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Abstract In this paper, a constructive training technique

known as the dynamic decay adjustment (DDA) algorithm

is combined with an information density estimation method

to develop a new variant of the radial basis function (RBF)

network. The RBF network trained with the DDA algo-

rithm (i.e. RBFNDDA) is able to learn information incre-

mentally by creating new hidden units whenever it is

necessary. However, RBFNDDA exhibits a greedy inser-

tion behaviour that absorbs both useful and non-useful

information during its learning process, therefore increas-

ing its network complexity unnecessarily. As such, we

propose to integrate RBFNDDA with a histogram (HIST)

algorithm to reduce the network complexity. The HIST

algorithm is used to compute distribution of information in

the trained RBFNDDA network. Then, hidden nodes with

non-useful information are identified and pruned. The

effectiveness of the proposed model, namely RBFNDDA-

HIST, is evaluated using a number of benchmark data sets.

A performance comparison study between RBFNDDA-

HIST and other classification methods is conducted. The

proposed RBFNDDA-HIST model is also applied to a real-

world condition monitoring problem in a power generation

plant. The results are analysed and discussed. The outcome

indicates that RBFNDDA-HIST not only can reduce the

number of hidden nodes significantly without requiring a

long training time but also can produce promising accuracy

rates.

Keywords Radial basis function network � Dynamic decay

adjustment � Pruning � Histogram � Nodes reduction

1 Introduction

An artificial neural network (ANN) is one of the important

machine learning models for performing data classification

[1]. It is capable of learning information/knowledge from

data sets. According to Karnin [2], some researchers prefer

to employ a large network to solve a problem, because a

small network may not have sufficient information to make

accurate predictions. In addition, a large initial network

structure can learn the underlying problem with a fast

convergence speed [2–4]. However, other researchers

argue that a large network structure can result in a high

computation cost [5]. An oversized ANN leads to poor

performance when the ANN tends to remember or capture

spurious information [6, 7]. Therefore, the key question is

how to determine an adequate network size for a trained

ANN to recognise unseen data in a satisfactory manner.

One of the possible solutions is to apply pruning algorithms

to produce a parsimonious ANN structure [4, 5, 8]. Indeed,

the issue of identifying an optimal ANN structure still

remains an open question for investigation in the machine

learning community [8–10]. As such, finding an appropri-

ate network structure for solving a specific problem is

usually accomplished by trial-and-error [5], and it is a

challenge to identify the best network structure of an ANN

model for achieving good classification performance.

In this study, a new variant of the radial basis function

(RBF) network is developed, with the aim of reducing the

number of hidden nodes automatically using a statistical

method. RBF is chosen due to its universal function

approximation capabilities [10]. In addition, it has been
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successfully used to solve many real-world problems, e.g.

industrial control [11], image retrieval [10], and medical

disease diagnosis [12]. A typical RBF network consists of

three layers, i.e. the input, hidden, and output layers, as

shown in Fig. 1. In a conventional RBF network, the

number of hidden nodes must be pre-determined before

training. From the viewpoint of machine learning, such

prerequisite is not desirable because if too few hidden

nodes are used, the RBF network would have poor gener-

alisation due to limited flexibility. On the other hand, if too

many hidden nodes are used, the RBF network would

suffer from the over-fitting problem [13]. Another draw-

back of the RBF network is its offline learning property.

When a new data sample is provided, the RBF network

needs to be re-trained using all new and old data samples;

otherwise, previously learned information can be corrupted

[14]. This is known as the stability–plasticity dilemma. The

dilemma poses the question how can a machine learning

model keeps on learning information (i.e. plastic) without

corrupting or erasing previously learned information (i.e.

stable) [14]. One way to overcome this stability–plasticity

dilemma is online or incremental learning. In essence, an

incremental learning model is able to learn online and on-

the-fly with respect to the incoming data samples one by

one, without requiring iterative learning through all data

samples. Since this incremental learning capability does

not require all data samples to be kept for learning pur-

poses, it is, therefore, flexible and scalable in tackling the

volume and velocity issues in today’s big-data era [15].

The dynamic decay adjustment (DDA) coupled with the

RBF network imparts the incremental learning property for

the resulting model, i.e. RBFNDDA [16]. We focus on

RBFNDDA because it can tackle the stability–plasticity

dilemma and adapt its network structure (i.e. the number of

hidden nodes) incrementally. In other words, new hidden

units are inserted into the network structure whenever they

are required during the learning process. Besides that, the

learning process of RBFNDDA is also very fast, since

information is absorbed incrementally.

Despite the aforementioned favourable features, a

drawback of RBFNDDA is that its incremental learning

feature can lead to a greedy insertion behaviour, as a result

of absorbing useful information as well as redundant,

outlier, and noisy information [17]. In this case, the net-

work size can become large. In this regard, an appropriate

network size can be determined by applying growing

(constructive) or pruning techniques, or a combination of

both growing and pruning techniques [18]. Regularisation

techniques are another option to determine a parsimonious

network structure [19]. Regularisation techniques use cer-

tain criteria to identify unnecessary weights or nodes dur-

ing the training process of an ANN [19]. In our work, a

pruning method is adopted from a statistical perspective to

reduce the number of hidden neurons of RBFNDDA. Both

Garcia-Pedrajas and Ortiz-Boyer [20] and Ma and Kho-

rasani [21] commented that pruning algorithms cannot be

feasibly used in real-world applications under the follow-

ing conditions: (1) when it is difficult to determine the

initial network size; (2) when it is difficult to measure the

relevance of network hidden nodes; and (3) when it is

necessary to re-initiate the training session following a

pruning process (which incurs a high computational cost).

By considering these comments, in this research, a his-

togram (HIST) is applied to prune the hidden nodes of

RBFNDDA. HIST is adopted because of its simplicity and

high computational efficiency [22]. In addition, a

ix
i

nx

Rdi( x ) 

Rdn( x ) 

iW

O( x ) 

Inputs 

Symbols 
x = input vector 
μ = centre of the i-th RBF 
Rd = radius of the i-th RBF where 

Rdi( x ) = 2

||||exp
i

ix
σ

μ−

W = weightage of i-th RBF 
O = linear function where  

O( x ) = )(*
1

xRdW i

n

i
i

=

Hidden Output Fig. 1 The architecture of an

RBF network

S366 Neural Comput & Applic (2017) 28 (Suppl 1):S365–S378

123



histogram computes the distribution of information and

provides the relevance measure of hidden nodes before

pruning. Therefore, a hybrid model of RBFNDDA-HIST is

devised, in which the use of HIST for pruning is not sus-

ceptible to the aforementioned problems.

The organisation of this paper is as follows. In Sect. 2, a

literature review is provided. RBFNDDA, HIST, and the

proposed RBFNDDA-HIST model are explained in

Sect. 3. In Sect. 4, a study using a number of benchmark

data sets from the University of California Irvine Machine

Learning (UCI) Repository [23] is conducted. The experi-

mental set-up and the characteristics of the benchmark data

sets are described. The proposed RBFNDDA-HIST model

is also applied to a real-world condition monitoring prob-

lem in a power generation plant. The performance of

RBFNDDA-HIST is analysed, compared, and discussed. In

Sect. 5, conclusions and suggestions for future work are

provided.

2 Literature review

The literature review consists of two parts. The first part

describes different types of pruning algorithms for ANNs.

The second part presents the histogram techniques in dif-

ferent research areas.

2.1 Pruning methods

A pruning method is used to trim an ANN model that has a

large structure. The main purpose of pruning is to remove

unimportant nodes or weights [24]. Reed [3] categorised

pruning methods into two groups: sensitivity and penalty

(regularisation) methods. Recently, new pruning approa-

ches to ANNs such as the genetic algorithm (GA) [23, 24],

magnitude [25, 26] and cross-validation [27] methods have

been introduced. Some researchers [28, 29] combined both

growing and pruning methods in their studies.

A GA-based pruning method is an evolutionary

approach inspired by the biological evolution principle

such as mutation and reproduction for refining an ANN.

Heo and Oh [25] used the GA to prune and optimise the

input and hidden nodes of a multilayer perceptron (MLP)

network. The correlation between the input and hidden

nodes is considered during the optimisation process. Each

chromosome represents the conditions from the input to

hidden nodes using bit values, whereby a 0 indicates the

absence/removal of an input or hidden node while a 1

indicates the presence of a node. In each generation, a new

population of chromosomes is formed after going through

the roulette-wheel selection, crossover, and mutation pro-

cesses. Each MLP (formulated as a chromosome) is trained

by the back-propagation algorithm. The chromosomes are

evolved with the GA under different pruning rates. The GA

was also utilised by Kaylani et al. [26] to optimise the

architecture of the fuzzy adaptive resonance theory map-

ping (FAM) network, ellipsoidal adaptive resonance theory

mapping (ARTMAP) network, and Gaussian ARTMAP

network. Each of these ANNs goes through a learning

process. The learned ANN models are converted into a

group of chromosomes to form an initial GA population. A

weighted sum approach is used to define the fitness level of

the chromosomes such that fit chromosomes would be

selected for reproduction. The mutation operator is

employed to reduce the number of hidden nodes in the

network structure.

A magnitude-based method can be used to control the

magnitude of the trained weight to be small [28] or to

identify the relevant weight magnitude through the use of

regression [29]. As an example, Leung, Wang, and Sum

[28] proposed two mean prediction error (MPE) formulae

to determine the best trained fault-tolerant network with a

good generalisation capability. These formulae measure

weight noise and weight fault, respectively. According to

[25], weight noise occurs in the weight encoding process,

while weight fault occurs when certain hidden and output

nodes are disconnected during the training process. The

proposed method [25] applies the optimal brain damage

(OBD) mechanism to rank and select the smallest structure

from the pruned RBF network. A huge RBF network is

trained using a weight-decay method. The optimal weight-

decay parameter is used to avoid over-fitting of the trained

network. The importance of the RBF nodes is ranked using

the OBD concept. Then, the RBF node is deleted one by

one with the MPE formula as the test error estimation

procedure to produce a parsimonious trained network. A

suitable model can only be selected after the construction

of a few RBF networks. As such, this approach is time-

consuming.

A sensitivity-based technique analyses the importance

of each weight or hidden node of an ANN. The least

important weight or hidden node is pruned by measuring

the sensitivity rate of the error function [3]. The sensitivity-

based technique was applied to prune an incremental ANN

[3, 28, 29]. Huang et al. [30] proposed a sequential growing

and pruning method for building an RBF network. The

network grows by adding a hidden node when the infor-

mation content of the node (measured by a concept known

as ‘‘significance’’) can contribute to the overall learning

accuracy. When a training sample is provided, the signifi-

cance measure of the nearest hidden node with respect to

the training sample is computed. If the significance mea-

sure is more than the pre-set learning accuracy, it is

retained. Otherwise, the node is pruned. The network can

be slow in speed when dealing with large data sets. Another

sensitivity-based technique was used by Abbas [31].
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Pruning is applied when a node has the least contribution

towards the performance of an MLP network trained with

back-propagation. The correlation between the hidden

nodes is examined, and a weight-update procedure using

the anti-Hebbian rule is adopted. The rule is normally used

to de-correlate the output of two neurons. After the training

and weight-update process, the average correlation coeffi-

cient of each hidden node is computed, which represents

the contribution of each hidden node in reducing the output

error. The node that has the least contribution towards error

reduction is removed. The proposed model is yet to be

applied to any real-world data sets.

Leung and Tsoi [32] used the recursive least square

(RLS) algorithm to train and prune a recurrent RBF net-

work. A uniform grid of centres and spreads of the RBF

nodes is established before the learning process begins. The

parameter settings are estimated using the RLS algorithms.

Unnecessary nodes are deleted based on the error covari-

ance matrix. However, Hsu et al. [11] commented that the

computational cost of the RLS-based RBF network could

be high. Chan et al. [33] proposed a growing and pruning

method based on the sensitivity of neighbours of a hidden

node. This sensitivity measure is computed using square

root of the distance between a hidden node and its nearest

node in the data space. Three criteria are used to determine

the allocation of a new hidden node with respect to a

training sample: (1) the sensitivity measure of the new

hidden node is smaller than the sensitivity threshold; (2)

the newly added hidden node should be far enough from

the nearest hidden node; and (3) the network gives a low

response to the training sample. A hidden node is pruned if

its sensitivity measure is larger than a sensitivity threshold.

However, the problem is that the neighbourhood of a hid-

den node needs to be calculated again before pruning

during the training process. Therefore, additional time and

storage are needed [33]. Another sensitivity-based method

was proposed by Medeiro and Barreto [7]. They used the

correlation between the error signal of the nodes in a given

layer and the error signal propagated back to the previous

layer as a guide to determine irrelevant weights. Weights

that are smaller error correlations than a pre-defined error

tolerance are pruned from the network.

Some researchers combined a few pruning techniques

together. As an example, Huynh and Setiono [27] proposed

a pruning method that first used a penalty term and then a

cross-validation method to improve the performance of an

ANN trained by back-propagation. The proposed method

has two phases. In the first phase, a penalty term is added to

the error function. The magnitudes of the connection

weights and the accuracy rates of training and cross-vali-

dation are examined. Connections that satisfy the pruning

conditions are pruned. In the second phase, possible

removal of hidden nodes is examined by considering their

impacts on the classification rate. Hidden nodes that have

the least impact are removed, and the network is re-trained

after removal of a node. This process continues until no

further nodes can be pruned. As the network needs to be re-

trained, additional computational effort is required.

In summary, different types of pruning algorithms are

available in the literature. Most of the methods [3, 12, 25,

28, 29, 33] have high computational costs and are slow in

speed. Some algorithms [23, 24, 26, 28] use a trial-and-

error approach to find suitable parameters or thresholds for

different problems. In this paper, we focus on a statistical

pruning method, i.e. histogram, for removing unwanted

hidden nodes from RBFNDDA. Histogram is a useful

technique for visualising statistical approximation of data

[34]. Since the histogram method is computationally effi-

cient [22], we use it to prune the hidden nodes of

RBFNDDA based on distribution of information. It should

be noted that histogram is commonly used in signal pro-

cessing but not machine learning (see the survey in

Sect. 2.2 for more details). Therefore, we innovatively

employ the histogram as a magnitude-based pruning

method to tackle the problem associated with a large

RBFNDDA network in this study. The proposed

RBFNDDA-HIST model is explained in detail in Sect. 3.3.

2.2 Histogram

Histogram is a useful statistic method for data exploration.

It can be used to summarise the distribution of data using

density approximation. In principle, histogram, which is a

non-parametric estimator [35], is able to approximate any

density accurately as the sample size approaches infinity.

Histogram has been used in a number of studies success-

fully, e.g. to represent the summary of multi-dimensional

data [36], projective clustering [34, 35], signal processing,

computer vision [37], and anomaly detection [38].

Histogram is useful for pruning in signal processing

problems. It can be used to accelerate the search process

[37, 39]. One of the important applications of histogram is

to construct a large vocabulary for a continuous speech

recognition system. Steinbiss et al. [40] used a histogram

pruning method to limit the number of active hypotheses

generated during the word recognition phase. A histogram

score of active states is computed. If the number of active

hypotheses is more than the threshold, the algorithm retains

only the hypotheses with the best scores and prunes other

hypotheses. Kashino et al. [41] proposed a feature his-

togram pruning method to search for the similarity between

the query and stored signals in audio and video signal

processing problems. The occurrence of each feature vector

from the query and stored signals is computed to form the

histogram. A distance measure is used to determine the

similarity degree. If the similarity degree exceeds a pre-
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defined threshold, the query signal is retained as a stored

signal [41]. Zhang and Liu [42] compared the feature

histogram between the query and stored signals in a simi-

larity-based audio retrieval process. The pruning algorithm

does not require computation of the similarity measure

between the query and stored signals.

Compared with signal processing, histogram has not

been widely used in machine learning. Bors and Pitas [43]

proposed a clustering algorithm to determine the parameter

settings of an RBF network, known as median RBF. The

centres and variances are found based on a method similar

to learning vector quantisation. The network is then trained

by using a robust statistical-based algorithm, where mar-

ginal median is used to estimate the centres of the RBF

nodes, and median of absolute deviations (MAD) is used to

estimate the covariance matrix. A data sample histogram is

used to locate the centre median as well as to accelerate the

calculation of median and MAD during the training pro-

cess. Wei et al. [44] proposed the use of histogram-like

plots to post-process the network outputs by assessing

graphically the accuracy of posterior estimates with respect

to individual classes. In this case, the histogram-like plots

are used to re-map the sigmoid outputs of an ANN to

improve the posterior probability estimation.

In this study, histogram is employed to refine the

RBFNDDA structure. To the best of our knowledge, no

histogram-based methods have been researched to generate

a histogram of recognition nodes for reducing the RBF

network complexity. This motivates us to integrate his-

togram into the RBFNDDA learning process to redress the

negative effect of the network’s greedy insertion beha-

viour. The details are presented in the next section.

3 The proposed model

We first describe the training algorithms of RBFNDDA and

the histogram method. Then, how the histogram method is

integrated into the RBFNDDA network is explained.

3.1 RBFNDDA

Berthold and Diamond [16] proposed DDA as the training

algorithm to build an RBF network. It adopts the incre-

mental learning capability of the Probabilistic Restricted

Coulomb Energy (P-RCE) model, in which a new hidden

node is introduced incrementally when a new pattern is

wrongly classified by a conflicting class. Two user-defined

parameters, i.e. the positive threshold (hþ) and negative

threshold (h�), are required to determine the width of an

RBF node and also to distinguish the node from its neigh-

bours of other classes. The hþ indicates the minimum

correct-classification probability of a node for the correct

class. The h� indicates the highest probability of a node that

results in misclassification. The recommended settings of

these two parameters are: hþ ¼ 0:4 and h� ¼ 0:2 [42, 43].

During each training iteration, all weights of the hidden

nodes are initialised to zero. Given a training sample, if

more than one RBF nodes have the activation level higher

than hþ, the weight of the hidden node with the highest

activation level is increased. If the activation level of all

hidden nodes is below hþ, a new hidden node is introduced.

This new hidden node uses the training sample as its

centre, and its weight is set to one. Width shrinking is

performed for all hidden nodes of different classes in the

next step when their activation levels on the training

sample are above h�. The training process continues until

all training samples have been presented. Algorithm 1

shows a single training iteration of the RBFNDDA

network.

Algorithm 1 Training algorithm of RBFNDDA

(1) For all hidden nodes Pb
i for i ¼ 1; 2; . . .;mb; b ¼ 1; 2; . . .;B, set

the weight of each hidden node to zero, i.e. wb
i ¼ 0.

(2) Consider a training input, x, that belongs to class b, and assume

that Pb
i nodes in the network. If the Gaussian activation level

of Pb
i , i.e. R

b
i � hþ (the input is correctly classified), increase

the weight of the hidden node with the largest Rb
i by one, i.e.

wb
i ¼ wb

i þ 1.

Otherwise (when none of Pb
i fulfils the condition), update the

number of class b nodes, mb ¼ mb þ 1;

{

Introduce input x as a new node Pb
mb

Set wb
mb

¼ 1

Set the centre of Pb
mb
, rbmb

¼ x

Set the width of

Pb
mb
, wdbmb

¼ min
j 6¼ b

1� a�mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjr ja�rbmb
jj2

ln h�

q� �

}

(3) Adjust the width of all conflicting nodes for j 6¼ b; 1� a�mj

wd j
a ¼ min wd j

a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjr ja�rbmb
jj2

ln h�

q� �

(4) Steps (2) to (3) are repeated until all the training samples have

been presented.

3.2 The histogram (HIST) algorithm

The HIST algorithm was proposed by Shimazaki and

Shinomoto [45] to select the optimum bin size of a peri-

stimulus time histogram (PSTH) and to determine the

number of experiments required for finding a meaningful

presentation in terms of resolution of the firing rate. It is a
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neurophysiology study of information transmission. This

histogram is used to present the firing rate (or the rate of

spike) of a neuron’s onset of stimuli. The time duration is

divided into several discrete bins. The height of a bin

indicates the number of spikes. It is important to identify

the number of spikes distributed within an appropriate set

of bins. However, there is no systematic way for identi-

fying the most appropriate number of bins in the existing

PSTH experiments. As such, Shimazaki and Shinomoto

[45] proposed a procedure to estimate an appropriate

number of bins (bin size) and the interval of histogram (bin

width) by minimising a cost function, Cn Dð Þ, as follows:

CnðDÞ ¼
2

nD
Eĥ

D E

� E ĥ� Eĥ
D E� �2

� �

¼ 2

nD

�k

nD
� 1

ðnDÞ2
ðki � �kÞ2

D E

¼ 2�k � v

ðnDÞ2

ð1Þ

where n = the number of sequence to obtain the firing rate;

D = the bin width that represents the observed time period;

Eĥ = average spike count; ĥ ¼ ki
nD (the total number of

spikes, ki, that enters each bin i); and v = variance. The

algorithm can adapt the bin size and bin width to the

problems under scrutiny. Algorithm 2 shows the procedure

for bin size-optimisation:

Algorithm 2: Algorithm to optimise the bin size

(1) The observed time period is divided into N bins with width, D (N

is the number of bins, 2�N � 50). The sequence, n, is set to

30. The number of spikes, ki, that enters the ith bin is

computed.

(2) The mean, �k, and variance, v, of the number of spikes are

computed as follows

�k � 1
N

P

N

i¼1

ki ð2Þ

v � 1
N

P

N

i¼1

ðki � �kÞ2 ð3Þ

(3) The cost function (Cn) is computed as

CnðDÞ ¼ 2�k�v

ðnDÞ2 ð4Þ

(4) Steps (1) to (3) are repeated by varying the bin width, D, to
search for the optimal bin size and bin width that minimise Cn.

3.3 The proposed RBFNDDA-HIST model

We employ the HIST algorithm [45] to identify and prune

less important hidden nodes of RBFNDDA. As mentioned

in [20, 21], it is a challenge to measure the relevance of

network hidden nodes, while pruning always leads to a

high computational cost. The proposed RBFNDDA-HIST

model is able to preserve the nature of RBFNDDA, in

which the number of hidden nodes grows automatically

according to the requirement of the task in hand and HIST

helps measure the relevance of hidden nodes by computing

the distribution of information before pruning. In addition,

HIST is simple, straightforward, and highly efficient in

terms of computational cost [22].

We now explain the learning–pruning procedure of

RBFNDDA-HIST. Firstly, RBFNDDA is built by applying

the DDA algorithm. RBFNDDA comprises a group of

hidden nodes, P, that belong to B classes, as follows.

P ¼ r1;...;mb
,w1;...;mb

,wd1;...;mb

	 


; b ¼ 1; 2; . . .;B ð5Þ

where ri is the reference vector, wi is the weight, and wdi is

the width of each hidden node. The hidden nodes in (5) can

be re-organised according to their classes.

P0 ¼
[B

1
Pb ð6Þ

Then, the hidden nodes, P0, are propagated from

RBFNDDA to HIST for the purpose of identifying and

pruning superfluous nodes. While the nodes are in a multi-

dimensional form, the HIST algorithm processes one-di-

mensional information. Therefore, the centre of each hid-

den node is transformed into a single-dimensional data

sample (D = number of dimensions) using an aggregate

sum, as follows:

Input;Xb
i ¼

X

D

d¼1

rbdi ð7Þ

The HIST algorithm processes all Input Xb that belong

to class b. In this study, the bins of the histogram have the

same width, which is computed as follows:

D ¼ InputXb
max � Input Xb

min

N
ð8Þ

where N is the number of bins between 3 and 50. All inputs

Xb and their corresponding w from RBFNDDA are divided

into N bins with D, by varying the value of N incrementally

from 3 to 50 according to Algorithm 2. All data samples to

HIST are available after RBFNDDA training, and they are

assembled in a single sequence. Therefore, the sequence, n,

is set to 1. The optimum bin size is identified by referring

to the smallest cost computed using Eq. 4. The histogram

can be constructed based on the optimal bin size. However,

which bin(s) is (are) less important and should be removed

from the histogram? To address this issue, we extend

Algorithm 2 by introducing the expected value E Wb
z

� �

per

bin z,

E Wb
z

� �

¼
X

m

i¼1

WipðWiÞ ð9Þ

where
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pðWiÞ

¼ the number of Input Xb from the category of Wi within a bin z

total number of Input Xb per bin z

ð10Þ

m denotes the number of different Wi categories of input X
b

in a bin. Each category refers to the RBFNDDA weight

values, where weight wb
i is considered as a category. As an

example, three bins are used to form a histogram of all

input Xb that belong to class b. In bin 1 (i.e. z = 1), the

total number of input Xb is 10, and the Wi category of the

RBFNDDA nodes includes 1, 3, and 5. In this case, m = 3.

Furthermore, assume that 3 input Xb have W1 = 1; 3 input

Xb have W2 = 3; and 4 input Xb have W3 = 5. The cal-

culation of EðWb
1 Þ, EðWb

2 Þ, and EðWb
3 Þ based on the

information of bins 1, 2, and 3 of class b is illustrated in

Table 1. EðWb
z Þ of each bin is then normalised using a

min–max method and is compared against a pruning

threshold. EðWb
z Þ lower than the pruning threshold is

deleted. Equations (7)–(10) are applied to construct the

histogram of hidden nodes from other classes before

pruning. The nodes, which are retrieved from the remain-

ing bins of the histograms of all classes after the pruning

process, are retained in the RBFNDDA network.

In this study, two versions of RBFNDDA-HIST are

proposed:

• RBFNDDA-HIST1: RBFNDDA is trained with multi-

ple epochs. Upon completion of the RBFNDDA

learning process in multiple epochs, the HIST algo-

rithm is applied to prune the hidden nodes. The purpose

of this method is to remove all unwanted nodes at once

before the pruned network is evaluated with the test

samples. The details are shown in Algorithm 3.

• RBFNDDA-HIST2: Pruning is applied after each

RBFNDDA training epoch. The less important nodes

are pruned by the HIST algorithm before a new training

epoch begins. In other words, RBFNDDA-HIST2

performs learning and pruning in each training epoch.

Algorithm 3 The training procedure of RBFNDDA-HIST1

(1) After RBFNDDA is trained, separate hidden nodes Pb according

to class b.

(2) Transform the centre of each hidden node of class b into a one-

dimensional input using Eq. 7.

(3) Find the optimal bin size that minimises the cost function as in

Algorithm 2.

(4) A histogram is constructed by using the optimal bin size and

width settings as in Algorithm 2.

(5) Compute the probability pðWÞ for each bin according to Eq. 10.

(6) Obtain EðWÞ for each bin using Eq. 9, and apply normalisation.

(7) Delete all bins with their normalised EðWÞ lower than a pre-set

threshold.

(8) Repeat Steps (2) to (7) for the hidden nodes of other classes.

(9) The pruned model proceeds to the test phase.

4 Experiments

Two sets of experiments were conducted to evaluate the

effectiveness of RBFNDDA-HIST. The first experiment

compared between RBFNDDA-HIST and RBFNDDA as

well as with other methods [44, 46]. We used the bench-

mark data sets from the UCI repository [23]. The second

experiment examined the usefulness of RBFNDDA-HIST

in a real-world application, i.e. the circulating water (CW)

system. The results were discussed and analysed, as in

Sects. 4.1 and 4.2.

In all the experiments, the threshold parameters of

RBFNDDA were set in accordance with the settings rec-

ommended by Berthold and Diamonds [16], i.e. hþ ¼ 0:4,

h� ¼ 0:2, and the maximum training epoch = 6. For

RBFNDDA-HIST, in addition to hþ ¼ 0:4, h� ¼ 0:2,

N was set between 3 and 50, and the pruning threshold was

set to 0.25. The original setting of N recommended by

Shimazaki and Shinomoto [45] was any number of bins

between 2 and 50. However, node reduction in

RBFNDDA-HIST might not be beneficial due to limited

Table 1 An example of EðWÞ
computation

Histogram of class b

Bin 1 (m = 3) Bin 2 (m = 2) Bin 3 (m = 3)

W 1 3 5 1 2 2 5 9

p(W) 3/10 3/10 4/10 5/8 3/8 2/4 1/4 1/4

E(W) 3.20 1.38 4.50

Normalised E(W) 0.58 0.00a 1.00

a Remark: With a pruning threshold of 0.25, bin 2 is deleted because its normalised E(W) is\ 0.25
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amount of information if the number of bins in a histogram

were too small (i.e. 2). As such, N was set between 3 and

50 in this study. For the pruning threshold, after some

trials, 0.25 was identified as the best setting for

RBFNDDA-HIST in our experiments. The computing

platform used to run experiments consisted of Windows 7,

Intel Core i5-2410 M, and 4.0 GB RAM.

4.1 Benchmark study

4.1.1 Performance comparison between RBFNDDA

and RBFNDDA-HIST

Nine benchmark data sets from the UCI repository, i.e.

Parkinson, Wisconsin PBC, Wisconsin DBC, Blood

transfuse, Thyroid, Banknote, Breast tissue, Planning-relax,

and Indian liver, were used. Table 2 shows the details of

the data sets. Most data sets have only two classes except

Thyroid and Breast tissue that have three and four classes,

respectively. The data samples were normalised between 0

and 1, and the missing data samples (in Wisconsin PBC)

were replaced with zero. For each data set, 50 % of the data

samples were used for training and the remaining for

testing. The experiment was repeated 30 runs. The average

results are presented in Table 3.

By referring to Tables 3 and 4, both RBFNDDA-HIST

models reduced more than 50 % of nodes in Parkinson,

Wisconsin PBC, and Wisconsin DBC, as compared with

RBFNDDA. Both RBFNDDA-HIST models achieved

40–49 % of node reduction for Thyroid and Blood transfuse,

20–30 % for Breast tissue and Banknote, and about 20 % for

Indian liver and Planning-relax data sets, respectively.

Table 2 Characteristics of the

data sets
Data set No. of class Sample size Attributes No. of training No. of testing

Parkinson 2 197 22 98 97

Wisconsin PBC 2 198 34 99 99

Wisconsin DBC 2 569 32 285 284

Blood transfuse 2 748 5 374 374

Thyroid 3 215 5 108 107

Banknote 2 1372 4 686 686

Breast tissue 4 106 9 53 53

Planning-relax 2 182 13 91 91

Indian liver 2 583 8 292 291

Table 3 Performance comparison between RBFNDDA and RBFNDDA-HIST (standard deviations are shown in parentheses)

Data set RBFNDDA RBFNDDA-HIST1 RBFNDDA-HIST2

Acc. # Nodes Time (s) Acc. # Nodes Time (s) Acc. # Nodes Time (s)

Parkinson 83.47 57.00 0.40 83.92 22.00 0.62 83.57 23.00 0.47

(3.01) (6.00) (0.06) (3.21) (5.00) (0.09) (3.17) (7.00) (0.07)

Wisconsin PBC 76.03 81.00 0.54 75.52 34.00 0.50 75.49 34.00 0.59

(2.67) (12.00) (0.08) (3.17) (10.00) (0.07) (3.13) (10.00) (0.10)

Wisconsin DBC 94.37 90.00 0.63 94.35 43.00 0.54 94.35 43.00 0.47

(1.36) (9.10) (0.05) (1.17) (9.30) (0.06) (1.17) (9.30) (0.05)

Blood transfuse 61.56 654.00 19.09 62.36 329.00 13.63 61.92 353.00 10.06

(2.68) (55.00) (1.04) (3.06) (37.00) (1.20) (2.83) (43.00) (1.06)

Thyroid 91.25 41.97 0.39 91.28 23.50 0.37 91.28 24.10 0.50

(3.03) (4.43) (0.07) (3.32) (5.92) (0.06) (3.38) (4.60) (0.07)

Banknote 95.33 167.10 8.08 94.18 120.83 7.57 94.54 120.27 6.36

(1.39) (16.09) (0.63) (1.48) (19.89) (0.77) (1.64) (19.45) (0.63)

Breast tissue 79.12 28.23 0.14 79.25 22.00 0.15 79.50 21.47 0.16

(4.17) (2.92) (0.02) (4.21) (4.00) (0.04) (4.51) (4.52) (0.01)

Planning-relax 64.80 84.67 0.53 64.69 68.03 0.60 64.58 68.27 0.83

(3.10) (2.70) (0.21) (2.69) (4.94) (0.24) (3.26) (6.53) (0.33)

Indian liver 74.19 262.62 4.96 74.39 213.36 4.71 74.27 218.94 3.92

(2.25) (5.42) (2.88) (2.33) (7.41) (2.65) (2.22) (10.28) (1.38)
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Overall, we can conclude that both RBFNDDA-HIST

models are able to reduce the number of nodes from

RBFNDDA significantly. By referring to Fig. 2,

RBFNDDA-HIST1 achieved a slightly higher average node

reduction rate (i.e. 39.28 %) than that of RBFNDDA-HIST2

(i.e. 38.50 %) from all nine classification tasks. This is

because some nodes removed earlier were re-inserted into

RBFNDDA-HIST2 during the subsequent training cycles.

A paired t test was conducted to compare statistically

the performances between RBFNDDA and RBFNDDA-

HIST in terms of accuracy, number of nodes, and execution

time. Table 5 lists the paired t test results. The performance

of both models (i.e. RBFNDDA-HIST1 vs RBFNDDA and

RBFNDDA-HIST2 vs RBFNDDA) was compared at the

significant level of a = 0.05. The average accuracy rates of

RBFNDDA-HIST1 are significantly different from those of

RBFNDDA in Blood transfuse, Banknote and Indian liver

because the p values are lower than 0.05. By referring to

Table 3, the average accuracy rates of RBFNDDA-HIST1

are higher than those of RBFNDDA in Blood transfuse and

Indian liver. However, RBFNDDA has higher accuracy

rates than RBFNDDA-HIST1 in Banknote. The accuracy

rates of RBFNDDA-HIST2 in all classification tasks except

Banknote are statistically the same as those of RBFNDDA.

The p values between the number of nodes of

RBFNDDA versus RBFNDDA-HIST1 as well as

Table 4 Node reduction (in percentage)

RBFNDDA-HIST1 RBFNDDA-HIST2

Parkinson 61.40 59.65

Wisconsin PBC 58.02 58.02

Wisconsin DBC 52.22 52.22

Blood transfuse 49.69 46.02

Thyroid 44.01 42.58

Banknote 27.69 28.03

Breast tissue 22.07 23.95

Planning-relax 19.65 19.37

Indian liver 18.76 16.63

Table 5 The p values of the

paired t test
Hypothesis RBFNDDA = RBFNDDA-HIST1 RBFNDDA = RBFNDDA-HIST2

Data set Acc. # Nodes Time (s) Acc. # Nodes Time (s)

Parkinson 0.051a 0.000 0.879a 0.638a 0.000 0.001

Wisconsin PBC 0.122a 0.000 0.000 0.103a 0.000 0.006

Wisconsin DBC 0.930a 0.000 0.000 0.930a 0.000 0.000

Blood transfuse 0.010 0.000 0.000 0.149a 0.000 0.000

Thyroid 0.877a 0.000 0.026 0.893a 0.000 0.000

Banknote 0.000 0.000 0.000 0.001 0.000 0.000

Breast tissue 0.625a 0.000 0.078a 0.441a 0.000 0.000

Planning-relax 0.648a 0.000 0.100a 0.462a 0.000 0.000

Indian liver 0.048 0.000 0.620a 0.258a 0.000 0.025

a No significant difference
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RBFNDDA versus RBFNDDA-HIST2 are all below 0.05.

These results ascertain that the network sizes of both

RBFNDDA-HIST models are significantly smaller than

those of RBFNDDA.

In terms of the execution time, the paired t test reveals

that RBFNDDA-HIST1 is significantly faster than

RBFNDDA in Wisconsin PBC, Wisconsin DBC, Blood

transfuse, Thyroid, and Banknote. For RBFNDDA-HIST2,

we assume that the execution time is longer as pruning has

been conducted in each epoch. However, RBFNDDA-

HIST2 is significantly faster than RBFNDDA in Wisconsin

DBC, Blood transfuse, Banknote, and Indian liver. These

results show that both RBFNDDA-HIST have good com-

putational efficiency.

In general, both RBFNDDA-HIST models are as accu-

rate as RBFNDDA, except for the Blood transfuse, Indian

liver, and Banknote data sets. The results in Tables 3 and 5

show that both RBFNDDA-HIST models can reduce

unwanted nodes significantly. In addition, computational

efficiency of RBFNDDA-HIST2 is better than that of

RBFNDDA.

4.1.2 Performance comparison with other methods

In this section, we compare the classification performance

of RBFNDDA-HIST with other ANNs, which include

RBFN and Genetic algorithm RBFN (GA-RBFN) [47], and

Probabilistic neural network (PNN) enhanced with struc-

tural minimisation methods [48], i.e. PNN-Kmeans and

PNN-support vector machine (PNN-SVM). The data sets

used in both [47, 48] are summarised in Table 6, which

include Iris, Wisconsin BC, Pima Indian diabetes (Dia-

betes), Haberman’s survival (Haberman), Cardiotocogra-

phy (CTG), Thyroid 7200 (Thy7200), Dermatology, and

Wisconsin DBC from the UCI machine learning repository.

Ding et al. [47] applied the GA to optimise both the

weights and structure of an RBF network. A combination

of binary and real encoding scheme was proposed to for-

mulate the chromosomes. The binary encoding scheme was

used to encode the network architecture, while the real

encoding scheme was used to encode the weights between

the hidden and output nodes of the RBF network. Both the

binary and real parts of the selected chromosomes per-

formed single-point crossover separately. The binary part

of the chromosome performed bit-flipping mutation,

whereas the real part employed Gaussian mutation. The

chromosome with the lowest error rate was selected and

was further trained using either the pseudo-inverse method

or the least-mean-square method.

A number of RBFN models, as shown in Table 7, were

evaluated using the Iris data set. The experiment was

repeated 100 runs. To make a fair comparison, we followed

the same experimental set-up in [47] for RBFNDDA-HIST.

The results are listed in Table 8. RBFNDDA-HIST1

achieves the highest accuracy rate. RBFNDDA-HIST2

ranks third, after RBFNDDA-HIST1 and GA-RBFN-PI.

Both RBFNDDA-HIST models have a smaller network

size (in terms of the number of hidden nodes) than those

reported in [47].

Both RBFNDDA-HIST models were also compared

with two PNN networks, i.e. PNN-Kmeans and PNN-SVM

[48]. The PNN is constructed using the Bayesian decision

Table 6 Characteristics of the

benchmark data sets
Data set No. of class Sample size Attributes No. of training No. of testing

Iris 3 150 4 105 45

Wisconsin BC 2 683 9 546 137

Diabetes 2 768 8 614 154

Haberman 2 306 3 245 61

CTG 3 2126 23 1701 425

Thy7200 3 7200 21 5760 1440

Dermatology 6 358 34 286 72

Wisconsin DBC 2 569 32 456 113

Table 7 RBFN-based ANNs

reported in [47]
Algorithm Definition

RBFN-PI Original RBFN; PI = Pseudo-Inverse, PI is used to learn the weight

RBFN-LMS Original RBFN; LMS = Least-Mean-Square, LMS is used to learn the weight

GA-RBFN GA is used to learn the network structure and weight of RBFN

GA-RBFN-PI GA finds the optimal network structure of RBFN and PI is then used to learn the weight

GA-RBF-

LMS

GA finds the optimal network structure of RBFN and LMS is then used to learn the weight
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strategy [47, 48]. It learns very fast, but requires one node

to represent each training sample [49]. This problem

motivated Kusy and Kluska [48] to propose two alternative

methods that could reduce the network complexity of PNN.

PNN-Kmeans determined the optimal number of nodes

using the k-means algorithm. PNN-SVM applied SVM to

generate support vectors as patterns in the PNN hidden

layer. Two parameters of PNN-SVM, i.e. C constraint and

sc spread constant, were determined empirically. The per-

formance varied with different parameter settings.

Table 9 presents the overall comparison results. It is

clear that both RBFNDDA-HIST models perform better,

or as good as, PNN-Kmeans and PNN-SVM. Table 9

shows that number of nodes in RBFNDDA-HIST is

smaller than those of PNN-Kmeans and PNN-SVM in

Wisconsin BC, Diabetes, CTG, Thy7200, and Dermatol-

ogy. For Wisconsin DBC, both RBFNDDA-HIST models

create fewer hidden nodes as compared with those of

PNN-Kmeans, but more hidden nodes than those of PNN-

SVM. Although both RBFNDDA-HIST models show

inferior results in Haberman, on average, RBFNDDA-

HIST1 and RBFNDDA-HIST2 contain fewer hidden

nodes, i.e. 224 and 229, while PNN-Kmeans and PNN-

SVM have 670 and 363 hidden nodes, respectively. The

average classification rates of RBFNDDA-HIST are

comparable with those of PNN-Kmeans and PNN-SVM as

well. In summary, both RBFNDDA-HIST models are able

to achieve comparable classification performance as those

of PNN-Kmeans and PNN-SVM, but with smaller network

sizes.

4.2 Circulating water system

The performance of RBFNDDA-HIST was evaluated using

a real-world condition monitoring problem of a circulating

water (CW) system in a power generation plant [50]. The

CW system (see Fig. 3) is responsible to supply an ade-

quate volume of cooling water from the sea to remove heat

from steam in the condenser. The heat-transfer efficiency

and blockage level of the condenser tubes can affect the

operating conditions of the CW system. If the heat transfer

process is efficient, the back-pressure of the turbine can be

maintained at a low level, and this allows power to be

generated with high efficiency. Besides that, solid materials

such as shells and sands from the seawater accumulate in

the tubes, resulting in blockage in the condenser and

affecting heat transfer efficiency.

In this study, RBFNDDA-HIST was used to classify the

health conditions of the CW system. A total of 2812 data

samples with twelve attributes that indicated four different

operation conditions of the CW system were collected, as

follows.

• efficient heat transfer in the condenser and no signif-

icant blockage in the CW system

• inefficient heat transfer in the condenser but no

significant blockage in the CW system

• efficient heat transfer in the condenser but significant

blockage in the CW system

Table 8 Performance comparison between RBFNDDA-HIST and

the methods reported in [47]

Algorithm Acc. # Nodes

RBFNDDA-HIST1 95.10 23

RBFNDDA-HIST2 94.89 22

RBFN-PI 90.91 50

RBFN-LMS 91.80 50

GA-RBFN 86.71 32

GA-RBFN-PI 95.04 32

GA-RBFN-LMS 93.42 32

Table 9 Performance comparison between RBFNDDA-HIST and PNN-Kmeans and PNN-SVM

Algorithm Wisconsin BC Diabetes Haberman CTG Thy7200 Dermatology Wisconsin DBC Average

RBFNDDA-HIST1

Acc. 97.23 72.77 70.38 91.81 92.71 92.04 93.93 87.27

# Nodes 21 352 190 248 493 170 95 224

RBFNDDA-HIST2

Acc. 97.23 73.90 71.97 91.34 92.71 91.39 93.87 87.49

# Nodes 24 352 168 254 541 170 98 229

PNN-Kmeans

Acc. 93.43 71.43 75.41 88.47 93.54 91.67 90.27 86.32

# Nodes 55 368 25 1021 2881 201 137 670

PNN-SVM

Acc. 91.97 68.83 73.77 92.94 93.13 93.06 92.04 86.53

# Nodes 244 551 135 288 1103 186 36 363
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• inefficient heat transfer in the condenser and significant

blockage in the CW system

In this experiment, 50 % of the data samples were

allocated for training and the remaining for testing. The

same parameter settings as in Sect. 4 were used. The

experiment was repeated 30 times. Table 10 shows the

results of RBFNDDA-HIST and RBFNDDA. Table 11

presents the results from the paired t test between each

RBFNDDA-HIST model and RBFNDDA. Based on the

results in Tables 10 and 11, both RBFNDDA-HIST models

have significantly fewer hidden nodes than those of

RBFNDDA, i.e. with 67 % of node reduction.

A data retention ratio (DRR) [51] is used to calculate the

ratio of the number of hidden nodes to the total number of

training samples, i.e.

DRR ¼ no: of nodes

no: of training samples
ð12Þ

The DRR score of RBFNDDA was 0.22, while

RBFNDDA-HIST1 achieved 0.06 and RBFNDDA-HIST2

achieved 0.07, respectively. In other words, both

RBFNDDA-HIST models recruited fewer hidden nodes to

represent 1406 training samples. The accuracy rates of

RBFNDDA-HIST1 and RBFNDDA are statistically the

same. The accuracy rate of RBFNDDA-HIST2 is slightly

inferior by 1.25 % as compared with that of RBFNDDA.

The execution time of RBFNDDA-HIST2 is significantly

faster (25.07 s) than that of RBFNDDA (38.94 s). In gen-

eral, comparing with RBFNDDA, both RBFNDDA-HIST

models are able to tackle this condition monitoring prob-

lem with fewer nodes and with comparable accuracy rate.

5 Summary

In this paper, the RBFNDDA network has been integrated

with a histogram algorithm to form RBFNDDA-HIST, with

the purpose of reducing the network complexity of

RBFNDDA in terms of hidden nodes. Two RBFNDDA-

HIST models have been proposed, i.e. RBFNDDA-HIST1

and RBFNDDA-HIST2. Both RBFNDDA-HIST models

have been evaluated using benchmark data sets from the

UCI machine learning repository. The performances of

both RBFNDDA-HIST models have been benchmarked

against different classifiers, i.e. RBFN-PI, RBFN-LMS,

Seawater 

Primary bar screen CW pumps Common 
discharge 
header 

Strainer 

To sea 

Condenser 

Steam 

Low pressure turbines 

Fig. 3 The CW system

Table 10 Classification performances among RBFNDDA,

RBFNDDA-HIST1, and RBFNDDA-HIST2

Algorithm Acc. # Nodes Time (s)

RBFNDDA 94.81 310.38 38.94

(1.02) (16.35) (19.68)

RBFNDDA-HIST1 94.36 90.66 34.67

(0.97) (23.99) (11.52)

RBFNDDA-HIST2 93.56 102.44 25.07

(1.25) (23.98) (12.55)

Table 11 Paired t test

Hypothesis Acc. # Nodes Time (s)

RBFNDDA = RBFNDDA-HIST1 0.066a 0.000 0.518a

RBFNDDA = RBFNDDA-HIST2 0.000 0.000 0.002

a No significant difference
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GA-RBFN, GA-RBFN-PI, GA-RBFN-LMS, PNN-

Kmeans, and PNN-SVM. The applicability of RBFNDDA-

HIST models has also been demonstrated using a real-

world condition monitoring problem in a power generation

plant. Based on the experimental results, both RBFNDDA-

HIST models are able to reduce the number of hidden

nodes without deteriorating classification accuracy as

compared with the original RBFNDDA network. Besides

that, the computational time of RBFNDDA-HIST2 is

generally more efficient. In short, both RBFNDDA-HIST

models achieve improved results in terms of classification

accuracy and network complexity as compared with those

from the original RBFNDDA network.

For further work, both RBFNDDA-HIST models can be

improved by equipping them with the capability of iden-

tifying abnormal data samples (e.g. outliers) in data-driven

problems. The ultimate goal is to develop an RBFNDDA-

based model capable of differentiating normal and abnor-

mal data samples in order to achieve better generalisation.

Then, the applicability of the resulting model to a variety of

real-world data classification problems can be explored.
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