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Abstract This paper investigates the feasibility of using

artificial neural networks (ANNs) modeling to predict the

properties of self-compacting concrete (SCC) containing fly

ash as cement replacement. For the purpose of constructing

this model, a database of experimental data was gathered

from the literature and used for training and testing the

model. The data used in the artificial neural network model

are arranged in a format of six input parameters that cover the

total binder content, fly ash replacement percentage, water–

binder ratio, fine aggregates, coarse aggregates and super-

plasticizer. Four outputs parameters are predicted based on

the ANN technique as the slump flow, the L-box ratio, the

V-funnel time and the compressive strength at 28 days of

SCC. To demonstrate the utility of the proposed model and

improve its performance, a comparison of the ANN-based

prediction model with other researcher’s experimental

results was carried out, and a good agreement was found. A

sensitivity analysis was also conducted using the trained and

tested ANNmodel to investigate the effect of fly ash on SCC

properties. This study shows that artificial neural network

has strong potential as a feasible tool for predicting accu-

rately the properties of SCC containing fly ash.
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1 Introduction

Concrete is one of the most widely used construction

materials in the world. However, much of the current

available knowledge on concrete technology has been

mainly generated in the most developed parts of the world

[1]. During the last years, special types of concrete like

high-performance concrete and self-compacting concrete

are commonly used.

Self-compacting concrete (SCC) has emerged in Japan

in the late 1980s as a material that can flow under its own

weight. This allows the facility of concrete placement

without the need of additional mechanical compaction in

complicated formwork, congested reinforced structural

elements and hard to reach areas [2, 3]. This saves time,

reduces overall cost, improves working environment and

opens the way for the automation of the concrete con-

struction. SCC is an innovative homogeneous and dense

concrete in hardened state, and it has the same engineering

properties and durability as traditional vibrated concrete.

Many researchers have set some guidelines for mixture

proportioning of SCC, which include reducing the volume

ratio of aggregate to cementitious material; increasing the

paste volume and water–cement ratio (w/c); carefully

controlling the maximum coarse aggregate particle size and

total volume; and using various viscosity enhancing

admixtures [4]. For SCC, it is generally necessary to use

superplasticizers in order to obtain high workability and

viscosity-modifying admixture eliminate segregation.

Adding chemical admixtures are, however, expensive, and

their use may increase the materials cost. Savings in labor

cost might offset the increased cost, but the use of mineral

additions could increase the slump of the concrete mixture

without increasing its cost. These new building materials

are known as supplementary cementing materials (SCMs)
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that are defined as material from the waste stream of a

manufacturing process. These include fly ash, silica fume

and blast furnace slag or limestone filler. Their use as a

partial replacement for Portland cement reduces the

amount of cement needed for concrete. This reduces the

energy and CO2 impacts of concrete and helps improve the

workability and long-term properties of concrete [5].

Fly ash (FA) is the finely divided residue that results

from the combustion of ground or powdered coal and that

is transported by flue gases from the combustion zone to

the particle removal system [6]. Fly ash is an industrial by-

product and is considered one of the most widely used in

different concrete applications. When FA is used as a

mineral admixture in concrete, it improves its strength and

durability characteristics at later ages depending on its

reactivity, the distribution of particle size and the carbon

content. Generally, FA is used as a partial replacement of

cement. However, it can also be used as a partial replace-

ment of fine aggregates to achieve different concrete

properties. Previous investigations show that the use of FA

in SCC reduces the dosage of superplasticizer needed to

obtain similar slump flow compared to concrete made with

Portland cement only [7]. In addition, the use of FA

improves significantly the rheological properties and

reduces concrete cracking due to the heat of hydration of

cement [8].

A few studies have been carried out on the optimization

of the mix proportion by the addition of FA to SCC. It is

reported that 30 % of cement replacement optimized per-

centage of FA in SCC resulted in excellent workability and

flowability [9]. However, due to difference in quality and

quantity of material constituents and depending on the

adopted design specifications, an uncertainty is created in

establishing a general relationship between FA and cement

ratio, chemical admixtures and w/c ratio. Meanwhile, there

is insufficient research on modeling the rheological and

mechanical properties of SCC with FA where the most of

the researches are based on traditional methods.

For the last two decades, different modeling methods

based on artificial intelligence (AI) techniques have become

popular like artificial neural networks (ANNs), fuzzy logic

(FL) systems, genetic algorithm (GA) and expert system

(ES). Those methods have been used by many researchers

for a variety of engineering applications [10]. In civil

engineering, many researchers proposed models using these

techniques for predicting concrete properties [11–13]. For

SCC, these techniques are also used by some researchers

proposing many predictive models. A fuzzy logic prediction

model for fresh and hardened properties of SCC containing

fly ash and polypropylene fibers was developed by Gencel

et al. [14]. A shrinkage prediction models for SCC based on

an independent methodology that combines fuzzy logic and

genetic algorithm were developed by Da Silva and Štemberk

[15]. An expert system was developed with the goal of

classifying the surface finish of SCC precast elements by Da

Silva and Štemberk [16]. A fuzzy inference system was built

for the specific case of various SCC mixtures subjected to

ammonium sulfate attack by Nehdi and Bassuoni [17].

ANNs are based on the principle that a highly inter-

connected system of simple processing elements can learn

the nature of complex interrelationships between indepen-

dent and dependent variables. Artificial neural networks are

one of the most widely used methods for predicting SCC

properties. Several investigations were carried out to

develop ANN models for predicting rheological and

mechanical properties of SCC. Some researchers focused

on predicting the SCC compressive strength [18–20], while

others used some rheological properties of SCC like setting

times and slump flow [21, 22]. The prediction of the SCC

performance with fly ash was initially tried using a neural

network with single architecture [23, 24].

However, all the previous proposed ANN models for

predicting each property separately, none of them consid-

ered both of the most important rheological and mechanical

properties.

In this context, the main purpose of this study is to

develop an ANN model for predicting the most important

rheological properties combined with the most important

mechanical property (the compressive strength at 28 days)

based on mixture proportioning of SCC with fly ash, while

maintain the same architecture. The slump flow test,

V-funnel time test and the L-box test are used to evaluate the

flowability, viscosity, filling ability and the passing ability.

2 Artificial neural networks (ANNs)-based model

Artificial neural networks (ANNs) are computing systems

that simulate the biological neural systems of the human

brain exhibiting the ability to learn reason and solve

problems [25]. They are a family of massively parallel

architectures that can be used to solve difficult problems

described by a large amount of data via the cooperation of

highly interconnected but simple computing elements

(Fig. 1). These units are commonly referred to as neurons.

Each neuron receives an input signal from the neurons to

which it is connected. Each of these connections has

numerical weights associated with them. These weights

determine the nature and strength of the influence between

the interconnected neurons. The signals from each input are

then processed through a weighted sum on the inputs. The

processed output signal is then transmitted to another

neuron via a transfer function. The transfer function adjusts

the weighted sum of the inputs so that the output approa-

ches unity when the input gets larger and approaches zero

when the input gets smaller.
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Back-propagation is generally known to be the most

powerful and widely used supervised learning technique to

train a network [26]. To obtain some desired outputs,

weights, which represent connection strength between

neurons and biases, are adjusted using a number of training

inputs and the corresponding target values. The network

error, that is the difference between calculated and

expected target patterns, is then back-propagated from the

output layer to the input layer to update the network

weights and biases. The input and output neurons are

defined by the problem to be solved, whereas the number of

hidden layers and the corresponding number of neurons per

layer may be determined by trialing different configura-

tions until reaching the optimum. The network errors that

arise during the learning process can be expressed in terms

of mean square error (MSE) and are calculated using

Eq. (1).

MSE ¼ 1

p

� �
�
X
j

tj � oj
� �2 ð1Þ

In addition, the absolute fraction of variance (R2) and

mean absolute percentage error (MAPE) are calculated

using Eqs. (2) and (3), respectively.

R2 ¼ 1�
P

j tj � oj
� �2
P

j oj
� �2

 !
ð2Þ

MAPE ¼ 1

p

X
j

oj � tj

oj

����
���� � 100

� �
ð3Þ

where tj is the target value of jth pattern, Oj is the output

value of jth pattern and P is the number of patterns.

2.1 Data collection

The main purpose of this study is to develop an ANN model

to predict rheological and mechanical properties of self-

compacting concrete with fly ash. In most previous research,

all applications predict one property of concrete through a

large number of components. The primary goal in this model

is to predict a large number of outputs from a limited number

of inputs, the more we can predicted a number of properties

of SCC from a limited number of its components as much as

possible, the model will be successful and applicable in the

field. Sufficient data are collected to build a database con-

sisting a set of data on fly ash SCC mixtures. The data were

obtained from different sources and used for training and

testing the ANN model. To construct this model, a total

number of 114 different experimental data were gathered

from the literature (see Appendix for table showing the data

source collected for constructing the model) [27–39].

The data used in the proposed neural networks model

are arranged in a format of six input parameters that cover

the binder content, fly ash percentage, water–binder ratio,

fine aggregates, coarse aggregates and superplasticizer.

The majority of previous works construct a database from

their experimental results, so the results are limited just for

their environment, but our database is built from many

different sources of data including the literature in different

countries; moreover, it can be applied in a wider area. Four

outputs parameters are predicted by the ANN model as the

slump flow diameter, the L-box ratio, the V-funnel time

and the compressive strength at 28 days of SCC. The

boundary values for input and output variables used in the

multilayer feed-forward neural network model are listed in

Table 1. The input parameters are distributed in different

ranges in a homogeneous form for training the model as

shown in Table 2.

Fig. 1 Architecture used in the neural network model

Table 1 Input and output quantities

Components Minimum Maximum Average

Input variables

Binder (kg/m3) 370.00 733 523.4

Water/binder 0.26 0.45 0.37

Fly ash (%) 0.00 60 28.7

Fine aggregates (kg/m3) 656 1038 852.8

Coarse aggregates (kg/m3) 590 935 742.63

Superplastisizer (kg/m3) 0.74 21.84 8

Output variables

D flow (mm) 480 880 660.5

L-box (H2/H1) 0.6 1 0.86

V-funnel (s) 1.95 19.2 7.75

Compressive strength (MPa) 10.2 86.8 48.22
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2.2 Training the ANN model

For building and training the neural network model, spe-

cialized computer software was used [40]. A MATLAB-

based program with a graphical user interface (GUI) was

developed to train and test the ANN model. To provide an

ANN model with good generalization capability, the data

were divided into sets: (91) training and (23) testing pat-

terns (randomly selected 20 % of data as testing set).To

avoid over-fitting (over-training), thus enabling a good

generalization capability, 11 validation patterns were used

to stop earlier the training process.

A multilayer perceptron (MLP) was employed in this

research of three layers: an input layer, a hidden layer and an

output layer. Each layer consists of a number of neurons. The

neurons of the input layer receive information from the

outside environment and transmit them to the neurons of the

hidden layers without performing any calculations. The

hidden layer neurons then process the incoming information

and extract useful features to reconstruct the mapping from

the input space. The neighboring layers are fully intercon-

nected by weights. Finally, the output layer neurons produce

the network predictions to the outside world. There is no

general rule for selecting the number of neurons in a hidden

layer. The choice of hidden layer size is mainly a problem

and to some extent depends on the number and quality of the

training pattern. The numbers of neurons in input and output

layers are based on the geometry of the problem. Neverthe-

less, there is no general rule for selection of the number of

neurons in a hidden layer. Hence, they are determined by

trial-and-error method in this study. It should be noted that it

is possible to achieve satisfactory results with different net-

work architectures. This involved the development and

testingmore than 1000 architectureswith various numbers of

hidden layers and neurons in hidden layer sizing the back-

propagation algorithm. Consequently, the ANN model was

selected as having 6 neurons in input layer representing

influential parameters (binder content, percentage replace-

ment of fly ash, water-to-binder ratio, fine aggregates, coarse

aggregates and superplasticizer), 17 neurons in hidden layer

and 4 neurons in output layer (slump flow, V-funnel, L-box

ratio, compressive strength at 28 days) as illustrated in

Fig. 1.

A tangent sigmoid transfer function was employed as an

activation function for all neurons. Weights and biases

were randomly initialized. A maximum number of epochs

(learning cycles) reached during the training of the network

model was 1000. The following values of network training

parameters are summarized in Table 3.

Accordingly, a comparison between experimental values

and those predicted by the ANN showed a high correlation

proving its high accuracy in estimating target value in the

training phase as well as in the validation and the testing

phase (Fig. 2).

2.3 Validation of ANN model

The validity of a successfully trained ANN model is

determined by its ability to generalize its predictions

beyond the training data and to perform well when it is

presented with unfamiliar new data within the range of the

input parameters used in the training. Therefore, the ability

of the proposed ANN model developed to predict the SCC

properties of new data obtained by additional results from

other researcher’s excluded from the training data must be

validated. The more data available, the more reliable a

prediction of SCC properties by ANN will be obtained.

The model was presented with a total of 16 unseen

records and was required to predict the four SCC properties

associated with each set of values within the six influential

parameters [41–44]. The comparison between the predicted

values by the developed ANN model and the validation

new data records is shown in Table 4. In this table, the

Table 2 Distribution of inputs in the data base

Binder Water/binder Fly ash Coarse aggregates Fine aggregates Superplastisizer

Rang (kg/m3) Freq Rang Freq Rang (%) Freq Rang (kg/m3) Freq Rang (kg/m3) Freq Rang (kg/m3) Freq

350–450 24 0.25–0.30 19 0–15 23 650–750 19 600–700 48 0–5 33

451–550 69 0.31–0.35 30 16–30 45 751–850 29 701–800 19 6–10 51

551–650 18 0.36–0.40 17 31–45 29 851–950 55 801–900 42 11–15 19

651–750 3 0.41–0.45 48 46–60 17 951–1050 11 901–1000 5 16–20 11

Table 3 Parameters used in the neural network model

Parameters ANN

Number of input layer neurons 6

Number of hidden layer 1

Number of first hidden layer neurons 17

Number of output layer neuron 4

Momentum rate 0.9

Learning rate 0.5

Learning cycle 11
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computed relative error in each prediction as expressed by

Eq. 4 is represented correctly.

E %ð Þ ¼ ABS
Oexp � OANN

Oexp

� �
� 100 ð4Þ

where Oexp is the experiment output and OANN is the output

obtained by the ANN model.

The validation of the ANN model is represented in a

total relative error, and it indicates that using the proposed

model is possible to accurately predict the slump flow

value, the V-funnel time, the L-box ratio and the com-

pressive strength at 28 days of SCC containing different

percentages of fly ash.

3 Parametric analysis based on ANN model results

Because of the complexity of the system, it is difficult to

identify the change on different output parameters on this

model by the change of just one parameter. However, in

order to check the capability of the ANN model to capture

the sensitivity of SCC mix properties to individual con-

stituents, a parametric analysis was carried out.

3.1 Effect of fly ash content

The simulation results of various fresh properties as slump

flow diameter; L-box test [ratio of heights at the two edges

of L-box (H2/H1)]; V-funnel test (time taken by concrete to

flow through V-funnel); and the compressive strength at

28 days with fly ash replacement level (from 0 to 60 %) at

various binder contents (350, 450 and 550 kg/m3) are

shown in Fig. 3. In this case, a great effect of replacement

level of fly ash on the outputs parameters was found. Test

results of this analysis indicated that all SCC mixes meet

the requirements of allowable slump flow, L-box, V-funnel

flow time and compressive strength. This improves con-

crete performance in both the fresh and hardened state.

The slump flow diameter improves with the increase in

fly ash content and decreases with the increase in binder

content at any level of fly ash (Fig. 3a). This produces a

paste with improved plasticity and more cohesiveness. All

the values of the predicted slump flow obtained by the

ANN model for all binder content in this analysis are in the

range of 640–790 mm which maintains the workability of

SCC mixes within the acceptable slump flow range

(500–800 mm) [4].

The L-box passing ability of the SCC mixtures with fly

ash increased with the increase in fly ash replacement level.

All the L-box ratio values converge to some point within

0.7–0.9 at 30 % of fly ash replacement (Fig. 3b). It was

also observed that as the replacement percentages of fly ash

continue to increase up to 30 %, the L-box ratio was in the

range of 0.8–1, the generally recommended values [4].

The V-funnel passing time get reduces as the fly ash

percentage increases (Fig. 3c). In this study, the V-funnel
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flow times predicted values were in the range of 4–13 s,

which confirm the adequate V-funnel time for the SCC

(\27 s).

The compressive strength at 28 days is found to

decrease with the increase in fly ash content and to increase

with increasing the binder content (Fig. 3d). This strongly

influenced the SCC strength with constant water-to-binder

ratio. The decrease in the compressive strength is directly

dependent on the amount of cement replacement by the fly

ash which agrees with previously published results [42].

Table 4 Comparison of ANN-based model with other researcher’s results

N Author year FA (%) D (mm) L-Box (H2/H1) V-funnel(s) Fc 28 (MPa)

Exp ANN E (%) Exp ANN E (%) Exp ANN E (%) Exp ANN E (%)

1 Zhu [41] 2003 0 600 594 1.0 66.8 61.78 7.5

2 20 600 610 1.7 71.3 66.36 6.9

3 30 630 612 2.8 49.9 53.4 7.0

4 Naik [42] 2012 0 679 734 8.0 60 75.82 26.4

5 35 686 690 0.5 62 62.9 1.5

6 45 686 638 6.9 60 66.48 10.8

7 55 699 631 9.8 48 60.74 26.5

8 Turk [43] 2013 0 709 651 8.1 0.89 0.84 5.7 57.5 77.13 34.1

9 25 709 621 12.4 0.91 0.74 18.8 53.5 55.26 3.3

10 30 702 640 8.8 0.94 0.77 17.9 55 56.72 3.1

11 35 705 657 6.7 0.95 0.8 15.6 58 57.19 1.4

12 40 701 676 3.5 0.96 0.84 12.7 59 57.81 2.0

13 Liu [44] 2010 0 720 652 9.4 8.1 5.7 29.4 73.3 63.06 14.0

14 20 700 670 4.3 8.1 4.5 44.7 69.7 51.79 25.7

15 40 705 709 0.6 6.1 4.7 22.4 58.5 42.42 27.5

16 60 715 745 4.2 6.3 3.1 50..2 37.2 36.18 2.8
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3.2 Effect of water–binder ratio

The variation of the slump flow, V-funnel time, L-box ratio

and the compressive strength at 28 days with water-to-

binder ratio (w/b) for different quantities of fly ash is

shown in Fig. 4.

The slump flow diameter values increases with the

increase in water–binder ratio and fly ash content (Fig. 4a).

It has been also shown that fly ash has the highest potential

to be used in SCC. This was especially the case for pro-

ducing highly workable SCC with high volume of the paste

mortar, which often leads to a higher water-to-binder ratio

[5].

All the L-box ratio values converge to some point within

0.75–0.95 and increase with increasing the fly ash content

for water–binder ratio up to 0.37 (Fig. 4b). This was

inverted when using lower percentage of fly ash and water–

binder ratio.

The V-funnel passing time get reduce as the fly ash

percentage increases from 20 to 60 % (Fig. 4c). Almost the

V-funnel time values, which are \6 s, are recommended

for concrete to qualify as a SCC.

The combined influences of an increase in fly ash con-

tent from 20 to 60 % and water–binder ratio from 0.30 to

0.45 decrease the 28-day compressive strength of SCC

(Fig. 4d). This agrees well with previously published

results [37].

3.3 Effect of Superplasticizer

Superplasticizer plays a fundamental role to improve the

rheological properties of SCC. It is an essential material

component that must be used to produce SCC. The varia-

tion of the slump flow, V-funnel time, L-box ratio and the

compressive strength at 28 days with superplasticizer

dosages (from 1 % to 4 %) for different quantities of fly

ash is shown in Fig. 5.

The slump flow diameter and the L-box ratio are

increased with increasing the superplastisizer dosages up to

1 % and fly ash content (Fig. 5a, b). The slump flow seems

to be related to the dosage of superplasticizer. The

V-funnel flow time decreases with increasing both of the

superplastisizer and the fly ash dosages (Fig. 5c). Those

results are consistent with the results of other researchers

which showed that the superplasticizer improves the

flowability of SCC by their liquefying and dispersing

actions [45].

The compressive strength at 28 day is seen to decrease

with the increase in fly ash content and superplastisizer

dosages until it reaches a specific value so that the effect

does not appear significantly (Fig. 5d). The superplastisizer

can either increase the strength by lowering the quantity of

mixing water for a given flowability or reduce both cement

and water contents to achieve a given strength and flowa-

bility [46]. At given water-to-binder ratio, the use of fly ash
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in SCC reduces the dosage of superplasticizer needed to

obtain similar strength compared to SCC made with Port-

land cement only [42].

In fact, it is difficult to simplify the interaction of the

superplasticizer on SCC mix properties. In addition, there

is a correlation between the superplasticizer adsorption on

the particles surface, which depend on many parameters

(the charge density of the polymers, the zeta potential, pore

solution ionic content and strength, cement and cement

blending materials chemistry).

4 Conclusion

In this study, artificial neural network is used for predicting

different properties of SCC containing volume of fly ash as a

cement replacement. For this purpose, a feed-forward neural

network comprising of one hidden layer with 17 neurons and

a back-propagation training algorithm was used. The study

conducted and presented in this paper shows the feasibility of

using a simple ANN to predict both rheological and

mechanical properties of SCC. It was demonstrated that the

developed ANN model was successfully trained and vali-

dated. SCC is a complex material, and there is correlation

between many factors. ANNs is a highly interconnected

system that can learn the nature of complex interrelationships

between independent and dependent variables. As a result,

the model was able to predict the slump flow, L-box ratio,

V-funnel time and compressive strength at 28 days. It was

mentioned the capability of model to recognize and evaluate

the effect of individual constituents that cover the total binder

content, fly ash replacement percentage, water–binder ratio,

fine aggregates, coarse aggregates and superplasticizer on the

properties of SCC.
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Fig. 5 Effect of

superplasticizer on properties of

SCC. a Slump flow (mm), b L-

box ratio, c V-funnel time

(s) and d compressive strength

at 28 days (MPa)
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Appendix: Data sources

See Table 5.

Author Year B P W/B F C SP D (mm) Lbox Vfunnel Fc28

Gettu et al. [29] 2002 701 37 0.27 774 723 8.10 580 0.80 10.0 69.5

733 37 0.26 748 698 8.40 660 0.90 12.0 68.2

Patel [35] 2003 400 30 0.39 946 900 1.40 510 0.96 4.5 45.0

370 36 0.43 960 900 1.85 650 0.94 3.0 46.0

430 36 0.43 830 900 0.86 480 0.60 2.5 36.0

430 36 0.43 827 900 2.15 810 0.95 2.0 48.0

400 45 0.45 850 900 1.40 760 1.00 2.5 38.0

400 45 0.39 916 900 1.40 580 1.00 3.0 45.0

400 45 0.39 916 900 1.40 600 1.00 3.0 47.0

400 45 0.39 916 900 1.40 570 1.00 3.0 49.0

400 45 0.39 916 900 1.40 590 1.00 3.3 49.0

400 45 0.39 916 900 1.40 590 1.00 3.5 49.0

400 45 0.39 916 900 2.40 770 1.00 3.5 43.0

450 45 0.39 808 900 1.58 680 1.00 2.3 50.0

370 54 0.43 930 900 0.74 600 1.00 2.8 31.0

370 54 0.43 928 900 1.85 760 1.00 2.5 33.0

430 54 0.34 874 900 0.86 540 0.87 3.3 46.0

430 54 0.36 872 900 2.15 710 1.00 4.0 52.0

400 60 0.39 886 900 1.40 630 0.91 3.5 44.0

Sahmaran et al. [36] 2009 500 0 0.35 1038 639 6.75 665 0.87 12.7 62.2

500 30 0.34 1006 620 6.75 765 0.95 10.2 52.4

500 30 0.35 1008 621 6.75 715 0.95 15.8 57.3

500 40 0.35 995 613 6.75 730 0.85 10.7 59.1

500 40 0.32 1004 618 6.75 745 0.95 11.7 52.3

500 50 0.35 988 608 6.75 710 0.90 19.2 40.8

500 50 0.3 1010 628 6.75 738 0.88 15.1 47.5

500 60 0.35 979 603 6.75 740 0.85 12.8 38.1

500 60 0.3 997 614 6.75 770 0.95 9.4 39.9

Güneyisi et al. [30] 2010 550 0 0.44 826 868 3.50 670 0.71 3.2 61.5

550 0 0.32 728 935 8.43 670 0.79 17.0 80.9

550 20 0.44 813 855 3.20 675 0.71 10.4 52.1

550 20 0.32 714 917 7.43 730 0.93 7.0 69.8

550 40 0.44 801 842 2.96 730 0.80 6.0 44.7

550 40 0.32 700 899 7.43 730 0.96 6.0 60.9

550 60 0.44 788 829 3.00 720 0.95 4.0 30.3

550 60 0.32 686 881 6.67 730 0.90 7.0 47.5

Mahalingam and

Nagamani [32]

2011 450 30 0.43 789 926 2.77 660 0.88 3.5 44.8

500 30 0.39 731 862 6.15 640 0.75 2.5 53.6

550 30 0.35 711 835 4.74 610 0.86 3.2 57.3

450 40 0.43 780 917 2.77 650 0.88 3.7 41.3

500 40 0.39 724 850 6.15 680 0.88 2.3 46.7

550 40 0.35 701 823 6.77 730 0.90 3.4 54.9

450 50 0.43 770 907 2.50 675 0.72 2.7 37.1

500 50 0.39 714 836 4.92 730 0.88 2.9 41.8

550 50 0.35 703 824 5.41 725 0.88 2.4 44.4
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continued

Author Year B P W/B F C SP D (mm) Lbox Vfunnel Fc28

Siddique et al. [38] 2011 550 15 0.41 910 590 10.73 673 0.89 7.5 35.2

550 20 0.41 910 590 11.01 690 0.95 4.5 33.2

550 25 0.42 910 590 9.91 603 0.85 5.2 31.5

550 30 0.43 910 590 9.91 673 0.95 6.1 30.7

550 35 0.44 910 590 9.91 633 0.92 10.0 29.6

Uysal and Yilmaz [39] 2011 550 0 0.33 869 778 8.80 690 0.82 14.5 75.9

550 15 0.33 865 762 8.80 710 0.91 9.4 74.2

550 25 0.33 887 752 8.80 740 0.93 11.7 73.4

550 35 0.33 878 742 8.80 750 0.91 17.0 67.5

Seddique [37] 2012 550 15 0.41 910 590 9.90 625 0.82 4.0 26.5

550 15 0.41 910 590 10.17 675 0.80 6.6 36.0

550 15 0.41 910 590 10.45 590 0.95 6.5 29.0

550 15 0.41 910 590 10.72 675 0.90 7.5 35.5

550 20 0.41 910 590 6.60 600 0.70 4.8 24.0

550 20 0.41 910 590 7.15 645 0.95 4.5 27.0

550 20 0.41 910 590 9.90 605 0.82 7.5 32.0

550 20 0.41 910 590 11.00 690 0.90 4.5 33.5

550 25 0.42 910 590 7.70 600 0.60 7.0 26.0

550 25 0.42 910 590 8.25 625 0.80 5.2 28.0

550 25 0.42 910 590 9.90 605 0.60 7.0 32.0

550 25 0.42 910 590 11.00 590 0.60 4.2 21.7

550 30 0.43 910 590 7.15 610 0.87 5.4 21.0

550 30 0.43 910 590 7.70 600 0.90 6.5 25.5

550 30 0.43 910 590 8.80 605 0.70 8.9 27.5

550 30 0.43 910 590 9.90 675 0.95 5.0 31.0

550 35 0.44 910 590 7.15 590 0.86 6.1 17.0

550 35 0.44 910 590 8.80 590 0.80 8.0 23.0

550 35 0.44 910 590 9.35 645 0.90 9.0 25.0

550 35 0.44 910 590 9.90 635 0.92 10.0 29.5

Muthupriya et al. [33] 2012 500 30 0.35 900 600 11.00 660 0.90 9.0 29.2

500 40 0.35 900 600 10.75 675 0.93 7.0 28.6

500 50 0.35 900 600 10.50 680 0.95 7.2 28.7

Dhiyaneshwaran et al. [27] 2013 530 0 0.45 768 668 4.55 660 0.92 12.0 30.0

530 10 0.45 768 668 4.55 675 0.93 10.6 32.2

530 20 0.45 768 668 4.55 680 0.95 9.8 37.9

530 30 0.45 768 668 4.55 690 0.95 8.5 41.4

530 40 0.45 768 668 4.55 685 0.95 7.9 37.2

530 50 0.45 768 668 4.55 678 0.95 7.6 35.9

Bingöl and Tohumcu [28] 2013 500 0 0.35 967 694 8.00 630 0.84 6.1 78.6

500 25 0.35 938 673 7.50 660 0.85 7.0 62.0

500 40 0.35 923 663 7.50 680 0.88 6.2 55.0

500 55 0.35 908 652 7.50 700 0.91 7.0 42.7

Krishnapal et al. [31] 2013 450 0 0.45 890 810 9.25 687 0.80 9.0 50.0

480 0 0.4 890 810 13.30 650 0.88 12.0 52.0

450 10 0.45 890 810 8.20 689 0.79 8.6 45.0

480 10 0.4 890 810 9.90 665 0.85 9.0 46.0

450 20 0.45 890 810 6.40 690 0.78 8.0 41.0

480 20 0.4 890 810 9.68 685 0.82 8.4 42.0

450 30 0.45 890 810 4.80 695 0.78 8.0 39.0

480 30 0.4 890 810 9.40 680 0.80 8.1 40.0
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