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Abstract Traditional subspace clustering methods [such as

sparse subspace clustering (SSC), least squares represen-

tation (LSR) and smooth representation clustering] either

considered the grouping effect or the sparsity to group

original data into clusters. This paper demonstrates the

necessary of both the grouping effect and the sparsity for

conducting subspace clustering, by proposing a new Self-

Representation and Subspace Clustering based on Group-

ing Effect (SRGE) method. Specifically, first of all, a row

sparse ‘2;1-norm regularizer is utilized to represent each

sample by other samples. Then, the grouping effect of the

data is designed to ensure that the coefficient of close

samples is similar, aiming at generating a diagonal block

self-representation coefficient matrix. Finally, an affinity

matrix is obtained for conducting spectral clustering. The

proposed method can be regarded as a trade-off between

SSC and LSR. The experimental results of segmentation on

real datasets showed that the proposed method significantly

outperformed the state-of-the-art methods in terms of all

kinds of evaluation metrics.

Keywords Subspace clustering � Sparse � Self-
representation � Affinity matrix

1 Introduction

In numerous aspects of machine learning, data mining and

computer vision [1–3], data are usually high dimensional

[4–6]. Moreover, a set of high-dimensional data is often

drawn from multiple low-dimensional subspaces [7], such as

the face images, the point trajectories of moving objects [8]

and the texture features of pixel on an image [9–11]. Recently,

subspace clustering [12] processes this kind of data by fol-

lowing their underlying subspaces to attract increasing

attentions. A number of subspace clustering methods have

thus been proposed. Roughly, according to the principle of

representing the subspaces, the previous subspace clustering

methods can be grouped into three categories, such as alge-

braic methods [13, 14], statistical methods [11] and spectral

clustering-based methods [15–20].

The early studies of subspace clustering are mostly

based on algebraic methods or statistical methods.

Although exquisite formulations of algebraic methods for

spectral clustering are used, their performance drops

quickly in the datasets with noise or partially coupled

subspaces, such as generalized principal component anal-

ysis (GPCA) [14]. By contrast, the statistical methods such

as expectation maximization (EM) regard subspace clus-

tering as a mixed data inference problem so that prevalent

methods stem from general statistical learning domain can

be used. Though many new techniques have been intro-

duced to promote the criterion [e.g., agglomerative lossy

compression (ALC)], the performance of statistics methods

is restricted, due to its dependency on reckoning precise

subspace models.

The representative spectral clustering methods include

sparse subspace clustering (SSC), least squares represen-

tation (LSR) and smooth representation clustering (SRC)

[15, 16, 18, 19]. The key step of these spectral clustering
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methods is to construct an affinity matrix by utilizing the

global or the local information of samples. Unlike the

previous works that computing affinity matrix from exist-

ing algebraic or statistical methods, the recent spectral

clustering methods were put forward under the self-repre-

sentation concept, i.e., representing each sample by a linear

combination of other samples. More specifically, SSC

could obtain a block-diagonal and also sparse affinity

matrix when the subspaces are independent [21]. However,

if the data from the same subspace are extremely relevant,

SSC has to select only one at random. In this way, the

spectral clustering method cannot firmly yield the proper

groups, as the affinity matrix may be ‘‘too sparse’’ [22].

Therefore, though SSC could find a sparse affinity matrix,

it ignores the relevant structures of the data in the same

subspace and thus its performance is unsatisfied. By sub-

stituting the sparse representation with a low-rank repre-

sentation and also considering the correlation structure of

the data, LRR is designed to group the related data from the

same subspace into together so that achieving a block-di-

agonal affinity matrix while the datasets are without

interference and the subspaces are independent. However,

the datasets in real life are always with outliers or noises,

and thus, the subspaces are overlapping. While dealing

with such data, LRR will output a dense and far from

block-diagonal solution due to that the nuclear norm lacks

of the ability to choose subspaces. Therefore, LRR could

cluster the correlated data into together, resulting in the

dense affinity matrix rather than a sparse one. The most

recent works for subspace clustering are least squares

regression (LSR) and SRC. Both of them encourage

grouping effect [18, 19] to promote the accuracy of clus-

tering models but lack of sparsity. In sum, the previous

spectral clustering methods utilize the characterization of

self-representation, such as sparse representation and low-

rank representation (LRR), to improve their performance,

but they still have more or less problems. This paper thus

focuses on conducting spectral clustering for subspace

clustering [23, 24].

In order to effectively cluster the data drawn from real

life, a good subspace clustering model should take both

grouping effect and sparsity into account. To do this, we

propose a new method based on self-representation for

subspace clustering by utilizing grouping effect and also an

‘2;1-norm regularizer inducing row sparsity, named Sub-

space Clustering based on Grouping Effect (SRGE). On the

one hand, affinity matrix achieved by SRGE is sparse (i.e.,

block-diagonal), with less connection between clusters. On

the other hand, it not be too sparse, i.e., the nonzero con-

nection within cluster is sufficient enough for grouping

correlated data that drawn from the same subspace [25]. In

this way, the model can both group the correlated data

drawn from the same subspace (i.e., LSR and LRR) and

reduce the connections between clusters (i.e., SSC).

In order to overcome the disadvantages of the algo-

rithms mentioned above, we introduce self-representation-

based ‘2;1-norm to achieve a proper sparsity for the affinity

matrix and also utilize the grouping effect to make sure the

similar samples to be clustered into together rather than

merely depending on the sparsity or low rank.

The contributions of this paper are summarized as

follows:

1. With grouping effect in our subspace clustering model,

it can be self-adaptive for different types of data since

it takes the correlations of the data into account. The

grouping effect makes sure SRGE groups the highly

correlated data together. Moreover, if the subspaces are

independent and the objective function satisfies the

enforce block grouping effect (EBGE) conditions as

well, the optimal solution of SRGE is block-diagonal

and also has grouping effect. The term trðZ~LZ
TÞ is a

special case that satisfies the EBGE conditions.

2. The SRGE takes the correlation of samples into

account by the self-representation of samples, i.e.,

representing each sample by other samples rather than

data pairs. Moreover, the robust loss function (i.e.,

X � XZk k2;1) is a balance between ‘1-norm and

F-norm and has been verified robust to noises [26].

3. Finally, as the objective function of our model is

convex but not smooth, we utilize ADMM [27] to

solve it efficiently.

The rest of this paper is organized as follows: In Sect. 2,

we provide a brief review of the previous subspace clus-

tering methods. Then, we propose the new grouping effect-

based self-representation for subspace clustering in Sect. 3.

The experimental results are presented in Sect. 4. Finally,

we state the conclusions and our future work in Sect. 5.

2 Related work

2.1 Self-representation

Given a dataset X ¼ x1; x2; . . .; xn½ � 2 Rd�n, where xi 2 Rd

is a data point, self-representation is to represent each

sample xi by the other samples, i.e., xi ¼
P

j6¼i Zixj. Usu-

ally, data drawn from real life contain noises or outliers;

then, we have xi ¼
P

j 6¼i Zixjþe, where e and Z are the

representation error and the self-representation matrix,

respectively. It is robust to the outliers because the self-

representation coefficients depend on all the other samples

rather than data pairs.
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The recent spectral clustering methods search the self-

representation matrix by solving the following representa-

tion-based model:

min
Z

X � AðXÞZk klþkQ Zð Þ s:t: Z 2 C ð1Þ

where X 2 Rd�n is the dataset with n samples and d di-

mensional features. A(X) is the dictionary matrix. Q(Z) and

C are the regularization and constraint set on Z, respec-

tively. k[ 0 is a weigh parameter. In this paper, we also

utilize this self-representation-based model and set

A(X) = X.

2.2 Subspace clustering

The subspace clustering is defined as follows [18]:

Definition 1 (Subspace clustering) Given a group of data

vectors X ¼ X1; . . .;Xk½ � 2 Rd�n drawn form a union of k

subspaces fSigki¼1ði ¼ 1; . . .; kÞ, let Xi be a collection of ni
data vectors that drawn from the subspace Si and

n ¼
Pk

i¼1 ni. The task of subspace clustering is to cluster

these data according to the underlying subspaces that they

are drawn from.

The detailed steps of spectral clustering are shown as

follows: Firstly, construct the affinity matrix J (ideally, it

should be block-diagonal and its entries of the between-

cluster points are zero, i.e., sparse) according to the

underlying subspaces. Secondly, compute the first k eigen-

values and eigenvectors of the affinity matrix J so as to

construct an eigenvector space. Finally, cluster the eigen-

vectors by k-means.

For the noise-free data and the mutually independent

subspaces, we could find that the early methods such as the

literature [28] can well solve the subspace clustering

problem. However, in most of actual applications, the data

usually contain a variety of noises or it lie on the cross

sections of multiple dependent subspaces. Therefore, the

data with different labels may be grouped into the same

cluster. This is absolutely incorrect. To eliminate the

influence of these errors (i.e., noises) which play an

important role on subspace clustering, various subspace

clustering methods have been proposed [14–16, 18, 25]. In

the following discussion, we will have a review of the

related works of the recent spectral clustering-based sub-

space clustering methods.

Elhamifar and Vidal [15] proposed SSC. They utilized a

combination of other samples to represent each sample.

Moreover, in this model, representation coefficients were

enforced to be sparse. After that, Liu et al. [18] put forward

the LRR algorithm for subspace clustering. LRR aims to

enforce the affinity matrix to be low rank. In this way, the

global information of the samples can be caught. LRR is

robust for the reason that the rank will be high if there are

noises in the data. In recent years, Lu et al. [16] put forward

a least square regression-based algorithm for the con-

struction of the affinity matrix. It deems that the perfor-

mance of the subspace clustering could be enhanced by

grouping effect. After that, Hu et al. [19] proposed SRC. In

this method, the grouping effect of representation coeffi-

cients was used to construct the affinity matrix. The SRC

algorithm with enforcing grouping effect has a robust

performance on subspace clustering. Furthermore, Peng

et al. [29] proposed thresholding ridge regression for sub-

space clustering by eliminating the effect of errors coming

from linear projection spaces.

By utilizing ‘1-norm (minimization), SSC inspires

sparse block-diagonal for clustering, while it is short of

grouping effect. On the contrary, LRR utilizes rank mini-

mization, while SRC and LSR make use of ‘2-norm. All of

these three methods take advantage of strong grouping

effect, but they are lack of sparsity. Moreover, they are

sensitive to noises and outliers. Therefore, although they

have obtained significant success in subspace clustering,

none of them could create a pinpoint block-diagonal rep-

resentation matrix for realistic data.

3 Method

3.1 Notations

In this work, we utilize bold italic capital letters and low-

ercase symbols to denote the matrices and vectors,

respectively. The trace of a matrix A which is square is

tr(A). AT means the transpose of A, and A-1 means the

inverse of A, respectively. [A]j denotes the j-th column of

the matrix A. We denote v converges to v0 with v! v0.

Several norms of vector and matrix are utilized. vk kp
means the ‘p-norm of the vector v. Ak k1, Ak kF , Ak k2;1
denote the ‘1-norm ( Ak k1¼

Pn
j¼1

Pn
i¼1 Aij

�
�

�
�), F-norm, ‘2;1-

norm (
P

j A½ �j
�
�
�

�
�
�
2
, i.e., sum of the ‘2-norms of the column

vectors) of A, respectively. Rank (Z) means the rank of Z,

and moreover, Zk k� means the sum of all the singular

values of Z.

3.2 Grouping effect

LSR has grouping effect which is only for its specific model

and cannot be put into the other models. Aiming to address

this problem, in this section, we reanalyze the grouping

effect which is reconstruction based and then put forward

the enforced block grouping effect conditions (EBGE)

which helps us to apply the grouping effect flexibly.
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Grouping effect was first demonstrably stated by Lu

et al. [16, 25]: If the samples are close to each other, their

representation coefficients are also close to each other [19].

The grouping effect makes sure the data to be clustered

according to their underlying subspaces. In this way, the

data with extremely similar representation coefficients and

normally from same subspace could be grouped together. It

is defined as follows:

Definition 2 (Grouping effect) Given a set of data

X ¼ ½x1; x2; . . .; xn� 2 Rd�n, a self-representation matrix

Z ¼ ½z1; z2; . . .; zn� 2 Rn�n has grouping effect if and only if
jjxi � xjjj2 ! 0) jjzi � zjjj2 ! 0, 8i 6¼ j.

SSC, LRR and LSR utilize different criterions (inde-

pendent, noise free or orthogonal) to control the affinities

of the data points. The ultimate goal of them is to obtain a

block-diagonal affinity matrix for true clustering. While

what kind of criteria will be able to get such an affinity

matrix? At first, we consider a very simple case by utilizing

a basis of subspace as dictionary.

Theorem 1 (Block-diagonal) Given the subspace

Sif gki¼1ði ¼ 1; . . .; kÞ and assuming they are independent,

Bi is a matrix and the columns of it are composed by a

basis of the subspaces Si, B = [B1, …, Bk], and Ui is a

matrix composed by some column vectors from Si,

U = [U1, …, Uk]. The solution Z* of the following

equation

U ¼ BZ ð2Þ

is unique and block-diagonal.

Proof To prove Theorem 1, we just need to prove: For

any data point y from Si, there is a unique decomposition of

y: y = B1z1 ? ��� ? Bizi ?��� ? Bkzk, where Bizi 2 Si
(i = 1,…, k). Since the subspaces are independent, then we

could find that Bizi = y and Bjzj = 0 for all j 6¼ i. For Bj is

the basis of the subspace Si, thus zi 6¼ 0 and zi is unique,

and zj = 0 for all j 6¼ i.

In Theorem 1, we can know that if the subspaces are

independent, it is easy to cluster data accurately by solving

Eq. (2), while this model is not suitable for the data with

noise which damage the structure of the subspace.

Therefore, we rewrite the model Eq. (1) into a more

general form:

min
z

f ðZÞ þ kQ Zð Þ s:t: Z 2 C ¼ fZjX ¼ XZg ð3Þ

If f(Z) and Q(Z) satisfy the EBGE conditions, then the

solution to problem Eq. (3) is block-diagonal and also has

grouping effect.

Enforced block grouping effect conditions (EBGE) We

assume f(Z) and Q(Z) are two functions defined on C

(C 6¼ ;) that is a set of matrices, and moreover,

Z ¼ A U
V B

� �

2 C. In Z, A and B are square matrices,

U and V are of suitable dimension and A, B [ C.

ZM ¼ A 0
0 B

� �

2 C denotes the block-diagonalmatrix ofZ.

The EBGE conditions of problem Eq. (3) are:

1. For any permutation matrix P, we have f(Z) = f(ZP),

P, ZP [ C.

2. f Zð Þ� f ZM
� �

, the equality is tenable if and only if

Z = ZM.

3. Q(Z) = Q(ZP), and Z [ C if and only if ZP [ C, for

any permutation matrix P.

4. Z [ C if and only if PTZP [ C, and Q(Z) = Q(PTZP),

for any permutation matrix P.

Theorem 2 If f(Z) and Q(Z) satisfy the EBGE conditions,

the optimal solution Z* to problem Eq. (3) is block-diag-

onal and also has grouping effect:

Z� ¼

Z�1 0 � � � 0

0 Z�2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Z�k

2

6
6
6
4

3

7
7
7
5

where Z�i 2 Rni�ni match with Xi, and ni is the dimen-

sionality of the subspace Si correspondingly, for each i.

Proof

1. The optimal solution of Eq. (3) is block-diagonal.

Since f(Z) = f(ZP) for all permutations P, thus the

objective function is invariant to all permutations. We

utilize ZA to denote the optimal solution of problem

Eq. (3) and decompose it into two parts ZA = ZF 1
Z*, where

ZA ¼

Z�1 � � � � �
� Z�2 � � � �
..
. ..

. . .
. ..

.

� � � � � Z�k

2

6
6
6
6
4

3

7
7
7
7
5
;

ZF ¼

0 � � � � �
� 0 � � � �
..
. ..

. . .
. ..

.

� � � � � 0

2

6
6
6
6
4

3

7
7
7
7
5
:

We assume [X]j = [XZA]j [ Sl; thus, [XZ
*]j [ Sl and

[XZF]j [ Si (i 6¼ l). While [XZF]j = [XZA]j - [XZ*]j,

and since the subspaces are independent, Sl \ Si ¼ ;,
so we have [XZF]j = 0. After that we have XZF = 0

and XZA = X, which ZA is doable for the problem

Eq. (3). For the EBGE conditions (2), f ZA
� �

� f Z�ð Þ is
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tenable, while ZA is the optimal solution:

f ZA
� �

� f Z�ð Þ. So f ZA
� �

¼ f Z�ð Þ, the equality is ten-

able if and only if ZA = Z*. Therefore, the optimal

solution of Eq. (3) is block-diagonal.

2. The optimal solution of Eq. (3) has grouping effect.

Through Definition 2, we have jjX2 � X1jjF ! 0

) jjZ�2 � Z�1jjF ! 0. If the EBGE condition (3) is

satisfied, it is effortless to verify jjzi � zjjj2 ! 0 as Z�2
and Z�1 only differ in the i-th and the j-th columns.

Inspired by the SRC [19], we can easily know that

trðZLZTÞ and trðZTLZÞ satisfy the EBGE conditions.

In this paper, we utilize trðZLZTÞ as the regularization
of our objective function.

3.3 SRGE Algorithm

As stated in Sect. 1, in this section we propose the SRGE

method.

The SRGE algorithm proposed in this paper is very

efficient. Firstly, SRGE represents each sample by utilizing

the correlations between samples. Secondly, ‘2;1-norm and

trace–norm are introduced as the row sparse constraint and

grouping effect constraint, respectively. Finally, the block-

diagonal self-representation matrix Z is generated, and then

the affinity matrix J which is finally put into the spectral

model to cluster data is obtained.

According to the definition of the sample self-repre-

sentation, we need to find a column vector zi 2 Rn�1, so
that xi can be represented by Xzi. Normally, the noises and

outliers from the data in our real life often bring errors into

the representation, i.e., xi = Xzi ? e, where the e is the

representation error. The main purpose of this paper is to

find the optimal representation matrix Z*, which makes the

error between X and XZ as small as possible.

As the loss function of SRC is X � XZk k2F and the

solution of it is not sparse, and moreover, the influence of

noises and outliers of the original data are not well dis-

posed. Therefore, we introduce the X � XZk k2;1 as the loss
function of the problem Eq. (1). Because X � XZk k2;1 is

not squared, the outliers will become less important than

the other samples. The regularization term of LSR is as

follows:

QðZÞ ¼ trðZZTÞ ¼ 1

n
ZTe

�
�

�
�2
2
þ 1

2

Xn

i¼1

Xn

j¼1
zi � zj

�
�

�
�2
2

ð4Þ

where e is the all ones vector. It means to assign equal

weights to all pairs of representations regardless of whether

the representations are close to others or not. It does have

grouping effect but in the implicitly way. In order to

explicitly integrate grouping effect into our representation

model, we introduce the following term as the

regularization:

QðZÞ ¼ 1

2

Xn

i¼1

Xn

j¼1
wij zi � zj

�
�

�
�2
2
¼ trðZLZTÞ ð5Þ

where W = (wij) is the weight matrix that reflects the

closeness of the point xi and xj. L = D - W is the

Laplacian matrix, in which D is the diagonal matrix, i.e.,

Dii ¼
Pn

j¼1 wij. The most common way to generate W is

utilizing the k nearest neighbor (k-nn) graph by heat kernel

[30, 31] or 0–1 weights [32, 33]. In our experiments, we

utilize the 0–1 weights which is good enough to construct

the k-nn graph (according to [19], the default value of k is

4). As we all known, there are many other subspace clus-

tering methods to construct the complex k-nn graph [3], but

that is not the main focus of this paper.

In order to prevent the instability of the samples, we use
~L ¼ Lþ nI as the substitution of ~L (a default value of n is

0.001); then, the problem Eq. (1) is transformed into the

following objective function:

min
Z

J Zð Þ ¼ X � XZk k2;1þktr Z~LZT
� �

ð6Þ

The above objective function firstly utilizes trace–norm

[34] to ensure each sample is represented by samples that

has the similar representation coefficients (i.e., the closest

samples). And then it takes row sparse ‘2;1-norm as the loss

function to reduce the influence of noises and the outliers.

Both of the above two norms help to guarantee the model is

robust.

Traditional methods utilize J1 ¼ Z�j jþð Z�T
�
�

�
�Þ
�
2 to

obtain the affinity matrix and then use spectral clustering

algorithm to cluster data. In this way, the clustering results

of these methods will have following characters: The

samples in the same subspace are of high similarity, there

are great differences between the samples that drawn from

different subspaces, and all the subspaces are block-diag-

onal. These characteristics help spectral clustering-based

subspace clustering methods a lot in achieving a good

clustering performance.

3.4 Subspace clustering by SRGE

The same as SSC, LSR and LRR, our algorithm is also a

spectral clustering-based method. After obtaining the

optimal self-representation coefficient matrix Z*, we

compute the affinity matrix by:

J1 ¼ Z�j j þ Z�T
�
�

�
�

� ��
2 ð7Þ

and then utilize the spectral clustering algorithm [23] to

generate the final clustering result.
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J1 is efficient, however, its effectiveness mainly due to

the block-diagonal character of Z*. Aiming to utilize the

grouping effect that is useful to obtain a better subspace

clustering result, we compute the affinity matrix by:

J2 ¼
z�Ti z�j

	 
2

xik k22 xj
�
�

�
�2
2

ð8Þ

The new affinity is the inner product of representation

coefficient vector normalized by norms of the original

features. This normalization decreases the biases generated

by the amplitudes of the original attribute. It is very

familiar in the motion segmentation and handwritten

numeral recognition problems.

The details of subspace clustering by SRGE are sum-

marized in Algorithm 1.

Algorithm 1 Subspace Clustering via SRGE
Input: data matrix ×∈ d nX R , regularization parameter λ
Output clustering error
1. Construct the k-nn graph n n×∈W R by 0-1 weights and then obtain 

which is the deformation of Laplacian. 
2. Solve the problem Eq. (3) by the ADMM algorithm, i.e., algorithm 2, to

construct the optimal representation coefficient matrix * n n×∈Z R .
3. Define the affinity matrix J by Eq. (7) or Eq. (8). 
4. Use spectral clustering algorithm to cluster the data into m (known form

the priori knowledge) clusters.
5. Calculate the clustering error by Kuhn Munkres algorithm [22]. 

3.5 Optimization algorithm

We learn that the objective function Eq. (6) is convex but

not smooth. It is not feasible to be solved directly. In this

work, we propose an efficient optimization algorithm to

solve the problem Eq. (6).

At first, differentiating Eq. (6) concerning each column

of Z and setting it to zero, the optimal solution Z* could be

obtained from the following equation:

XTDXZþ Zða~LÞ þ ð�XTDXÞ ¼ 0 ð9Þ

Equation (9) is a normative Sylvester equation [35], and

it has a unique solution:

Z ¼ lyapðXTDX; ðk~LÞ; ð�XTDXÞÞ ð10Þ

where X and ~L are known, D is a block-diagonal matrix, let

U = X - XZ = [u1,…,un]
T, then the diagonal elements of

D are dii ¼ 1
uik k2

. As D is unknown and depends on Z, we

utilize the ADMM algorithm to solve it in the iterative way.

At first, we decompose Eq. (6) into N subproblem as

follows:

argmin
zi

xi � xizik k2;1þktr zi ~Lz
T

i

	 

ð11Þ

where zi is the column subsectors of Z and vec(Z) = [z1,

z2,…,zn]
T is satisfied.

For the reason that Eq. (6) utilizes constrained trace–

norm as the regularization, the elements of Z cannot be

solved independently; thus, it is extraordinary and ineffi-

cient to utilize the soft threshold k in the equation. How-

ever, it can be used in the process of optimization

efficiently; at this time, it is called as multiplier alternating

direction method. Under the help of dummy variable, the

general form of this method can be rewritten as follows:

argmin
Z;V

X � XZk k2;1þktr V ~LVT
� �

þ q Z� Vk k2F s:t: Z ¼ V

ð12Þ

The objective function is complex, so we utilize the

extending form of Lagrange function to be a substitute of

Eq. (12):

LðZ;C;KÞ ¼ X � XZk k2;1þktr V ~LVT
� �

þ q
2

Z� Vk k2FþvecðKÞvecðZ� VÞ ð13Þ

The basic idea of ADMM includes the following itera-

tion steps:

1. Z kþ1ð Þ ¼ argmin
Z

L Z;V kð Þ;K kð Þ
	 


2. V kþ1ð Þ ¼ argmin
V

L Z kþ1ð Þ;V;K
� �

3. K kþ1ð Þ  K kð Þ þ q Zþ Vð Þ

Given K and q, the key to this method is to obtain an

optimal solution of Eq. (12). Problem Eq. (6) can be

decomposed into two subproblems by using ADMM

algorithm.

The first subproblem: If we just minimize the Z in

Eq. (12), i.e., when the trace–norm penalizes tr(V ~LVTÞ, the
problem will be transformed into a very simple least square

regression problem. The second subproblem: If we just

minimize the V in Eq. (12), i.e., when X � XZk k2;1 dis-

appeared, V can be solved independently. In the above

ways, which decompose the problem into two subprob-

lems, the threshold value was utilized efficiently. As the

current estimation of Z and V is combined with the third

step of ADMM, the current estimation of the Lagrange

multiplier matrix K can be updated. The penalize param-

eter q plays a special and important role: A flawed estimate

K is allowed to solve Z and V.

4 Experiments

In this section, we evaluate our SRGE method on four

applications of subspace clustering: motion segmentation,

handwritten digit clustering, psychology balance clustering
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and face clustering. We compare our method with the state-

of-the-art representation reconstruction-based methods

such as SSC, LRR, LSR and SRC.

4.1 Experimental datasets and evaluation criteria

The datasets utilized in our experiment are: Hopkins 155

[36], USPS [37], Jaffe [38] and Balance [39]. All of them

are the most common benchmark datasets for judging

subspace clustering methods. The best results for all

methods are reported.

Algorithm 2. ADMM algorithm
Input: dataset X, penalty parameter ρ
Output: * n n×∈Z R
1.  Initialization Z0 V 0 0

2.  Repeat ( ) ( )1k k+ ←V V , update Z by putting ( )kZ into

( ) ( )( )( 1) T ( ) T ( )lyap , , kkk λ+ = −Z X D Χ L X D X where

( ) ( ) ( )( )
1[ ,..., ]k k k Tk

n= − =U X XZ u u ( )kD is a block-diagonal matrix and

the diagonal elements are ( )
( )

2

1k
ii k

i

=d
u

.

4.  ( ) ( ) ( )1k k ρ+ ← + +Λ Λ Z V

5. k=k+1
6. Output the optimal solution Z* until k = 30. 

Hopkins 155 [36], as a motion segmentation dataset,

consists of 155 video sequences. Each sequence has two or

three motions (correspondingly, a motion is a subspace),

and every sequence is a sole clustering task; therefore,

there are 155 subspace clustering tasks totally. Unlike other

algorithms, our method does not have any dimensionality

reduction. Then, we compare our method with SSC, LRR,

LSR and SRC. During the comparison, we utilize the same

parameter for all sequences, which is the same as the other

methods. All the methods are performed on each sequence.

And the mean, maximum, minimum and the standard

deviation of the clustering error are reported.

USPS [37] is also widely used in subspace clustering. It

contains 9298 handwritten digit images. Each of the images

has 256 (16 9 16) pixels. We utilize the first 100 images in

our experiments.

Jaffe [38] is an international standard face dataset and

consists of 10 female positive facial expression images

(213 samples), with each image having 32 9 32 pixels.

Balance [39] is the experiment results of psychology. It

contains 625 samples that with 4-dimensionality features.

The same as other methods, we utilize clustering error

(CE) as a measure of the accuracy [40]. In the condition of

the optimal permutation, CE could obtain the minimum

error by matching the ground truth and the clustering

result. The definition of it is:

CE ¼ 1� 1

N

XN

i¼1
d pi;mapðqiÞð Þ ð14Þ

where qi and pi mean the output label and the ground truth

of the i-th sample, respectively. In above function, d(x,
y) = 1, if and only if x = y, otherwise d(x, y) = 0. The

best mapping function, map(qi), permutes clustering labels

to match the ground truth labels and also can be efficiently

calculated by the Kuhn–Munkres algorithm [41–45].

4.2 Experimental results and analysis

In Table 1, we display the clustering error of five methods

on Hopkins 155 database by utilizing the common affinity

measure Eq. (7). It reveals that SRGE achieves a clustering

error of 3.35 %, while the best result of other methods is

3.92 % achieved by SSC. The improvement of SRGE on

this database is limited because the reported error is the

mean of 155 clustering errors. Among these errors, most of

them are zero, and even if there are high improvements, the

mean result is limited by others. Another reason of the

limitation is that the correlations of data are very strong,

i.e., the dimensions of each subspace are only two or three

[16]. In order to distinguish the performance of each

method, we represent the best results with boldface in each

table.

Tables 2, 4 and 5 show the clustering errors on USPS,

Jaffe and Balance, respectively. For fair comparison, we

utilize the same affinity measure Eq. (7) in all algorithms.

It can be summarized that the performance improvement

by our method over others is prominent, especially on Jaffe

database, in which the clustering error is 0.94 %. More-

over, as we stated in Sect. 4, the affinity measure Eq. (8) is

much better than Eq. (7) in developing the grouping effect.

Therefore, in each method, we utilize the new affinity

measure J2 to cluster data on USPS database and the results

are displayed in Table 3. By comparing Tables 2 and 3, we

can learn that the results of all methods with J2 are

Table 1 The clustering results (%) of each method by J1 on Hopkins

155

Method SSC LRR LSR SRC SRGE

Max 46.97 47.64 39.71 46.70 38.86

Mean 3.92 5.14 4.21 4.24 3.35

Min 0 0 0 0 0

Median 0 0.53 0.52 0.29 0

STD 7.61 10.04 8.60 9.80 7.7

Time (s) 2.50 2.03 0.12 0.40 0.39
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improved significantly than the one with J1. Moreover, the

result of SRGE obviously outperforms the others.

In Fig. 1, we diagrammatize the clustering results and the

original state of the images from USPS by using the affinity

measureEq. (7). As the labels of our experiments are random

selected, we rearrange them and use them to generate Fig. 1

eventually. Moreover, we illustrate the affinity matrices

which achieved by utilizing Eq. (8) in Fig. 2. Obviously, the

grouping effect from SRGE is better than the one from oth-

ers. It also indicates that the block-diagonal matrix obtained

by SRGE is much more excellent than others.

5 Conclusions and future work

In this work, we propose a new subspace clustering

method, namely SRGE. We utilize the self-similarity of

samples and the trace–norm which has the property of

grouping effect to construct the self-representation coeffi-

cient matrix. Afterward, by using spectral clustering

method, we obtain the clustering result. In addition,

effectiveness and robustness of SRGE mainly come from

the self-representation of samples and the grouping effect.

The former represents each sample by all the other samples

rather than data pairs, while the latter makes sure the

similar data have the same representation coefficients and

be assigned to the same group eventually. Owing to our

proposed objective function is convex but not smooth, we

use ADMM algorithm to solve it. Moreover, we propose a

new affinity measure based on grouping effect. Finally, the

experimental results on benchmark datasets indicate that

SRGE is much more efficient than the state-of-the-art

subspace clustering methods. In the future work, we will

use the grouping effect in large-scale subspace clustering

and semi-surprised learning.

Table 2 The clustering results (%) of each method by J1 on USPS

Method LRR LSR SSC SRC SRGE

CE (%) 22.60 26.10 43.10 12.70 12.10

Table 3 The clustering results (%) of each method by J2 on USPS

Method LRR LSR SSC SRC SRGE

CE (%) 17.50 18.40 42.20 11.30 11.00
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Fig. 1 The clustering results of each method on USPS obtained from the first five images of each number

SRGE SRC SSC LSR LRR

Fig. 2 On USPS database, affinity matrices of SRGE, SRC, SSC, LSR and LRR are generated by utilizing the affinity measure Eq. (8) (the

grouping effect of SRGE is much more protruding than those of others)

Table 4 The clustering results (%) of each method by J1 on Jaffe

Method LRR LSR SSC SRC SRGE

CE (%) 47.33 37.91 13.15 4.69 0.94

Table 5 The clustering results (%) of each method by J1 on Balance

Method LRR LSR SSC SRC SRGE

CE (%) 46.40 38.24 43.68 41.76 35.20
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