]) | ([0.5,0.7],]0.3,0.5],[0.4,0.8]) ([0.2,0.6],[0.5,0.6],[0.3,0.7])
([0.3,0.8],[0.6,0.7],[0.5,0.9]) | ([0.5,0.9],]0.5,0.8],[0.7,0.9]) ([0.3,0.7],[0.8,0.9],[0.4,0.5])
([0.2,0.6],[0.3,0.4],[0.5,0.7]) | ([0.4,0.7],]0.7,0.9],[0.3,0.6]) ([0.6,0.7],[0.2,0.4],[0.1,0.5])

| ([0.1,0.2],[0.5,0.6],[0.1,0.6]) | ([0.3,0.4],[0.2,0.3],[0.4,0.6]) ([0.6,0.9],[0.4,0.7],[0.6,0.8]) |

[([0.3,0.4],[0.5,0.6],[0.4,0.5]) | ([0.1,0.9],[0.1,0.5],[0.2,0.6]) ([0.0,0.9],[0.1,0.2],[0.0,0.1]) ]
([0.1,0.2],[0.3,0.4],[0.6,0.7]) | {[0.0,0.1],]0.5,0.7],[0.8,0.9]) (][0.1,0.3],]0.0,0.2],[0.8,0.9])
([0.2,0.4],[0.4,0.5],[0.4,0.6]) | {[0.1,0.3],]0.4,0.6],[0.6,0.7]) (][0.8,0.9],[0.9,1.0],[0.6,0.7])
([0.5,0.6],[0.6,0.7],[0.3,0.4]) | ([0.0,0.9],]0.2,0.3],[0.0,0.1]) ([0.5,0.8],[0.1,0.4],[0.7,0.9])

F2[9 x 2] = |([0.3,0.5],[0.7,0.8],[0.2,0.3]) | ([0.9,0.1],[0.5,0.8],[0.1,0.2]) (][0.8,0.9],[0.1,0.3],[0.2,0.4])
([0.6,0.7],[0.2,0.3],[0.3,0.5]) | {[0.1,0.3],]0.8,0.9],[0.9,1.0]) ([0.8,1.0],[0.8,0.9],[0.1,0.2])
([0.7,0.8],[0.3,0.4],10.2,0.4]) | ([0.8,1.0],[0.7,0.8],[0.0,0.1]) ([0.6,0.7],[0.0,0.1],[0.6,0.9])
([0.8,0.9],]0.2,0.6],[0.3,0.4]) | {[0.6,0.9],]0.8,1.0],[0.3,0.4]) ([0.0,0.1],[0.0,0.2],[0.9,1.0])

| ([0.3,0.4],[0.7,0.9],[0.1,0.2]) | ([0.8,0.9],[0.7,0.8],[0.5,0.6]) ([0.0,1.0],[0.0,0.3],[0.7,0.9]) |
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Step 4. We calculated the similarity between F[9 X 2]

and F3[9 x 2] as:

S(F119 % 2], Fa[9 x 2]) = 0293

Step 5. The F1]9 x 2] and F»[9 x 2] are not significantly
similar. Therefore, we conclude that the person is

not possibly suffering from cancer.

Example 14 Let us consider Example 13 with different ill
person.

Step 1. We construct an ivapivn-soft set | over U for

cancer with the help of a medical person as

{ ,[0.5,0.7],[0.1,0.2],0.7,0.8]), {([0.5,0.6], [0.1,0.3], [0.8, 0.9]) /u, ([0.4,0.6], [0.1,0.3], [0.4,0.5]) /up}),

((x2,[0.7,0.8],]0.0,0.1],[0.1,0.2]), {{[0.6,0.7],[0.1,0.2], [0.1,0.3]) /uy, {[0.6,0.7], [0.3,0.4], [0.8,0.9]) /us } ),
({x3,]0.3,0.6],0.2,0.3],[0.3,0.4]), {([0.5,0.6],[0.2,0.3], 0.3,0.4]) /uy, {[0.4,0.5],[0.2,0.4], [0.7,0.9]) /u>}),
((x4,]0.6,0.7],[0.1,0.2],[0.2,0.3]), {([0.6,0.7],[0.1,0.2], [0.2,0.3]) /us, {[0.3,0.6],[0.3,0.5], [0.8,0.9]) /us}),
({xs5,[0.4,0.5],]0.2,0.3],[0.3,0.4]), {([0.4,0.6],[0.1,0.3],[0.2,0.4]) /uy, {[0.7,0.9],[0.2,0.3], [0.4,0.5]) /us } ),
({x6,[0.3,0.5],]0.7,0.8],[0.2,0.6]), {([0.5,0.7],[0.3,0.5], [0.4,0.8]) /uy, {[0.2,0.6], [0.5,0.6], [0.3,0.7]) /us } ),
({x7,]0.3,0.8],[0.6,0.7],[0.5,0.9]), {([0.5,0.9], [0.5,0.8], [0.7,0.9]) /u1, {[0.3,0.7],[0.8,0.9], [0.4,0.5]) /us}),
({xs,]0.2,0.6],[0.3,0.4],[0.5,0.7]), {([0.4,0.7),[0.7,0.9], [0.3,0.6]) /u1, {[0.6,0.7],[0.2,0.4], [0.1,0.5)) /us}),
«mJOIOQ[0&06L@Jﬁ6b&@010ﬂj&103,WAﬁﬁbﬁq<m6ﬂ9Lm407Lmbﬁ8DﬂQH}

Step 2. We construct an ivapivn-soft sets F3 based on

data of ill person as

{ ,[0.3,0.4],]0.5,0.6], [0.4,0.5], {([0.1,0.2],[0.7,0.8], [0.0,0.1]) /uy, ([0.0,0.1], 0.9, 1.0], [0.9, 1.0]) /u> }),

((x2,]0.1,0.2],[0.3,0.4],[0.6,0.7]), {([0.0,0.1],[0.5,0.6], [0.8,0.9]) /uy, {[0.1,0.2],[0.0,0.1], [0.3,0.4]) /u>}),
({x3,]0.2,0.3],[0.4,0.5],[0.6,0.7]), {([0.1,0.2], [0.0,0.1], [0.6,0.7]) /us, {[0.8,0.9], 0.9, 1.0], [0.0,0.1]) /us }),
((x4,]0.5,0.6),[0.6,0.7],[0.3,0.4]), {([0.0,0.1],[0.6,0.7], [0.1,0.2]) /u1, {[0.4,0.5],[0.7,0.8], [0.2,0.3]) /us}),
({xs,]0.3,0.4],0.7,0.8],[0.9,1.0]), {([0.9, 1.0], [0.6,0.7], [0.7,0.8]) /us, {[0.8,0.9], [0.4,0.5], [0.2,0.3]) /us}),
({x6,]0.6,0.7],[0.4,0.5],[0.5,0.6]), {([0.1,0.2],[0.8,0.9], [0.9, 1.0]) /us, {[0.3,0.4],[0.4,0.5], [0.1,0.2]) /u>}),
((x7,]0.7,0.8],[0.9, 1.0],[0.1,0.2]), {([0.1,0,2],[0.7,0.8], [0.0,0.1]) /uy, (0.9, 1.0], [0.0,0.1], [0.6,0.7]) /u> }),
({xs,[0.8,0.9],]0.2,0.3],[0.3,0.4]), {{[0.6,0.7],[0.2,0.3],[0.3,0.4]) /uy, {[0.0,0.1],[0.1,0.2], 0.9, 1.0]) /us } ),
«@[ooou[amoaﬁo&ogp{qo&oﬂJonomJ&zosumhqaaouJ0«05szﬁspﬁnn}
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Step 3. We construct ivapivn-matrices F[9 x 2] and
F3[9 x 2] for Fy and F3, respectively as
[([0.5,0.7],[0.1,0.2],[0.7,0.8]) | {([0.5,0.6],[0.1,0.3],[0.8,0.9]) ([0.4,0.6],[0.1,0.3],[0.4,0.5]) ]
([0.7,0.8],[0.0,0.1],[0.1,0.2]) | {[0.6,0.7],]0.1,0.2],[0.1,0.3]) (][0.6,0.7],[0.3,0.4],[0.8,0.9])
([0.3,0.6],[0.2,0.3],[0.3,0.4]) | ([0.5,0.6],]0.2,0.3],[0.3,0.4]) ([0.4,0.5],[0.2,0.4],[0.7,0.9])
([0.6,0.7],]0.1,0.2],[0.2,0.3]) | {[0.6,0.7],]0.1,0.2],[0.2,0.3]) (][0.3,0.6],[0.3,0.5],[0.8,0.9])

F119 x 2] = | ([0.4,0.5],[0.2,0.3],[0.3,0.4]) | ([0.4,0.6],[0.1,0.3],[0.2,0.4]) ([0.7,0.9],[0.2,0.3],[0.4,0.5])
([0.3,0.5],[0.7,0.8],10.2,0.6]) | ([0.5,0.7],[0.3,0.5],[0.4,0.8]) ([0.2,0.6],[0.5,0.6],[0.3,0.7])
([0.3,0.8],[0.6,0.7],10.5,0.9]) | {([0.5,0.9],[0.5,0.8],[0.7,0.9]) ([0.3,0.7],[0.8,0.9],[0.4,0.5])
([0.2,0.6],[0.3,0.4],[0.5,0.7]) | ([0.4,0.7],]0.7,0.9],[0.3,0.6]) ([0.6,0.7],[0.2,0.4],[0.1,0.5])
| ([0.1,0.2],[0.5,0.6],[0.1,0.6]) | ([0.3,0.4],[0.2,0.3],[0.4,0.6]) ([0.6,0.9],[0.4,0.7],[0.6,0.8]) |
[([0.3,0.4],[0.5,0.6],[0.4,0.5]) | ([0.1,0.2],[0.7,0.8],[0.0,0.1]) {[0.0,0.1],[0.9,1.0],[0.9,1.0])
([0.1,0.2],[0.3,0.4],[0.6,0.7]) | ([0.0,0.1],]0.5,0.6],[0.8,0.9]) ([0.1,0.2],[0.0,0.1],[0.3,0.4])
([0.2,0.3],]0.4,0.5],[0.6,0.7]) | ([0.1,0.2],]0.0,0.1],[0.6,0.7]) ([0.8,0.9],[0.9,1.0],[0.0,0.1])
([0.5,0.6],]0.6,0.7],[0.3,0.4]) | ([0.0,0.1],]0.6,0.7],[0.1,0.2]) ([0.4,0.5],[0.7,0.8],[0.2,0.3])

F3[9 x 2] = | (][0.3,0.4],]0.7,0.8],[0.9,1.0]) | ([0.9,1.0],[0.6,0.7],[0.7,0.8]) ([0.8,0.9],[0.4,0.5],[0.2,0.3])
([0.6,0.7],[0.4,0.5],[0.5,0.6]) | ([0.1,0.2],]0.8,0.9],[0.9,1.0]) ([0.3,0.4],[0.4,0.5],[0.1,0.2])
([0.7,0.8],[0.9, 1.0],[0.1,0.2]) | ([0.1,0.2],]0.7,0.8],[0.0,0.1]) ([0.9,1.0],[0.0,0.1],[0.6,0.7])
([0.8,0.9],[0.2,0.3],[0.3,0.4]) | ([0.6,0.7],[0.2,0.3],[0.3,0.4]) ([0.0,0.1],[0.1,0.2],[0.9, 1.0])
| ((0.0,0.1},[0.7,0.8],[0.8,0.9]) | ([0.8,0.9],[0.7,0.8],[0.2,0.3]) ([0.0,1.0],[0.4,0.5],[0.2,0.3]) |

Step 4. We calculated the similarity between F[9 x 2] to resolve the decision-making problem in Example 13 are

and F3[9 x 2] as shown in Table 1.
From Table 1, similarity measure between two ivapivn-
S(F1[9 % 2], F5[9 x 2]) = 0.94 soft set are significantly similar in method 2 and 4.
Therefore, we conclude that the person is possibly suffer-
Step 5. Here the F[9 x 2] and F3[9 x 2] are ing from cancer in the methods. Similarity measure

significantly similar. Therefore, we conclude that
the person is possibly suffering from cancer.

7 Comparison analysis and discussion

In this section, we present a comparative analysis aiming to
certify the feasibility of the proposed method based on
similarity measures. The comparative analysis compares
the proposed method with four other methods which
use similarity measure based on distance measures under
ivapivn-soft set environments.

Firstly, proposed method, the method 1 based on
Hamming distance measure, method 2 based on normalized
Hamming distance measure, method 3 based on Euclidean
distance measure and method 4 based on normalized
Euclidean distance measure between two ivnpivn-soft set
are compared. The results from the different methods used

between two ivnpivn-soft set are not significantly similar in
the method 1 and method 3. Therefore, we conclude that
the person is not possibly suffering from cancer in the
methods.

Secondly, the method 1 based on Hamming distance
measure, method 2 based on normalized Hamming distance
measure, method 3 based on Euclidean distance measure
and method 4 based on normalized Euclidean distance
measure between two ivapivn-soft set are compared. The
results from the different methods used to resolve the
decision-making problem in Example 14 are shown in
Table 2.

From Table 2, similarity measure between two ivapivn-
soft set are significantly similar in proposed method,
method 2 and 4. Therefore, we conclude that the person is
possibly suffering from cancer in the methods. Similarity
measure between two ivnpivn-soft set are not significantly
similar in the method 1 and method 3. Therefore, we
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Table 1 Results for different

s Methods Similarity measures Measure values The person suffering
similarity measures f
rom cancer
Method 1 Sa(F1]9 x 2], Fa[9 x 2]) ~0.2 No
Method 2 Si(F1[9 x 2], Fa9 x 2]) =(.818 Yes
Method 3 Se(F1[9 x 2], Fa]9 x 2]) =~(.144 No
Method 4 Sq(F1[9 x 2], F2[9 x 2]) ~(0.752 Yes

Proposed method

S(f] [9 X 2], f2[9 X ZD

=~0.29 No

Table 2 Results for different

s Methods
similarity measures

Similarity measures

Measure values The person suffering

from cancer

Method 1
Method 2
Method 3
Method 4
Proposed Method

Sa(F1[9 x 2], F3[9 x 2])
Si(F1[9 x 2], F3[9 x 2])
Se(F1[9 x 2], F3[9 x 2]) =0.1094 No
Sy(F119 x 2], F3[9 x 2])
S(F1[9 x 2], F3[9 x 2])

~0.1244 No
=~0.719 Yes

=~().6887 Yes
(.94 Yes

conclude that the person is not possibly suffering from
cancer in the methods.

The reasons why the differences exist is given as. The
some methods does not consider the normalized values
of distance measures while the other methods does. In
addition, the methods use both distance measure and
similarity measure while the proposed method used the
only similarity measure and the results of these methods
may be different with the change in distance measures.
Also the distance measures cannot take into account the
included angle between two ivanpivn-soft set while the
proposed similarity measure can. Consequently, the
methods and the proposed method may have different
results. Generally speaking, the proposed method can
effectively tackle the decision-making problems under
ivnpivn-soft set environments including medical
diagnosis.

8 Conclusion

In this paper, we define the notion of interval-valued
neutrosophic parameterized interval-valued neutrosophic
soft set, called ivmpivn-soft set, in a new way by using
interval-valued neutrosophic set and soft set. Furthermore,
we proposed some definitions and operations on ivapivn-
soft set and constructed ivnpivn-soft matrix which are more
functional to make theoretical studies in the ivapivn-soft set
theory. Also, ivnpivn-soft set can be expanding with new
research subjects such as algebraic structures, graph, soft
computing techniques and game theory.
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