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Abstract We introduce and test a binary classification

method aimed at detecting malicious URL on the basis of

some information on both the URL syntax and its domain

properties. Our method belongs to the class of supervised

machine learning models, where, in particular, classifica-

tion is performed by using information coming from a set

of URL’s (samples in machine learning parlance) whose

class membership is known in advance. The main novelty

of our approach is in the use of a spherical separation-based

algorithm, instead of SVM-type methods, which are based

on hyperplanes as separation surfaces in the sample space.

In particular we adopt a simplified spherical separation

model which runs in O(tlogt) time (t is the number of

samples in the training set), and thus is suitable for large-

scale applications. We test our approach using different

sets of features and report the results in terms of training

correctness according to the well-established tenfold cross-

validation paradigm.

Keywords Classification � Spherical separation �
Malicious Web sites

1 Introduction

A useful resource to prevent risks in computer security is

provided by the so-called black lists, which are databases

containing a typically large number of IP addresses,

domain names and related URL’s for suspicious sites in

terms of generation of threats. A rich literature is available

on the creation and usage of such lists (see, e.g., [17]). If a

URL is comprised into a black list, it is convenient to

deviate the network traffic from it and, in fact, many

internet service providers (ISP) simply block all messages

coming from it. The users who detect anomalies in mes-

sages or activities they consider suspicious often transfer

the related information to appropriate Web sites devoted to

risk analysis.

Other possible way to compile black lists is the use of

certain spam trap addresses which are diffused in the aim

of being contacted by crawler spiders, typically used by

phishers. As soon as one of such site address is contacted,

the calling site is included into the black list.

Although black lists are rather useful, we cannot expect

that they are exhaustive of all possible threats, either

because the number of potentially dangerous site is extre-

mely high or because the system is highly dynamic and it is

almost impossible to keep any black list sufficiently

updated.

Every time there exists any suspect about the malicious

nature of a site the Whois service is able to provide some

useful information in terms of IP, domain name and other

characteristics related to it. Whois registers are publicly

available, and there exist online services providing upon

request such information, in an appropriate form.

The very basic idea of [10] is to use the information

available about a given set of URL’s, in connection to the

related Whois, to design a classifier based on some
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machine learning technique. In particular one of the tools

adopted is the well-known SVM paradigm which, being

suitable for supervised classification, requires that a suffi-

ciently rich training set is available in advance. Such

training set is constituted by a list of URL’s labeled in the

form malicious–nonmalicious. A set of both qualitative and

quantitative features is defined, and each URL is associated

with a string of possible values of the features.

Of course different sets of features can be adopted for

classification purposes, and in next section, we will

describe in details the ones we have considered.

The differences of our approach w.r.t. the one previously

cited [10] are twofold. As we are aimed at providing a

methodology suitable for very large datasets too, we have

confined ourselves to a limited number of features (e.g., we

have used no ‘‘bag of words,’’ which in general requires an

explosion in the size of the sample space) and, on the other

hand, we have adopted a low complexity algorithm,

accepting in advance the possibility of obtaining less

accurate classification performance w.r.t. the SVM

approach which requires solution of a structured quadratic

programming problem [12].

Following [10] we take into account in our classification

model both lexical features of the URL and host information,

as those provided by the Whois. As a classification tool, we

adopt the spherical separation paradigm [3, 4], which differs

fromSVMbasically because separation in the feature space is

not pursued by means of a hyperplane, instead by a spherical

surface (application of ellipsoidal surfaces has been intro-

duced too in [1]). Of course goodness of the classification tool

depends on the geometry of the sets to be separated and cannot

be easily predicted. Our choice for spherical separation has

been dictated by the availability of a simplified approach to it

[2], where the center of the separating sphere is calculated in

advance and only the radius is optimized. Such approach

allows us to calculate the classifier inOðt log tÞ, where t is the
size of the training set and, consequently, appears suitable for

dealing with large-scale applications.

The paper is organized as follows. In Sect. 2 we

introduce our classification model, describing in details

the different set of features we have adopted. In Sect. 3

we summarize the spherical separation algorithm we have

implemented. In Sect. 4 we report the results of our

computational experience on some benchmark training

sets drawn from the literature, together with some

conclusions.

2 The classification model

We present now the list of seven features that we used in

our work to detect malicious URLs. For our purposes, we

decided to not analyze the URL’s page structure or its

content: all the features have been generated using

information derived from the general URL syntax (every

URL consists of the following three parts:

\protocol[ : ==\hostname[ =\path[ Þ. Some

of the features used are strictly related to the lexical

properties of the URL (intended as a character string) and

other to the properties of the URL’s hostname (available

thanks to a Whois query).

The features taken into consideration are:

1. Number of subdomains This is the count of the

subdomains which are detectable in the text of the

URL. We do not consider only the URL’s hostname

but also the URL’s path which is often used to redirect

users to other dangerous Web sites.

2. URL age We consider the age in days of the URL’s

hostname (how long its content has been on the web).

This is one of the most important features in malicious

URL detection problem because dangerous sites usually

have a very short life and are recently registered

compared to safe sites. The registration date of URL’s

hostname is needed to calculate the value of this feature.

3. URL expiration We count the number of days remain-

ing before the expiration date of URL’s hostname.

Also this feature is potentially useful since dangerous

sites usually are registered for shorter time than safe

ones.

4. Hostname length This is the simply count of the textual

characters forming the URL’s hostname.

5. Path length This is the simply count of the textual

characters forming the URL’s path. Excessive length is

often correlated with suspicious re-addressing.

6. IP address geographical location IP addresses related

to dangerous sites are usually located in specific

geographical areas so we use this feature to express the

information about the country location of the IP

address related to the URL’s hostname. The list of

countries used to evaluate this parameter has been

reduced to just ten nations: Canada, China, Finland,

France, India, Italy, Spain, Turkey, UK and USA. All

other countries have been bundled together into a

unique term, for the IP address located in countries not

included in our list. This is a categorical feature.

7. Presence or not of the word ‘‘Login’’ Dangerous sites

usually contain in the text of their web address specific

terms in order to cheat the web users. Thus, we have

included such binary feature to report possible pres-

ence of the word ‘‘Login’’ in the text of the URL.

According to their definition, all the features taken into

consideration (but ‘‘IP address geographical location’’) can

assume integer values greater than or equal to zero. As the

number of features we have adopted is small, we have

performed several experiments using different sets of
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features. According to the number of features used, the

URL is represented in a different vector format. Using

different sets of features it is important to detect the rele-

vant ones and to discard those unable to provide any sig-

nificant contribution to the classification process.

The malicious URLs detection problem has been mod-

eled as a binary classification problem, and the predefined

classes of URLs have been two: the set of malicious URLs

(including URLs dangerous for the web users) and the set

of benign URLs (including URLs safe for the web users).

3 Spherical separation

In many supervised machine learning problems the objec-

tive is to assign elements to a finite set of classes or cate-

gories. For a given set of sample points coming from two

classes, we want to construct a function for discriminating

between the classes. The goal is to select a function that

will efficiently and correctly classify future points. Clas-

sification techniques can be used for data mining or pattern

recognition, where many applications require a

categorization.

The classical binary classification problem is to dis-

criminate between two finite sets of points in the n-di-

mensional space, by a separating surface. The problem

consists in finding a separating surface minimizing an

appropriate measure of the classification error.

Several mathematical programming-based approaches

for binary classification have been historically proposed

[5, 11, 15]. Among the more recent ones we recall the

support vector machine (SVM) technique [6, 16], where a

classifier is constructed by generating a hyperplane far

away from the points of the two sets. By adopting kernel

transformations within the SVM approach, we can obtain

general nonlinear separation surfaces. In this case the basic

idea is to map the data into a higher-dimensional space (the

feature space) and to separate the two transformed sets by

means of one hyperplane that corresponds to a nonlinear

surface in the original input space.

Parallel to the development of SVM methods, the use of

nonlinear separating surfaces in the dataset space, instead

of hyperplanes, has received in recent years some attention.

In particular, in our work, we have considered the spherical

separation approach, characterized by the fact that the

separation process takes place in the original input space

and does not require mapping to higher dimension spaces.

More formally, let

X ¼ fx1; . . .; xpg

be a set of samples (or points) xi 2 IRn. In the supervised

learning, we assume that, in correspondence to any point xi
of X , a label yi is given. The case yi 2 IR is known as

‘‘regression,’’ while, when the label yi takes values in a

discrete finite set, the task is a ‘‘classification’’ process. A

particular case of the latter is the binary classification,

where, for each i, the label yi can assume only two possible

values. The objective of the supervised learning is to pre-

dict the label of any new sample only on the basis of the

information of the labeled points (the training set).

In particular, in the binary classification problems, we

consider the following partition of X into two nonempty

sets:

Xþ :¼ fðxi; yiÞjxi 2 IRn; yi ¼ þ1; i ¼ 1; . . .;mg

and

X� :¼ fðxi; yiÞjxi 2 IRn; yi ¼ �1; i ¼ mþ 1; . . .; pg:

In the spherical separation approach we define the set Xþ
spherically separable from X� if and only if there exists a

sphere

Sðx0;RÞ :¼ fx 2 Rnjðx� x0ÞTðx� x0Þ�R2g

centered in x0 2 IRn of radius R 2 IR, such that

yiðkxi � x0k2 � R2Þ� 0 i ¼ 1; . . .; p: ð3:1Þ

In addition, when inequalities (3.1) are strictly satisfied,

then the sets Xþ and X� are strictly spherically separated,

i.e.,

kxi � x0k2 �ðR�MÞ2 i ¼1; . . .;m

kxi � x0k2 �ðRþMÞ2 i ¼mþ 1; . . .; p;
ð3:2Þ

for some M, the margin, such that 0\M�R. Setting

q :¼ 2RM and r :¼ R2 þM2, inequalities (3.2) become:

qþ yiðkxi � x0k2 � rÞ� 0 i ¼ 1; . . .; p:

In general it is not easy to know in advance whether the

two sets are strictly spherically separable; then, in [2–4, 9]

a classification error function has been defined in order to

find a minimal error separating sphere.

In particular, in [2, 3] a separating sphere has been

obtained by minimizing the following objective function:

zS1ðx0; rÞ ¼ r þ C
Xp

i¼1

maxf0; yiðkxi � x0k2 � rÞg;

with M ¼ 0 and r� 0. C is a positive parameter giving the

trade-off between the minimization of the radius and the

minimization of the classification error.

More precisely in [2] an ad hoc algorithm that finds the

optimal solution in Oðt log tÞ, with t ¼ maxfm; p� mg, has
been presented for the case where the center x0 is fixed. It

basically consists of two phases: the sorting phase and the

cutting phase. In the first one the sample points are sorted

according to their distance from the center, while in the
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second one an optimal cut is found. The adopted simpli-

fication is rather drastic; nevertheless, a judicious choice of

the center (e.g., the barycenter of the set Xþ) has allowed
to obtain reasonably good separation results at a very low

computational cost.

In [3] the spherical separation problem has been tackled

without any constraint in the location of the center by

means of DC algorithm (DCA) [8, 13], based on a differ-

ence of convex (DC) decomposition of the objective

function. A similar DCA approach has been proposed in [9]

for minimizing the following error function:

zS2ðx0; rÞ ¼ r2 þ C
Xp

i¼1

maxf0; yiðkxi � x0k2 � rÞg2;

withM ¼ 0. The choice of zS2 instead of zS1 is motivated by

the fact that using zS2 allows a DC decomposition where all

the computations in DCA are explicit.

Finally the DCA scheme has been used also in [4], for

minimizing the following error function:

zS3ðx0; q; rÞ ¼ C
Xp

i¼1

maxf0; yiðkxi � x0k2 � rÞ þ qg � q;

with 0� q� r and M� 0, where the term �q is aimed at

maximizing the margin. Moreover, similarly to [2], also in

[4] an ad hoc algorithm that finds the optimal solution in

Oðt log tÞ has been designed when, in function zS3 , the

center x0 is fixed.

4 Computational experience

We present now the results of our numerical experiments in

malicious URLs detection. We have adopted the spherical

classification approach described in Sect. 3. In particular

we have coded in MATLAB (on a Pentium V 2.60 GHz

Notebook) the algorithm introduced in [2], which is able to

find the optimal solution in case the center of the separating

sphere is fixed in advance.

For evaluating the effectiveness of our approach we have

used a dataset obtained as follows. The samples have been

randomly selected using some sources available on the web;

in particular, for malicious URLs we used the online black

list called PhishTank [14], a free community site where

anyone can submit, verify, track and share phishing data. As

for benign URLs we have collected our samples by devel-

oping a fast web crawler (a program that visits web pages

and collects information) capable of gathering unique URLs

(not duplicated) specifying the minimum and maximum

length of the URL. The crawling phase started from the

DMOZ Open Directory Project [7], a human-edited direc-

tory of safe web pages. The size of our dataset is 245

malicious and 384 benign URLs (dataset 1).

We have applied the standard tenfold cross-validation

protocol. The dataset has been divided into ten subsets of

equal size, and each subset has been validated using the

classifier obtained by training executed on the remaining

nine subsets. The classification accuracy is defined as the

average percentage of well-classified URLs (of both

classes).

We have run the program for different values of the

positive weighting parameter C. We have implemented two

possible choices of the center x0, by selecting, respectively,

the barycenter of the set of malicious URLs (x
ð1Þ
0 ) and the

barycenter of the set of benign URLs (x
ð2Þ
0 ). However, after

our evaluation, we have noticed that setting the center x0
equal to the barycenter of the set of malicious URLs was

the most performing choice.

We have executed first an exhaustive feature selection

process on five out of the seven features analyzed in Sect. 2:

number of subdomains, URL age, URL expiration, hostname

length and path length (Table 1). In Table 2 we report the

most significant results obtained and the corresponding set of

features. In Table 3 the true positive rate and the true nega-

tive rate for the best performing combination of features are

reported, where the true positive rate is defined as the per-

centage of benign URLs correctly classified as benign URLs

and the true negative rate as the percentage of malicious

URLs correctly classified as malicious URLs.

The results of the feature selection process indicate that

the best classification accuracy is obtained by considering a

quite small subset of the available features, in particular the

combination of the URL age and URL expiration features.

Table 1 Features description

Feature number Description

1 Number of subdomains

2 URL age

3 URL expiration

4 Hostname length

5 Path length

Table 2 Average correctness on dataset 1

Feature

combination

Parameters Average training

set correctness

(%)

Average testing

set correctness

(%)

2, 3 C ¼ 0:1, x
ð1Þ
0

86.3 86.3

2 C ¼ 10, x
ð1Þ
0

85.6 85.0

1, 2, 3 C ¼ 0:1, x
ð1Þ
0

83.7 83.5

2, 3, 4 C ¼ 0:1, x
ð1Þ
0

82.8 82.2
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The remaining ones are redundant and, sometimes, even

misleading.

We have extended the numerical experiments applying

our methodology to a bigger dataset constituted by 11,975

URLs, 5090 malicious and 6885 benign (dataset 2). It has

been constructed by adopting the same methodology as for

dataset 1. The results are shown in following Tables 4

and 5. Also in this case we report the subsets of features

which have provided better results.

We have performed some additional experiments on

both datasets by considering two more features: the IP

address geographical location and the presence of the

‘‘suspicious’’ word Login in the text of the URL (Table 6).

Since such information was not available for all samples,

the size of the datasets has been reduced to 370 benign

URLs and 210 malicious ones for dataset 1 and to 6432

benign URLs and 4520 malicious ones for dataset 2.

As for dataset 1, in Table 7 we report the most signifi-

cant results obtained for this series of experiments and in

Table 8 the true positive and true negative rate for the best

performing combination of features.

Table 5 Average true positive

and true negative rate on

dataset 2

Average training set

true positive (%)

Average training set

true negative (%)

Average testing

set true positive (%)

Average testing set

true negative (%)

Features: 2, 3

C ¼ 0:1, x
ð1Þ
0

86.1 80.9 86.0 81.0

Features: 2, 5

C ¼ 10, x
ð1Þ
0

85.6 80.5 85.6 80.2

Features: 2

C ¼ 10, x
ð1Þ
0

85.7 80.7 85.8 80.3

Features: 2, 3, 5

C ¼ 10, x
ð1Þ
0

85.5 80.3 85.5 80.2

Table 3 Average true positive

and true negative rate on

dataset 1

Average training set

true positive (%)

Average training set

true negative (%)

Average testing set

true positive (%)

Average testing set

true negative (%)

Features: 2, 3

C ¼ 0:1; x
ð1Þ
0

90.3 80.1 90.3 80.0

Features: 2

C ¼ 10; x
ð1Þ
0

88.2 81.5 88.0 80.4

Features: 1, 2, 3

C ¼ 0:1; x
ð1Þ
0

88.1 76.6 87.7 76.7

Features: 2, 3, 4

C ¼ 0:1; x
ð1Þ
0

87.4 75.5 87.0 74.7

Table 4 Average correctness on dataset 2

Feature

combination

Parameters Average training

set correctness

(%)

Average testing

set correctness

(%)

2, 3 C ¼ 0:1, x
ð1Þ
0

83.9 83.9

2, 5 C ¼ 10, x
ð1Þ
0

83.4 83.3

2 C ¼ 10, x
ð1Þ
0

83.6 83.4

2, 3, 5 C ¼ 10, x
ð1Þ
0

83.3 83.2

Table 6 Features description

Feature number Description

6 IP address geographical location

7 Presence or not of the word ‘‘Login’’

Table 7 Additional experiments: average correctness on dataset 1

Feature

combination

Parameters Average training

set correctness

(%)

Average testing set

correctness

(%)

2, 7 C ¼ 0:1, x
ð1Þ
0

79.3 78.6

2, 5, 7 C ¼ 10, x
ð1Þ
0

76.8 77.1

2, 5, 6 C ¼ 10, x
ð1Þ
0

75.7 75.7

2, 3, 6 C ¼ 0:1, x
ð1Þ
0

75.6 74.5
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The above results show that the two additional features

did not provide any positive contribution in terms of

classification accuracy. We remark the role played by the

URL age in this setting too.

As far as dataset 2 is concerned, the results are reported

in Tables 9 and 10. The introduction of the additional

features has provided, in this case, a slight improvement.

We observe, finally, that our methodology has given a

rather satisfactory quality in the classification process. It

appears worth noting that, even for the larger dataset 2, the

computation time has always been of the order of few

Table 10 Additional

experiments: average true

positive and true negative rate

on dataset 2

Average training set

true positive (%)

Average training set

true negative (%)

Average testing set

true positive (%)

Average testing set

true negative (%)

Features: 2, 6

C ¼ 0:1, x
ð1Þ
0

86.8 81.0 86.8 81.0

Features: 2, 7

C ¼ 0:1, x
ð1Þ
0

86.5 80.5 86.5 80.6

Features: 2, 3, 6

C ¼ 0:1, x
ð1Þ
0

86.6 80.6 86.5 80.5

Features: 2, 5, 6

C ¼ 10, x
ð1Þ
0

86.1 80.2 86.1 80.2

Table 9 Additional experiments: average correctness on dataset 2

Feature

combination

Parameters Average training

set correctness

(%)

Average testing

set correctness

(%)

2, 6 C ¼ 0:1, x
ð1Þ
0

84.4 84.4

2, 7 C ¼ 0:1, x
ð1Þ
0

84.0 84.0

2, 3, 6 C ¼ 0:1, x
ð1Þ
0

84.1 84.0

2, 5, 6 C ¼ 10, x
ð1Þ
0

83.6 83.6

Table 8 Additional

experiments: average true

positive and true negative rate

on dataset 1

Average training set

true positive (%)

Average training set

true negative (%)

Average testing set

true positive (%)

Average testing set

true negative (%)

Features: 2, 7

C ¼ 0:1, x
ð1Þ
0

85.5 68.6 84.3 68.6

Features: 2, 5, 7

C ¼ 10, x
ð1Þ
0

81.9 67.7 82.4 67.6

Features: 2, 5, 6

C ¼ 10, x
ð1Þ
0

81.1 66.3 83.0 62.9

Features: 2, 3, 6

C ¼ 0:1, x
ð1Þ
0

82.5 63.6 84.0 57.6
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seconds, which suggests possible utilization of our method

at least as a preliminary classification tool in view of future

very large-scale applications.
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