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Abstract In this paper, the problem of finite-time stabi-

lization for a class of uncertain neural networks with dis-

tributed time-varying delays is investigated. Based on the

Lyapunov stability theory and integral inequality tech-

nique, some sufficient LMI conditions are derived to ensure

the finite-time stability of considered neural networks. In

addition, the upper bound of the settling time for stabi-

lization is estimated. Numerical simulations are carried out

to demonstrate the effectiveness of the obtained results.

Keywords Uncertain neural networks (UNNs) � Finite-
time stabilization � Distributed time-varying delays �
Settling time

1 Introduction

The research of neural networks has received intensive

attention due to their wide applications in classification of

pattern recognition, static image processing, signal pro-

cessing, optimization problems, mechanics of structures

and materials, smart antenna arrays and other scientific

areas during the past few decades [1–13]. In the hardware

implementation of neural networks, time delays in partic-

ular time-varying delays are unavoidably encountered in

the signal transmission among the neurons due to the finite

speed of switching and transmitting signals, which may

cause undesirable dynamical behaviors such as instability

and oscillation [14–20]. However, there exists another type

of time delays, namely, distributed time-varying delays,

which have begun to receive much attention [21–23]. The

main reason is that neural networks (NNs) usually have the

spatial nature due to the presence of an amount of parallel

pathways of a variety of axon sizes and lengths. Therefore,

continuously distributed delays should be introduced in

modeling of the NNs over a certain duration of time.

Taking account of this, the authors in [21–23] investigated

the stability of equilibrium points and (almost) periodic

solutions of neural networks with both discrete time delays

and distributed delays. Meanwhile, when we are modeling

real nervous systems, parameter uncertainties are probably

the main source of performance degradation of neural

networks that in turn affect dynamical behaviors of the

systems. Moreover, in practical applications, it is hard to

well describe the accurate form by using purely neural

networks, and neural networks with parameter uncertain-

ties become more practice. Therefore, the stability analysis

for uncertain neural networks (UNNs) with distributed

time-varying delays becomes increasingly significant.

However, in some practical situations, we always hope to

obtain faster or even finite-time convergent speed. So, it is

necessary to make a study for finite-time stabilization. The

concept of finite-time stability (FTS) has been first intro-

duced in the control literature [24]. A system is said to be

finite-time stable if its state does not exceed a certain

threshold during a specified time interval. Compared with

the Lyapunov stability, finite-time stability concerns the

boundedness of system during a fixed finite-time interval.

Up to date, many researchers have devoted much effort to

finite-time stability and synchronization [25–29]. For

example, finite-time stability was considered in [30–33] for
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some continuous nonlinear systems without delay. In [35],

authors researched the delay-dependent stability of uncertain

neural networks with time-varying delays. In [36], the

authors studied the robust finite-time stabilization with

guaranteed cost control for a class of delayed neural net-

works. Furthermore, in [25, 28, 32, 34, 38], authors inves-

tigated the finite-time stabilization and synchronization of

delays neural networks in different kinds of methods. It

should be noted that seldom authors have been reported

concerning the finite-time stability and stabilization of

UNNs with distributed time-varying delays. This is because

UNNs with distributed time-varying delays bring difficulties

in studying the finite-time stability and stabilization of the

system. Moreover, it is difficult to find a Lyapunov function

satisfying the derivative condition of the finite-time stability

of system with distributed time-varying delays, because the

systems with distributed time-varying delays generally have

more complex dynamic behaviors than the systems without

distributed time-varying delays.

Motivated by the above discussions, we study the finite-

time stability of UNNs with the general activation functions

through a designed feedback controller. Based on the Lya-

punov stability theory and integral inequality technique, a

proper feedback controller is designed to achieve the finite-

time stability of UNNswith distributed time varying, and the

upper bound of the settling time for stabilization is estimated.

In addition, by choosing different parameters and different

control strengths for the system, we consider two-dimen-

sional distributed time-varying delay UNNs with different

activation functions to verify the effectiveness of the

obtained results. Our results are applicable to model and

stabilize the high-dimensional nonlinear systems, specially

high-order neural networks due to their excellent approxi-

mation capabilities. To our best knowledge, few works have

been reported to control the UNNs with distributed time-

varying delays arriving at its equilibrium point within a

finite-time period in the existing literature, so our results

compliment the previous results [25–33, 36, 38].

This paper is organized as follows: In the following

section, the theoretical model for uncertain neural networks

with distributed time-varying delays, some definitions and

lemmas are presented. In Sect. 3, the finite-time stabiliza-

tion of uncertain neural network is analyzed. Three

examples are provided to demonstrate the effectiveness of

the obtained results in Sect. 4. Finally, the conclusion is

drawn in Sect. 5.

2 Problem statement and preliminaries

Notations The notations used in this paper are quite and

fairly standard. Throughout this paper, Rn and Rn�n denote,

respectively, the n-dimensional Euclidean space and the set

of all n� n real matrices. kxk ¼
ffiffiffiffiffiffiffi

xTx
p

refers to the

Euclidean vector norm. AT represents the transpose of

matrix A. I is the identity matrix with compatible dimen-

sion. diagf� � �g represents a block-diagonal matrix. Matri-

ces, if not explicitly specified, are assumed to have

compatible dimensions.

In this paper, we consider a class of neural networks

with distributed time-varying delays as follows:

_xðtÞ ¼�ExðtÞþAf ðxðtÞÞþBf ðxðt�ðsðtÞÞÞþC
R t

t�sðtÞ f ðxðsÞÞdsþ uðtÞ; t[0;

xðtÞ ¼/ðtÞ; 8 t 2 ½�s2;0�;

(

ð1Þ

where xðtÞ ¼ ½x1ðtÞ;x2ðtÞ; . . .;xnðtÞ�T is the state vector of

the network at time t, n corresponds to the number of

neurons; f ðxðtÞÞ ¼ ½f1ðx1ðtÞÞ; f2ðx2ðtÞÞ; . . .;fnðxnðtÞÞ�T 2Rn

is the neuron activation function; uðtÞ ¼
ðu1ðtÞ;u2ðtÞ; . . .;unðtÞÞT is the control input. E¼
diagðe1;e2; . . .;enÞ is the diagonal matrix with ei[0,

i¼ 1;2; . . .;n; A2Rn�n is the connection weight matrix;

B2Rn�n is the delayed connection weight matrix; and C 2
Rn�n is the distributed delayed connection weight matrix;

/ðtÞ is a vector-valued initial function; sðtÞ denotes the

time-varying delay and is assumed to satisfy the following

condition:

0\s1 � sðtÞ� s2; l1 � _sðtÞ� l2; l2 � 0

where s1; s2; l1; l2 are known real constants.

The initial condition of system (1) is in the form of

xðtÞ ¼ /ðtÞ 2 Cð½�s2; 0�;RnÞ; f : Rn ! Rn is continuous

function satisfying f ð0Þ ¼ 0, and we also assume that the

activation function fið�Þ satisfies the Lipschitz condition

with the Lipschitz constant li [ 0 ði ¼ 1; 2; . . .; nÞ for all

xi; yi 2 R, i.e.,

jfiðxiÞ � fiðyiÞj � lijxi � yij:

Before studying the finite-time stabilization of system (1),

we need the following useful definition and lemmas which

play an important role in the derivation of the main results.

Definition 2.1 [37] The system (1) is finite-time stabi-

lizable if there exists a constant T [ 0 such that

lim
t!T

kxðtÞk ¼ 0 and kxðtÞk ¼ 0 if t[ T :

Lemma 2.2 [38] Assume that a continuous, positive

definite function V(t) satisfies the following differential

inequality:

_VðtÞ� � kVgðtÞ; 8t� t0; Vðt0Þ� 0; ð2Þ

where k[ 0; 0\g\1 are all constants. Then, for any

given t0, V(t) satisfies the following inequality:

V1�gðtÞ�V1�gðt0Þ � kð1� gÞðt � t0Þ; t0 � t� T; ð3Þ
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and VðtÞ ¼ 0; 8t� T ; with T given by

T ¼ t0 þ
V1�gðt0Þ
kð1� gÞ :

ð4Þ

Lemma 2.3 [39] Given any real matrices R1;R2;R3 of

appropriate dimensions and a scalar s[ 0, such that

0\R3 ¼ RT
3 . Then the following inequality holds:

RT
1R2 þ RT

2R1 � sRT
1R3R1 þ s�1RT

2R
�1
3 R2:

Lemma 2.4 [40] For any positive definite matrix

M 2 Rn�n, scalars h2 [ h1 [ 0; vector function w :

½h1; h2� ! Rn such that the integrations concerned are well

defined, the following inequality holds:

� ðh2 � h1Þ
Z t�h1

t�h2

wTðsÞMwðsÞds

� �
Z t�h1

t�h2

wðsÞds
� �T

M

Z t�h1

t�h2

wðsÞds
� �

3 Main results

In this section, we will address the finite-time stabilization

of system (1) by means of the aforementioned lemmas. The

feedback control law uðtÞ ¼ ðu1ðtÞ; u2ðtÞ; . . .; unðtÞÞT is

given as follows:

uðtÞ ¼ �k1xðtÞ � ðk2xTðt � sðtÞÞxðt � sðtÞÞ

þ k3

Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞ xðtÞ

kxðtÞk2

� kðxTðtÞxðtÞ þ
Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞc xðtÞ

kxðtÞk2

ð5Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . .; xnðtÞÞT , k[ 0; 0\c\1 are

all constants, and k1; k2; k3 denote control strength.

In order to ensure the finite-time stability of system (1),

we will establish some sufficient LMI conditions.

Theorem 3.1 Suppose that there exist positive constants

s1; s2; s3; k; 0\c\1, and the feedback control strength

k1; k2; k3 satisfying the following conditions:

1. �E � ET þ s1AA
T þ s2BB

T þ s3CC
T

þs�1
1 L2f þ L2f � 2k1I� 0;

2. s�1
2 L2f � ð1� l2ÞL2f � 2k2I� 0;

3. s�1
3 s2 � 2k3 � 0.

where Lf ¼ diagðl1; l2; . . .; lnÞ, 0� s1 � sðtÞ� s2, l1 �
_sðtÞ� l2; l2 [ 1. Then the system (1) is finite-time sta-

bility via the controller (5), and the settling time is esti-

mated by T ¼ t0 þ V1�cðt0Þ
2kð1�cÞ

Proof Consider the following Lyapunov functional:

VðtÞ ¼ xTðtÞxðtÞ þ
Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞds ð6Þ

According to Lemma 2.3, we have the following results:

xTðtÞAf ðxðtÞÞ þ f TðxðtÞÞATxðtÞ
� s1x

TðtÞAATxðtÞ þ s�1
1 f TðxðtÞÞf ðxðtÞÞ

ð7Þ

xTðtÞBf ðxðt�sðtÞÞÞþ f Tðxðt�sðtÞÞÞBTxðtÞ�s2x
TðtÞBBTxðtÞ

þ s�1
2 f Tðxðt�sðtÞÞÞf ðxðt�sðtÞÞÞ

ð8Þ

xTðtÞC
Z t

t�sðtÞ
f ðxðsÞÞdsþ

Z t

t�sðtÞ
f ðxðsÞÞds

" #T

CTxðtÞ

� s3x
TðtÞCCTxðtÞ

þ s�1
3

Z t

t�sðtÞ
f ðxðsÞÞds

" #T
Z t

t�sðtÞ
f ðxðsÞÞds

ð9Þ

According to Eqs. (7–9) and Lemma 2.4, the derivative of

Eq. (6) with respect to time t along the trajectories of the

system (1) is calculated and estimated as follows.

_VðtÞ ¼ 2xTðtÞ _xðtÞ þ f TðxðtÞÞf ðxðtÞÞ � f Tðxðt � sðtÞÞÞf ðxðt � sðtÞÞÞð1� _sðtÞÞ

� 2xTðtÞ �ExðtÞ þ Af ðxðtÞÞ þ Bf ðxðt � sðtÞÞÞ þ C

Z t

t�sðtÞ
f ðxðsÞÞdsþ uðtÞ

" #

þ f TðxðtÞÞf ðxðtÞÞ � ð1� l2Þf Tðxðt � sðtÞÞÞf ðxðt � sðtÞÞÞ

¼ 2xTðtÞð�EÞxðtÞ þ 2xTðtÞAf ðxðtÞÞ þ 2xTðtÞBf ðxðt � sðtÞÞÞ þ 2xTðtÞ

C

Z t

t�sðtÞ
f ðxðsÞÞds

þ 2xTðtÞuðtÞ þ f TðxðtÞÞf ðxðtÞÞ � ð1� l2Þf Tðxðt � sðtÞÞÞf ðxðt � sðtÞÞÞ

� xTðtÞ �E � ET þ s1AA
T þ s2BB

T þ s3CC
T þ s�1

1 L2f þ L2f

h i

xðtÞ

þ xTðt � sðtÞÞ s�1
2 L2f � ð1� l2ÞL2f

h i

xðt � sðtÞÞ

þ s�1
3

Z t

t�sðtÞ
f ðxðsÞÞds

" #T
Z t

t�sðtÞ
f ðxðsÞÞds

" #

þ 2xTðtÞuðtÞ

� xTðtÞ �E � ET þ s1AA
T þ s2BB

T þ s3CC
T þ s�1

1 L2f þ L2f

h i

xðtÞ

þ xTðt � sðtÞÞ s�1
2 L2f � ð1� l2ÞL2f

h i

xðt � sðtÞÞ

þ s�1
3 s2

Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsþ 2xTðtÞuðtÞ

ð10Þ
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Note also that

2xTðtÞuðtÞ ¼ �2k1x
TðtÞxðtÞ � 2k2x

Tðt � sðtÞÞxðt � sðtÞÞ

� 2k3

Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞds

� 2kðxTðtÞxðtÞ þ
Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞc

ð11Þ

Substituting Eq. 11 into Eq. 10, we have the following

inequality:

_VðtÞ� xTðtÞ �E�ET þ s1AA
T þ s2BB

T þ s3CC
T

�

þs�1
1 L2f þL2f � 2k1

i

xðtÞ

þ xTðt� sðtÞÞ s�1
2 L2f �ð1�l2ÞL2f � 2k2I

h i

xðt� sðtÞÞ

þ ðs�1
3 s2� 2k3Þ

Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞds

� 2kðxTðtÞxðtÞþ
Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞc

� � 2kVcðtÞ
ð12Þ

Therefore, we have

T ¼ t0 þ
V1�cðt0Þ
2kð1� cÞ t0 � t� T ; ð13Þ

and, we can also get VðtÞ ¼ 0; 8t� T .

Therefore, the UNNs system x(t) is globally finite-time

stability, and the settling time is estimated by

T ¼ t0 þ V1�cðt0Þ
2kð1�cÞ.

The proof is completed. h

Based on Theorem 3.1, it is easy to obtain the following

corollary:

Corollary 3.2 If there exist positive constants

s1; s2; s3; k; c, and control strength k1; k2; k3 such that

1. k1 � kmaxð�E � ET þ s1AA
T þ s2BB

T þ s3CC
T þ s�1

1

L2f þ L2f Þ=2
2. k2 �ðs�1

2 þ l2 � 1Þ=2
3. k3 � s2=2s3

where Lf ¼ diagðl1; l2; . . .; lnÞ, 0� s1 � sðtÞ� s2,
l1 � _sðtÞ� l2; l2 [ 1. Then the system (1) is finite-time

stability via the controller (5), and the finite-time is esti-

mated by T ¼ t0 þ V1�cðt0Þ
2kð1�cÞ

Remark 3.3 From Corollary 3.2, it is easy to see that the

control strength k1 just depends on the maximum eigen-

value of AAT ; BBT ; CCT ; Lf ; �E � ET and all the con-

stants s1; s2; s3 and the control strength k2 relies on s2 and

l2, and k3 relies on s3 and the maximum value of sðtÞ, that
is s2. Thus, compared with Theorem 3.1, Corollary 3.2 is

an inequality, which is the simplified form of Theorem 3.1.

And we can see that Theorem 3.1 is a LMI, which can be

solved by using the LMI Control Toolbox in MATLAB.

Then we can note that Corollary 3.2 is more specific than

Theorem 3.1.

In the following, we will discuss the application of

Theorem 3.1 in some special cases.

When there is no distributed time-varying delays, sys-

tem (1) reduces to

_xðtÞ¼�ExðtÞþAf ðxðtÞÞþBf ðxðt�ðsðtÞÞÞþuðtÞ; t[0;

xðtÞ¼/ðtÞ; 8 t2 ½�s2;0�;

�

ð14Þ

The feedback control law uðtÞ¼ðu1ðtÞ;u2ðtÞ; . . .;unðtÞÞT is

given

uðtÞ ¼ � ~k1xðtÞ � ~k2x
Tðt � sðtÞÞxðt � sðtÞÞ xðtÞ

kxðtÞk2

� ~kðxTðtÞxðtÞ þ
Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞ~c xðtÞ

kxðtÞk2

ð15Þ

Applying Theorem 3.1 to system (14), we obtain the fol-

lowing result.

Corollary 3.4 If there exist positive constants ~s1; ~s2; ~k; ~c,

and control strength ~k1; ~k2 such that

1. �E � ET þ ~s1AA
T þ ~s2BB

T þ ~s�1
1 L2f þ L2f � 2~k1I� 0

2. ~s�1
2 L2f � ð1� l2ÞL2f � 2~k2I� 0;

where Lf ¼ diagðl1; l2; . . .; lnÞ, 0� s1 � sðtÞ� s2,
l1 � _sðtÞ� l2; l2 [ 1. Then the system (14) is finite-time

stability via the controller (15), and the finite-time is esti-

mated by T ¼ t0 þ V1�~cðt0Þ
2~kð1�~cÞ

Proof Considering the same Lyapunov functional as

Eq. (6), the proof of this corollary is similar to Theo-

rem 3.1; thus, we omit it.

Then, we have

T ¼ t0 þ
V1�~cðt0Þ
2~kð1� ~cÞ

; t0 � t� T ; ð16Þ

and, we can also get VðtÞ ¼ 0; 8t� T .

Therefore, the system (14) is globally finite-time

stability, and the settling time is estimated by

T ¼ t0 þ V1�~cðt0Þ
2~kð1�~cÞ.

Remark 3.5 Although the stabilization of delays neural

networks has been investigated in the past few years
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[7, 9, 10, 21], and finite-time stability of delays neural

networks also has been investigated in

[22, 25, 27, 29, 34]. Compared with the traditional

method, it is noted that Corollary 3.4 studies the finite-

time stabilization of UNNs without distributed time-

varying delays, which is similar to the general neural

networks. In this corollary, only two feedback control

strengths ~k1; ~k2 are designed to ensure the finite-time

stabilization of system (14). Our results complement and

extend the previous results of UNNs.

When there is no discrete delays and distributed time-

varying delays, system (1) reduces to

_xðtÞ ¼ �ExðtÞ þ Af ðxðtÞÞ þ uðtÞ ð17Þ

The feedback control law uðtÞ ¼ ðu1ðtÞ; u2ðtÞ; . . .; unðtÞÞT is

given

uðtÞ ¼ � k̂1xðtÞ � k̂ðxTðtÞxðtÞÞĉ xðtÞ
kxðtÞk2

ð18Þ

The following corollary can be easily obtained from The-

orem 3.1 and Corollary 3.4.

Corollary 3.6 If there exist positive constants ŝ1; k̂; ĉ, and

control strength k̂1 such that

�E � ET þ ŝ1AA
T þ ŝ�1

1 L2f � 2k̂1I� 0

Then the system (17) is finite-time stability via the con-

troller (18), and the finite-time is estimated by

T ¼ t0 þ V1�ĉðt0Þ
2k̂ð1�ĉÞ :

Proof Construct the following Lyapunov function:

VðtÞ ¼ xTðtÞxðtÞ ð19Þ

Then the derivative of Eq. (19) with respect to time t along

the trajectories of the system (17) is calculated and esti-

mated as follows.

_VðtÞ ¼ 2xTðtÞ _xðtÞ
� 2xTðtÞ �ExðtÞ þ Af ðxðtÞÞ þ uðtÞ½ �

� xTðtÞ �E � ET þ ŝ1AA
T þ ŝ�1

1 L2f

h i

xðtÞ þ 2xTðtÞuðtÞ

� xTðtÞ �E � ET þ ŝ1AA
T þ ŝ�1

1 L2f � 2k̂1I
h i

ðtÞ

� 2k̂ðxTðtÞxðtÞÞĉ

� � 2k̂V ĉðtÞ
ð20Þ

where

2xTðtÞuðtÞ ¼ � 2k̂1x
TðtÞxðtÞ � 2k̂ðxTðtÞxðtÞÞĉ ð21Þ

Then, we have

T ¼ t0 þ
V1�ĉðt0Þ
2k̂ð1� ĉÞ

; t0 � t� T ; ð22Þ

and, we can also get VðtÞ ¼ 0; 8t� T .

Therefore, the system (17) is globally finite-time

stability, and the settling time is estimated by

T ¼ t0 þ V1�ĉðt0Þ
2k̂ð1�ĉÞ.

Remark 3.7 System (17) is the specific form of system

(1), which is without time delays. And only a feedback

control strength k̂1 is needed to ensure the finite-time sta-

bilization of system (17). However, time-delay systems

have more complicated dynamic behaviors and are more

difficult to deal with than system without delays. In [30],

finite-time stability of neural networks was studied, but the

systems in these papers are without delays, similar to

system (17) in this paper. Since delays are unavoidable in

the hardware implementation of neural networks, it is

necessary to take the delays into consideration in the finite-

time stability problem. In this paper, the neural networks

with time-varying delays and distributed time-varying

delays are considered, which make our results general

compared with the existing results [9, 10, 21, 22, 25,

27, 29, 30, 32, 34].

4 Numerical example

In this section, three examples are provided to verify the

effectiveness of the obtained results in the previous sec-

tion. Program Euler algorithm in MATLAB can be used to

solve distributed time-varying delay UNNs, and the LMI

Control Toolbox inMATLAB can be used to solve the LMIs.

Example 1 Consider the two-dimensional distributed

time-varying delay UNNs

_xðtÞ ¼ �ExðtÞ þ Af ðxðtÞÞ þ Bf ðxðt � ðsðtÞÞÞ

þ C

Z t

t�sðtÞ
f ðxðsÞÞds;

ð23Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞÞT ;

E ¼
1 0

0 1

� �

; A ¼
2 � 0:1

�5 4:5

� �

;

B ¼
�1:5 � 0:1

�0:2 �4

� �

; C ¼
�0:05 0:07

0:37 �0:18

� �

;

The activation functions are assumed to be

fiðxiÞ ¼ tanhðxiÞ; i ¼ 1; 2:

In this example, we choose the time-varying delay

sðtÞ ¼ 1þ 2:75sinðtÞ, which implies 0\s1 � sðtÞ � s2 ¼
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3:75. Then we can get _sðtÞ ¼ 2:75cosðtÞ, which implies

l1 ¼ �2:75� _sðtÞ� l2 ¼ 2:75. Figure 1 depicts without

the feedback control u(t) by setting xð0Þ ¼ ½�1:6; 1:2�T .
The controller is designed as

uðtÞ ¼ � k1xðtÞ � ðk2xTðt � sðtÞÞxðt � sðtÞÞ

þ k3

Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞ xðtÞ

kxðtÞk2

� kðxTðtÞxðtÞ þ
Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞc xðtÞ

kxðtÞk2

ð24Þ

Noting that kmaxðAATÞ ¼ 47:7468; kmaxðBBTÞ ¼
16:0755; kmax ðCCTÞ ¼ 0:1751; Lf ¼ ½1 0; 0 1�. For

numerical simulation, we select k ¼ 6; c ¼ 0:9;

s1 ¼ 0:1; s2 ¼ 5; s3 ¼ 1, and system (23) can be finite-time

stabilized via the controller (24) according to Corol-

lary 3.2. Setting k1 ¼ 50; k2 ¼ 1; k3 ¼ 2, the settling time

for stabilization satisfies T ¼ 1:4657. Under the controller

(24), we get the state trajectories of variables x1ðtÞ and

x2ðtÞ which are shown in Fig. 2.

Remark 4.1 In the simulations, the Euler algorithm with

step size 0.01 in MATLAB is used to solve distributed

time-varying delay differential equations. When we select

the appropriate initial values for system (23), it is noted

that the system is chaotic as shown in Fig. 1. Meanwhile,

our objective is to seek the appropriate k1; k2; k3 which

guarantee the system (23) to be stabilized. Notice that the

conditions of Theorem 3.1 are a linear matrix inequality,

then the feedback control gains k1; k2; k3 can be solved by

using MATLAB. Figure 2 shows the time–response curve

of the UNNs with the feedback controller, which implies

the parameters we chose are correct. From the numerical

example, we found that the value of s1; s2; s3 satisfies

Theorem 3.1 and all the conditions of Corollary 3.2 are

also satisfied, while c ¼ 0:9. Therefore, the simulation

results have a good agreement with the theoretical analysis

obtained in the paper.

Example 2 Similar to Example 1, we adopt the Euler

algorithm in MATLAB to calculate numerically the UNNs

with step size 0.005. We will consider a different activation

function of two-dimensional distributed time-varying delay

UNNs with Example 1:

_xðtÞ ¼ �ExðtÞ þ Af ðxðtÞÞ þ Bf ðxðt � ðsðtÞÞÞ

þ C

Z t

t�sðtÞ
f ðxðsÞÞds;

ð25Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞÞT ;

E ¼
1 0

0 1

� �

; A ¼
1:8 � 1:5

0:1 1:8

� �

;

B ¼
�1:4 0:1

0:1 �1:4

� �

; C ¼
�0:03 0:09

0:29 �0:25

� �

;

The activation functions are assumed to be

fiðxiÞ ¼ 0:5ðjxi þ 1j � jxi � 1jÞ; i ¼ 1; 2:

In this example, we choose the time-varying delay

sðtÞ ¼ 5þ 1:05sinðtÞ, which implies 0\s1 � sðtÞ
� s2 ¼ 6:05. Then we can get _sðtÞ ¼ 1:05cosðtÞ, which

implies l1 ¼ �1:05� _sðtÞ� l2 ¼ 1:05. Figure 3 depicts

without the feedback control u(t) by setting xð0Þ
¼ ½�3; 4�T .

The controller is designed as

−1 −0.5 0 0.5 1
−8

−6

−4

−2

0

2

4

6

8

x1(t)

x2
(t

)

Fig. 1 Phase plot of UNNs system without controller
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) 
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d 
x2

(t
)

x1(t)
x2(t)

Fig. 2 State transient behaviors of variables x1ðtÞ and x2ðtÞ of system
(23) under the controller (24)
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uðtÞ ¼ �k1xðtÞ � ðk2xTðt � sðtÞÞxðt � sðtÞÞ

þ k3

Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞ xðtÞ

kxðtÞk2

� kðxTðtÞxðtÞ þ
Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞc xðtÞ

kxðtÞk2

ð26Þ

Noting that kmaxðAATÞ ¼ 7:4610; kmaxðBBTÞ ¼ 2:25; kmax

ðCCTÞ ¼ 0:1533; Lf ¼ ½1 0; 0 1�. For numerical simula-

tion, we select k ¼ 2; c ¼ 0:8; s1 ¼ 1; s2 ¼ 10; s3 ¼ 4, and

system (25) can be finite-time stabilized via the controller

(26) according to Corollary 3.2. Setting k1 ¼ 18;

k2 ¼ 0:1; k3 ¼ 2, the settling time for stabilization satisfies

T ¼ 0:2862. Under the controller (26), we get the state

trajectories of variables x1ðtÞ and x2ðtÞ which are shown in

Fig. 4.

Remark 4.2 It should be highly pointed out that, in the

previous literature, authors in [9, 10, 21, 22, 25, 27, 29]

investigated the problems with time-varying delays with

different approaches. However, when they are simulated,

the delays they selected are always constant. So far, it is

noted that in this paper, the time-varying delays and dis-

tributed time-varying delays sðtÞ are assumed to be dif-

ferentiable. Therefore, as a result, some less conservative

stability criteria are derived by considering the relationship

between time-varying delay and its intervals, which have

wider applications than [9, 10, 21, 22, 25, 27, 29, 32, 34],

the existing ones because independent upper bounds of the

delay derivative in the various delay intervals are taken

into account.

Remark 4.3 Recently, the stabilization and synchroniza-

tion of neural networks have been intensively investigated

[9, 10, 21, 22, 25, 27, 29, 30, 32] and many interesting and

useful results have been obtained. However, to the best of

our knowledge, there are few results concerning the sta-

bilization and synchronization schemes for uncertain neu-

ral networks with distributed time-varying delays via

periodically intermittent control or impulsive control. This

is an interesting problem and will become the subject of

our future investigation.

Example 3 Similarly, the Euler algorithm with step size

0.02 in MATLAB is used to solve distributed time-varying

delay differential equations in this example. To further

show the validity of our results, we consider the three-

dimensional distributed time-varying delay UNNs

0 0.1 0.2 0.3 0.4 0.5
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2

3

4
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t

x1
(t

) 
an

d 
x2

(t
)

x1(t)
x2(t)

Fig. 4 State transient behaviors of variables x1ðtÞ and x2ðtÞ of system
(25) under the controller (26)
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Fig. 5 Phase plot of UNNs system without controller
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Fig. 3 Phase plot of UNNs system without controller
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_xðtÞ ¼ �ExðtÞ þ Af ðxðtÞÞ þ Bf ðxðt � ðsðtÞÞÞ

þ C

Z t

t�sðtÞ
f ðxðsÞÞds;

ð27Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; x3ðtÞÞT ;

E¼
0:9 0 0

0 1:1 0

0 0 1

2

6

4

3

7

5

; A¼
2 �0:1 �6

�1:5 �0:1 �0:8

4 0:4 �0:2

2

6

4

3

7

5

;

B¼
�5 4:5 7

�0:2 �4 0:4

�4 3 0:2

2

6

4

3

7

5

; C¼
�0:5 0:7 �0:4

0:3 �0:18 1

�0:2 0:5 �0:1

2

6

4

3

7

5

;

The activation functions are assumed to be

fiðxiÞ ¼ 0:5ðjxi þ 1j � jxi � 1jÞ; i ¼ 1; 2; 3:

In this example, we choose the time-varying delay

sðtÞ ¼ 1þ 5sinðtÞ, which implies 0� s1 � sðtÞ� s2 ¼ 6.

Then we can get _sðtÞ ¼ 5cosðtÞ, which implies

l1 ¼ �5� _sðtÞ� l2 ¼ 5. Figure 5 depicts without the

feedback control u(t) by setting xð0Þ ¼ ½4; 0:6; 0:2�T .
The controller is designed as

uðtÞ ¼ �k1xðtÞ � ðk2xTðt � sðtÞÞxðt � sðtÞÞ

þ k3

Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞ xðtÞ

kxðtÞk2

� kðxTðtÞxðtÞ þ
Z t

t�sðtÞ
f TðxðsÞÞf ðxðsÞÞdsÞc xðtÞ

kxðtÞk2

ð28Þ

Noting that kmaxðAATÞ ¼ 43:127; kmaxðBBTÞ ¼ 111:9566;

kmaxðCCTÞ ¼ 1:8642; Lf ¼ ½1 0 0; 0 1 0; 0 0 1�. For

numerical simulation, we select k ¼ 0:3; c ¼ 0:8;

s1 ¼ 0:2; s2 ¼ 0:1; s3 ¼ 5, and system (27) can be finite-

time stabilized via the controller (28) according to Corol-

lary 3.2. Setting k1 ¼ 17; k2 ¼ 9; k3 ¼ 0:7, the settling time

for stabilization satisfies T ¼ 6:5571. Under the controller

(28), we get the state trajectories of variables x1ðtÞ, x2ðtÞ
and x3ðtÞ which are shown in Fig. 6.

Remark 4.4 It is worthy to note that Example 1 and

Example 2 depict the two-dimensional UNNs with differ-

ent activation function, and to further show the validity of

our results, we consider the three-dimensional distributed

time-varying delay UNNs in this example. Compared with

the precious works [9, 10, 21, 22, 25, 27, 29, 32], most

authors discussed the two-dimensional NNs with or with-

out delays. Our results are applicable to stabilize the high-

dimensional nonlinear systems, specially high-order neural

networks due to their excellent approximation capabilities.

5 Conclusions

This paper focuses on finite-time stability analysis of

uncertain neural networks (UNNs) with distributed time-

varying delays by using analysis technique. The proposed

methods have been applied to two-dimensional and three-

dimensional distributed time-varying delays to demonstrate

the effectiveness of the results. By adding feedback con-

trollers, the general finite-time stability criterion condi-

tions, together with its simplified versions, have been

obtained. Evidently, our results are novel and easily veri-

fied. In this paper, the distributed time-varying delays are

taken into consideration in studying finite-time stability

problem, which achieve a valuable improvement compared

with corresponding previous works [25–36, 38]. Therefore,

our results are less conservative and more general. More-

over, the finite-time stabilization of delayed neural net-

works without distributed time-varying delays has been

intensively investigated in [27, 32, 34–36, 38], and the

finite-time stabilization of uncertain neural networks with

distributed time-varying delays also has been obtained in

this paper. However, to the best of our knowledge, there are

few results concerning the finite-time stabilization problem

of uncertain neural networks (UNNs) with distributed time-

varying delays under impulsive perturbations. Hence, one

of the future tasks will be to improve the stability criteria

for uncertain neural networks (UNNs) with distributed

time-varying delays under impulsive effects.
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