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Abstract This paper presents a data domain description

formed by the minimum volume covering ellipsoid around a

dataset, called ‘‘ellipsoidal support vector data description

(eSVDD).’’ The method is analogous to support vector data

description (SVDD), but instead, with an ellipsoidal domain

description allowing tighter space around the data. In

eSVDD, a hyperellipsoid extends its ability to describe more

complex data patterns by kernel methods. This is explicitly

achieved by defining an ‘‘empirical feature map’’ to project

the images of given samples to a higher-dimensional space.

We compare the performance of the kernelized ellipsoid in

one-class classification with SVDD using standard datasets.

Keywords Kernel minimum volume covering ellipsoid �
Ellipsoidal support vector data description � Domain data

description � Empirical feature space

1 Introduction

Data description is a problem of how to represent a group

of data. In general, a description is constructed from a

given set of target objects and is later used to predict

whether incoming unknown objects belong to the same

target group or not. The simplest form of the problem is

known as one-class classification where only one

description is concerned. Such a problem can be used for

outlier or novelty detection. One-class classification can be

viewed as a two-class problem where only data in one

class called targets are easily obtained. However, the

availability of the samples from the other class could be

very rare because of either the difficulty or high cost in

data collection. These samples may be considered outliers

in the case of undesirable, or novelties in the case of

desirable ones.

Support vector data description (SVDD), inspired by the

rise of the support vector machine (SVM) [6], was pro-

posed by Tax and Duin [24]. This method solves data

description problems by fitting a spherical shape around the

targets in a higher-dimensional space defined by a kernel

function. Like SVM, the method has an ability to apply

kernel tricks and does not depend on estimating a proba-

bility density function of the target data like in some

existing literature [4].

The success of SVDD is obviously witnessed by a

number of derived works; for example, Tax and Duin

themselves later extended SVDD so that outliers are also

included in estimating the descriptive domain. The method

is called SVDD with negative samples, or nSVDD [25],

which is the more complete form of SVDD, making it

comparable to SVM. In other words, SVDD possesses a set

of hyperspheres as a predefined hypothesis set instead of

hyperplanes as in SVM. Some other extensions of SVDD

include the two-norm nSVDD by Mu and Nandi [16]

where they also proposed a scheme for multiclass classi-

fication. Their multiclass paradigm is to find a hypersphere

containing the data in one class but excluding the others.

The optimization is done for all classes so each class has its
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own covering sphere. The classification rule for a new test

sample is determined by the shortest proximity from the

sample to the closest ball. Huang [11] also proposed the

two-class SVDD (TC-SVDD) simultaneously trying to find

two hyperspheres covering two classes of samples.

The idea of SVDD is built around the minimum

enclosing ball problem (MEB), proposed by Sylvester [23]

for more than 150 years, to find the smallest ball that

contains all training samples. SVDD may be considered as

a soft-margin case of MEB with kernel tricks. As a further

step, it is obviously tempting to develop an ellipsoid ver-

sion of the SVDD which will be called the ‘‘ellipsoidal

support vector data description’’ (eSVDD). Intuitively,

ellipsoids are considered the next simple, convex, smooth

geometrical shape to a plane and a sphere. The popular and

well-known Gaussian distribution function is also repre-

sented by ellipsoidal shapes.

A natural choice for selecting a covering ellipsoid is the

one with minimum volume containing the target data. Such

an ellipsoid is known as ‘‘minimum volume covering

ellipsoid’’ (MVCE) which is the ellipsoid with the smallest

volume containing a set of points. In a larger picture,

MVCE belongs to one class of ellipsoid inclusion prob-

lems [1]. Its potential applications span over various fields;

for example, it was used to approximate a stability region

in control theory [14], represent a group of data in statis-

tics, or even play a part in obstacle collision detection [18].

This is because its shape is unarguably less conservative

than a sphere.

One of the earliest interests in MVCE can be traced back

to the famous Löwner-John’s ellipsoid [10] where the

optimal ellipsoid with minimum volume containing a

convex body is unique and only characterized by the

contacted points between the convex body and the optimal

ellipsoid. Since then, numerous studies have been devoted

to particularly solving the MVCE problem such as the

works from Khachiyan [12], Sun and Freund [22], Kuma

and Yıldırım [13], Todd and Yıldırım [29], and Ahi-

paşaoğlu [2]. In addition, the problem can also be cast as a

semidefinite programming problem. Toh [30] and Van-

denberghe [32] proposed a generic logarithm-determinant

maximization solver which also can be used to solve

MVCE problems.

MVCE was also applied to pattern classification prob-

lems. The earliest work was by Rosen [19] where the size

of an ellipsoid was measured by the trace of a matrix,

equivalently equal to the sum of squares of the ellipsoid

semiaxes. The application at the time was to perform a

binary classification on vectorcardiograms with 33 samples

in R3. Other more recent works include [8, 21, 34].

However, perhaps due to its higher degrees of nonlin-

earity and more computational cost than using a plane or

sphere, MVCE has not been widely applied to pattern

classification problems. Nevertheless, by considering the

progress of SVM, it can be observed that SVM became

more and more efficiently solved than when it was initially

introduced. Therefore, working with ellipsoids is still

interesting and it may provide fruitful results over SVDD

as we will later show in this paper. In addition, MVCE

problems are largely close to the D-optimal design problem

which is an active area of research for decades. The

research results from the field of experimental designs may

help support the uses of MVCE in pattern classification

problems.

In this paper, the main objective is to design a learning

machine whose predefined hypothesis set consists of

ellipsoids. The proposed method will be called eSVDD

since it is similar to SVDD but with more degrees of

flexibility allowed by the use of ellipsoids. The proposed

eSVDD is not merely the MVCE, but equipped with more

functionalities including soft margins, negative samples, as

well as kernel methods. A soft margin is added to eSVDD

to control the capacity of the hypothesis set. Incorporating

negative samples may help better reject outliers. More

complex descriptive boundary is also enabled by kernel

methods.

Nevertheless, the problem of solving eSVDD in feature

space cannot be done by usual kernel tricks as in SVDD

since its dual formulation is expressed in terms of outer

products. There are some studies by Dolia et al. [7, 8]

trying to estimate MVCE in the kernel-defined feature

space where they used spectral decomposition and singular

value decomposition (SVD) to reformulate the problem in

the form of inner products in order to apply kernel tricks.

Wei et al. [33, 34] also applied the similar approach and

proposed the concept of ‘‘enclosing machine learning’’ for

data description. Unfortunately, their method in applying

kernel tricks is too specific to the structure of the problem.

As a result, it cannot promptly utilize various existing

MVCE solvers. In order to overcome such a problem, we

propose that the problem should be tackled from the per-

spective of ‘‘empirical feature map’’ [20, 35]. In other

words, it is not necessary to rewrite the problem in terms of

inner products. Instead, it is better to apply kernel methods

by means of approximately estimating an image of samples

in the feature space.

In the next section, we describe how MVCE problems

are formed as eSVDD. Then, the previous work on esti-

mating MVCE in feature space with kernel tricks is

explained in Sect. 3 as well as the proposed method based

on empirical feature mapping. In Sect. 4, the performance

of the proposed method will be evaluated against SVDD on

one-class classification with some standard benchmark

datasets, followed by the conclusion in Sect. 5.
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2 Minimum volume covering ellipsoid

An ellipsoid can be represented in various ways [5]. Let

EðE; dÞ denote an ellipsoid E whose center is at d 2 Rn

with its shape described by E 2 Sn
þþ. An ellipsoid is a

closed convex set defined by

EðE; dÞ ¼ fx 2 Rn : ðx� dÞTEðx� dÞ� 1g: ð1Þ

Alternatively, by the change of variables with E ¼ M2

and d ¼ M�1z, another form of the same covering ellipsoid

can be expressed as

EðM2;M�1zÞ ¼ fx 2 Rn : kMx� zk� 1g ð2Þ

with its volume equal to

ðnpÞ
n
2

Cðn
2
þ 1Þ

1

detM
ð3Þ

where C is the gamma function.

Given a set of samples xi 2 Rn where i 2 f1; . . .;mg, the

main interest is to find the minimum volume ellipsoid

covering all the given points. However, in order to avoid a

degenerate case where an ellipsoid has zero volume in a

particular dimension, we first make the following

assumption similar to [22]:

Assumption 1 The affine hull of the m given samples

x1; x2; . . .; xm span Rn.

2.1 MVCE centered at the origin

According to Titterington [28], estimating the MVCE covering

fxigmi¼1 � Rn is equivalent to finding the MVCE centered at

the origin covering the set of augmented samples ~xi ¼ ½xT
i ; 1�T

for i ¼ 1; 2; . . .;m. The mapping of the MVCE from the aug-

mented spaceRnþ1 back toRn is trivial as described in [9, 34].

Therefore, it is possible to merely concern about solving for the

MVCE among the family of ellipsoids whose centers are fixed

at the origin in Rnþ1. Let the ellipsoid described as ~Eð ~E; 0Þ
where ~E 2 Snþ1

þþ and 0 is the zero vector with the appropriate

dimension. The minimum volume covering ellipsoid at the

origin is the solution to the following problem:

min
~E

log detð ~E�1Þ

s:t: ~xT
i
~E~xi � 1; i ¼ 1; . . .;m:

ðP1Þ

Let a ¼ ½a1; a2; . . .; am�T 2 Rm be a vector of Lagrange

multipliers. The Lagrangian is formed as

Lð ~E; aÞ ¼ log detð ~E�1Þ þ
Xm

i¼1

aið~xT
i
~E~xi � 1Þ: ð4Þ

Under the first-order necessary conditions for optimality,

we obtain

~E�1 ¼
Xm

i¼1

ai~xi~x
T
i ¼ ~XA ~XT ð5Þ

where A ¼ diagðaÞ and ~X ¼ ½~x1; ~x2; . . .; ~xm�. The Lagran-

gian (4) with the optimal ~E� results in

Lð ~E�; aÞ ¼ � log detð ~E�Þ � eTaþ n ð6Þ

where e is the vector of ones with the appropriate dimen-

sion. To make the objective value of the dual problem the

same as the primal one, we set eTa ¼ n, leading to the dual

problem:

max
a

log detð ~XA ~XTÞ

s.t. eTa ¼ n

a� 0:

ðD1Þ

(D1) can be solved by standard interior point softwares

with logarithm-determinant maximization support, such as

SDPT3 version 4 [31]. Then, ~E is computed according

to (5). The method of projecting the ellipsoid ~Eð ~E; 0Þ to

EðE; dÞ is described in [9, 34]. In addition, for a given

sample x 2 Rn, it is easy to determine whether the point is

covered by the ellipsoid by computing the distance from

the sample to the origin in the augmented space as

d2ð~x; 0Þ ¼ ~xT ~E~x. If 0� d� 1, then x is inside or on the

boundary of the ellipsoid. Otherwise, x is not covered by

the ellipsoid.

2.2 MVCE with optimally selected center

MVCE with optimally selected center can be extended

from the one centered at the origin. Some previous works

such as [9] and [34] solved the problem in two steps by,

first, solving for MVCE in the augmented space and then

projecting the resulted ellipsoid back into the original

space. However, the process can be more concise. In this

section, we discuss the following formulation adapted

from [13] whose result is similar to a combination of the

two steps.

Lemma 1 (MVCE) Given the ellipsoid equation of the

form (2), the minimum volume EðM2;M�1zÞ containing

the given samples fxigmi¼1 is the solution to the following

optimization problem in the dual form:

max
a

log det ~XA ~XT

s:t: eTa ¼ n

a� 0:

ðD2Þ

where ~X ¼ ½XT; e�T and X ¼ ½x1; x2; . . .; xm�. a 2 Rm is the

vector of Lagrange multipliers and A ¼ diagðaÞ. The

optimal EðM2;M�1zÞ is obtained from the first-order

optimality conditions:
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M ¼ X A� aaT

eTa

� �
XT

� ��1=2

z ¼ MXa

eTa
:

ð7Þ

Proof Since the MVCE problem formulated with the

constraint in the form of (1) is not a convex program as a

counterexample was given in [9], we instead consider the

following MVCE problem:

min
M;z

2 log detðM�1Þ

s:t: kMxi � zk� 1; i ¼ 1; . . .;m:
ðP2Þ

It should be noted that the multiples of two in the objective

of (P2) are maintained merely for the sake of mathematical

convenience in order to later avoid multiplication and

division by two in the dual formulation. It follows that the

Lagrangian of (P2) is

LðM; z; aÞ ¼ 2 log detðM�1Þ

þ
Xm

i¼1

aiððMxi � zÞTðMxi � zÞ � 1Þ:

Under the first-order necessary conditions for optimality,

we have

0 ¼
Xm

i¼1

aiðz�MxiÞ

0 ¼ �2M�1 þ
Xm

i¼1

ai½ðMxi � zÞxT
i þ xiðMxi � zÞT�

which lead to

z ¼ MXa

eTa
ð8Þ

M�1 ¼ 1

2
ðSMþMSÞ ð9Þ

where

S ¼ X A� aaT

eTa

� �
XT: ð10Þ

According to the proof by Sun and Freund [22], and Zhang

and Gao [36], (9) has the unique positive definite solution

as

M ¼ S�1=2: ð11Þ

As a result, the dual problem associated with (P2) can be

derived as

max
a

log det X A� aaT

eTa

� �
XT

� �
� eTaþ n

s:t: a� 0:

ð12Þ

Similar to (6), we set eTa ¼ n so that the primal and dual

problems have the same objective. In addition, the

quadratic term as a function of a in (12) can be rewritten in

a linear form using Schur complement with the fact that

a ¼ Ae. That is

X A� aaT

eTa

� �
XT ¼ XAXT XAe

eTAXT eTAe

" #
¼ ~XA ~XT:

Theresult follows. h

From Lemma 1, it is clearly seen that solving MVCE

with optimally selected center in Rn (D2) is equivalent

to solving MVCE centered at the origin (D1) in the

augmented space Rnþ1 with the augmented samples. The

lemma also provides a direct interpretation of the solu-

tion as an ellipsoid in Rn, eliminating the unnecessary

step required to project the ellipsoid from the augmented

space to the original one. It is also worth noting from (7)

that if all the elements of a are set to 1 / m, then M�2

and M�1z become the sample covariance and sample

mean of the training samples. Lastly, the distance from

the center of the ellipsoid to a given sample x is defined

by dðx; zÞ ¼ kMx� zk. The sample is covered by the

ellipsoid when 0� d� 1, otherwise it is considered an

outlier.

2.3 Ellipsoidal support vector data description

The idea of creating a soft-margin MVCE is inspired by

other popular soft-margin learning machines such as SVM

and SVDD. We found that Dolia et al. [7] and Wei

et al. [34] also incorporated this idea in constructing their

MVCEs. An MVCE problem with ‘1-relaxation is formu-

lated by introducing a slack variable ni, for i ¼ 1; . . .;m, to

allow possible misclassification as

min
M;z;n

2 log detðM�1Þ þ cTn

s:t: kMxi � zk2 � 1 þ ni

ni � 0; i ¼ 1; . . .;m

ðP3Þ

where n and c are the vectors of ni and ci, respectively,

where i ¼ f1; 2; . . .;mg and ci [ 0 is given.

The introduced slack variables simply represent empir-

ical errors which are subjected to minimization. Since the

formulation follows the same concept as SVDD, it is called

‘‘ellipsoidal support vector data description’’ (eSVDD).

It is also possible to incorporate known outliers, if they

exist, into the formulation. Such a problem is still called a

one-class classification even though a training sample is

labeled as either a target or an outlier. The knowledge of

the presence of outliers adds a possibility to enhance data

descriptive boundaries. It is natural to exclude outliers from

being inside the ellipsoid. The MVCE formulation to

explicitly exclude known outliers was briefly presented

S340 Neural Comput & Applic (2017) 28 (Suppl 1):S337–S347

123



in [34] for two-class classification. However, our following

formulation is slightly different.

Let each sample be labeled as either yi ¼ 1 or �1 for

targets and outliers, respectively, for all training samples.

The MVCE formulated with both soft margins and outliers

is called ‘‘eSVDD with negative samples’’ (neSVDD),

analogous to SVDD with negative samples (nSVDD).

When there is no outlier, neSVDD becomes an eSVDD

problem. The neSVDD problem is stated as

min
M;z;n

2 log detðM�1Þ þ cTn

s:t: yikMxi � zk2 � yi þ ni
ni � 0; i ¼ 1; . . .;m

ðP4Þ

where the corresponding dual problem is

max
a

log det ~XAY ~XT

s:t: yTa ¼ n

0� a� c

ðD4Þ

where y ¼ ½y1; y2; . . .; ym� and Y ¼ diagðyÞ with yi 2
f1;�1g for i ¼ 1; 2; . . .;m. The optimal EðM2;M�1zÞ is

computed from

M ¼ XY AY� aaT

yTa

� �
YXT

� ��1=2

z ¼ MXYa

yTa
:

ð13Þ

Adding slack variables in the primal problem results in the

box constraints on Lagrange multipliers in the dual form.

Recall that the center ðdÞ of an ellipsoid is a linear com-

bination of training samples weighted by the corresponding

Lagrange multipliers. The ellipsoid’s shape (E) is also a

linear combination of outer products of training samples

weighted by the same Lagrange multipliers. When a sam-

ple possesses ai ¼ 0, its presence does not affect the

ellipsoid. The samples whose ai [ 0 are the so-called

support vectors. The shape and center of the optimal

ellipsoid depend only on a linear combination of support

vectors.

Suppose c ¼ Ce. An effect of regularization parameter c

on eSVDD and neSVDD is shown in Figs. 1 and 2,

respectively. Since the sum of all ai must be n, the possible

minimum value of C is n
m

for the case of eSVDD. It can be

seen that when C increases, the size of the ellipsoid also

increases. In the case of eSVDD, the size of the ellipsoid is

limited by the maximum volume containing the samples as

in Fig. 1. Increasing C beyond a certain value does not

affect the shape of the ellipsoid. This differs from the case

with negative samples shown in Fig. 2. The reason is that,

for neSVDD, the constraint yTa ¼ n is still satisfied even

for a very large C due to the subtraction between Lagrange

multipliers. Therefore, a Lagrange multiplier can be as

large as the value of C. However, in eSVDD, when C is set

too large, it is impossible for a Lagrange multiplier to be

too large because of the constraint eTa ¼ n.

3 Flexible ellipsoidal support vector data
description

Although ellipsoidal data descriptions are more flexible

than spherical ones, they are still insufficient to describe

complex data patterns. A general approach in kernel

learning machines introduces kernel methods to enable

more complicated descriptive boundary by replacing an

inner product xT
i xj with a kernel function kðxi; xjÞ for all

samples i and j. Intuitively, an inner product measures a

similarity between two samples. Replacing it with a kernel

function provides an alternative similarity measurement.

With an appropriate choice of kernel functions, the samples

are mapped into space with better class separability [35].

In general, a kernel is a positive definite function kð�; �Þ :
Rn 	 Rn 7!R satisfying Mercer’s conditions. These prop-

erties allow the ability to explicitly factorize a kernel in the

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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C = 0.45
C = 0.50
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Fig. 1 Examples of eSVDD by varying the parameter ci ¼ C for all samples
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form of an inner product between two vectors, i.e.,

kðxi; xjÞ ¼ UðxiÞTUðxjÞ, where UðxiÞ : Rn 7!H, and H is

the feature space. In other words, a kernel also defines an

inner product in H. In general, the mapping UðxÞ is

unknown and it usually maps samples into a higher-di-

mensional space, possibly the infinite one.

Since it is more concise to represent variables in a

matrix form, let K 2 Sm
þ denote a positive semidefinite

matrix, the (i, j)th element of which has the value kðxi; xjÞ.
By denoting U ¼ ½Uðx1Þ;Uðx2Þ; . . .;UðxmÞ�, we also have

K ¼ UTU.

MVCE constructions in a higher-dimensional space

using kernel methods are presented in the following two

subsections. We first review the existing method [7, 8, 33,

34] which tries to explicitly rewrite the MVCE formulation

in the form of inner products. Then, the proposed method

based on ‘‘empirical feature maps’’ [20] is presented. The

ellipsoid formulation (D2) will be extensively used

throughout the section with X replaced by U. Note that ~U

and ~U represent the augmented versions of U and U,

respectively.

3.1 Existing works

There exist few research studies concerning ellipsoid for-

mulations with kernel tricks. To the best of our knowledge,

such works include Dolia et al. [7, 8] and Wei et al. [33,

34]. However, their methods are basically the same and can

be summarized as follows:

First, rewrite the objective (D1) by utilizing the fact that,

for any matrices A and B, AB and BA have the same

nonzero eigenvalues. Together with Cholesky decomposi-

tion of the kernel matrix in the augmented space,
~K ¼ Kþ eeT ¼ CTC, ones arrive at the conclusion,

log detð ~UA ~UTÞ ¼ log detðCACTÞ.

Second, find the definition of the distance in the aug-

mented feature space, ~UTðxÞ ~E ~UðxÞ for a given sample

x 2 Rn. This is accomplished by performing a truncated

eigenvalue decomposition on the matrix A ~KA ¼ VRTRVT,

where V and R are the matrices of corresponding eigen-

vectors and singular values, respectively. The reason that

the matrix A ~KA is important here arises from the reduced

singular value decomposition (SVD) of UA
1
2 ¼ URVT

which provides both ~E�1 ¼ ~UA ~UT ¼ URRTUT and

AKA ¼ VRTRVT. Obtaining V and R helps estimate U ¼
UA

1
2ðRVTÞþ where ð�Þþ is a pseudoinverse operator. As a

result, the Mahalanobis distance can be roughly computed

by ~UT ~E ~U ¼ UTU RRT
� ��1

UTU, where the term ~UT ~U is the

vector of inner products defined by a kernel.

3.2 Proposed method

Although the aforementioned approach could attain the

objective to construct MVCE in the feature space, its for-

mulation is rather specific to the factorization of the con-

stituent of the Lagrange multipliers and kernel matrices,

making it depend on the structure of the problem. In other

words, the factorization of the matrix A ~KA is required.

Therefore, it will not always readily be usable if the for-

mulation of the MVCE problem is altered. In addition, it is

inconvenient to apply the approach to kernelize existing

MVCE algorithms such as the DRN algorithm [22] and the

WA-TY algorithm [29]. From our perspective, the versa-

tility issue must be addressed. An MVCE algorithm should

be able to apply kernel methods without a burdensome step

in trying to refactorize the problem in the form of inner

products.

As a result, we propose a method, called ‘‘empirical

feature mapping,’’ which explicitly defines a map from the

input space to an empirical feature space HE which is a

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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C = 0.45
C = 0.50
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Fig. 2 Examples of neSVDD by varying the parameter ci ¼ C for all samples
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finite-dimensional Euclidean space. The term ‘‘empirical’’

is added to indicate that the mapping is constructed from a

given set of empirical measures and also to distinguish it

from the feature space H. In general, H and HE are two

different spaces, and H possibly even has infinite dimen-

sions as in the case of RBF kernels. Therefore, in order to

create an empirical feature mapping to a finite space in a

meaningful way, for a given set of training samples, we

define the mapping in Definition 1 such that the inner

product in HE is equal to the one in H. This specific ver-

sion of empirical feature map is called ‘‘kernel PCA

map’’ [20] since it includes kernel whitening.

Definition 1 (Kernel PCA map) Given the training

samples x1; x2; . . .; xm 2 Rn, the kernel PCA map from Rn

to HE is defined as

UE : x 7!ðXþÞTkðxÞ ð14Þ

where kðxÞ ¼ ½kðx; x1Þ; kðx; x2Þ; . . .; kðx; xmÞ�T and K ¼
XTX is a matrix factorization of the kernel matrix.

Corollary 1 The empirical feature space HE and the

feature space H possess the same inner product and

Euclidean distance.

Proof Let ki ¼ kðxiÞ, Ui ¼ UðxiÞ, and UEi
¼ UEðxiÞ. It

follows that UT
Ei
UEj

¼ kT
i X

þðXþÞTkj ¼ kT
i K

þkj ¼ UT
i U

ðUTUÞþUTUj ¼ UT
i Uj ¼ kðxi; xjÞ. The Euclidean distance

in both space is also the same according to

kUi � Ujk2 ¼ kðxi; xiÞ � 2kðxi; xjÞ þ kðxj; xjÞ. h

Although H can have infinite dimensions, kernel

learning machines perform only in a subspace of H span-

ned by the images of given samples fUðxiÞg for

i ¼ 1; 2; . . .;m. Since the inner product and the Euclidean

distance in HE are the same as in H as shown in Corol-

lary 1, data separability is also the same in both spaces. In

fact, H is isomorphic with HE [35]. Therefore, it is

tempting to work with HE, instead of H, since the former is

easier to access by the mapping defined in Definition 1.

Even though a kernel matrix satisfying Mercer’s con-

dition can always be factorized as K ¼ XTX, the decom-

position may not be unique; for example, the factorization

can be obtained from eigendecomposition or LDL

decomposition. For eigendecomposition, we have X ¼
ðVK1

2ÞT
from K ¼ VKVT, where K is the diagonal matrix

of eigenvalues corresponding to the eigenvector matrix V.

Alternatively, for LDL decomposition K ¼ LDLT, we

have X ¼ ðLD1
2ÞT

where L is the lower triangular matrix

whose diagonal elements are all ones and D is a diagonal

matrix. Both K and D generally are not full rank since K is

positive semidefinite. Therefore, in this paper, it is assumed

to work with the reduced version of eigendecomposition

and LDL decomposition.

Despite being discussed in [20, 35] as an approach to

apply kernel methods to an algorithm that cannot explicitly

formulate the problem in the form of inner products,

empirical feature mapping is still new to MVCE problems.

It will allow the problems to seamlessly utilize kernel

methods. Furthermore, one benefit of using empirical fea-

ture maps is that a sample in the original space can be

visualized in the feature space as one sample. The matrix E

and the vector d describing the shape of an ellipsoid can

also be computed, although they may not be unique

depending on how K is factorized. As a result, empirical

feature mapping opens a possibility to perform kernel

optimizations to determine the most suitable kernel for a

given dataset [35].

In order to show how a kernelized eSVDD looks like in

data description, Fig. 3 demonstrates the effect of RBF

kernels on neSVDD where 5 samples belong to the target

class and one sample belongs to the outlier class. By

varying only kernel parameter r, it can be seen that the data

descriptive contours fit tighter to the samples when r
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Fig. 3 Contour plots of neSVDD with the RBF kernel kðx; yÞ ¼ e�
kx�yk2

2r varying r ¼ 0:50 (left) and 0.75 (right)
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decreases. This is in contrast to the number of support

vectors (not shown in the figure).

4 Experimental results

In this section, we are finally ready to perform some

experiments on one-class classification using eSVDD with

some standard datasets to demonstrate its performance. The

experiments compare the minimum ellipsoids, eSVDD and

neSVDD, with their minimum spherical counterparts, i.e.,

SVDD and nSVDD. We deployed MATLAB with YAL-

MIP [15] as an interface to the SDPT3 solver [31] to solve

logarithm-determinant minimization. The DDtools tool-

box [27] which was particularly designed for one-class

classification was also used to help the implementation.

Since the goal is to compare eSVDD directly with SVDD,

the datasets we used for the experiments were also obtained

from Tax [26], the author of DDtools, who provides stan-

dard datasets in PRTools format [17] with some minor data

cleanup such as filling missing values to the datasets. The list

of 27 datasets used in the experiments is shown in Table 1

where mt, mo, and n denote the number of target samples,

outliers, and features, respectively. These datasets are

derived from multiclass datasets by assigning the interested

group of data as the target class and the rest as outliers.

In the experiments, the domains of the training data

were scaled to one. Only target classes were used for

training SVDD and eSVDD. Since the RBF kernel is a

popular choice among kernel functions and as it is also

encouraged to use with SVDD [25], we compare these

ellipsoidal and spherical data descriptive algorithms

through the uses of the RBF kernel. The two hyperpa-

rameters in SVDD, nSVDD, eSVDD, and neSVDD,

namely c and r, were selected by grid search over 120 pairs

of parameters. The predefined values of r were 0.5, 1, 5,

10, 15, 20, 25, 30, 35, 40, 45, and 50. The box-constraint

parameter c was assumed to be the same for all training

samples, i.e., c ¼ Ce. In the case of SVDD, the search

values of C were 1
mr

for r 2 ½0:1; 0:2; . . .; 1:0�.
For eSVDD, C was set to N

mr
for r 2 ½0:1; 0:2; . . .; 1:0�

where N is the approximate dimension of the empirical

feature space. Here, kernel matrices were factorized by

LDL decomposition to obtain X ¼ ðLD1
2ÞT

in order to

obtain the kernel PCA map. However, since D does not

always has full rank, its diagonal whose elements are less

than 10�5 were truncated. The dimension of the reduced D

is simply the empirical feature space’s dimension N. In

addition, in order to avoid a degenerate case where

Assumption 1 does not hold, a weighted identity matrix cI
with the appropriate dimension, for a small c ¼ 10�5, was

added inside the log det function.

For each pair of ðc; rÞ, tenfold cross-validation was

performed. In order to avoid any bias on random reshuffles

of the data, all of the four ellipsoidal and spherical SVDDs

did all training and testing on the same partitioned data.

However, for 9 out of 10 folds used for training nSVDD

and neSVDD, negative samples were limited to only 20

samples, instead of 9mo

10
. This was done to reduce the

training time. The best pair was the one that yielded the

maximum mean of the area under the receiver operating

characteristic (ROC) curve. The ROC curve used here is

defined as the plot between false-positive rates and true-

positive rates with the maximum area under the curve equal

to one. The data descriptive boundaries were set up to

output membership probabilities so that the ROC curve

could be constructed. For one sample, the membership

value was defined as e�kdk, where d is the distance to the

center of the descriptive domain. After the best parameters

were selected, the areas under the ROC curves were

reported from tenfold cross-validation for 5 independent

runs. The results are summarized in Table 2 where, for

Table 1 Datasets

Dataset (target) mt mo n

Iris (setosa) 50 100 4

Iris (versicolor) 50 100 4

Iris (virginica) 50 100 4

Sonar (mines) 111 97 60

Sonar (rocks) 97 111 60

Imports (low risk) 71 88 25

Hepatitis (live) 123 32 19

Ecoli (periplasm) 52 284 7

Cancer wpbc (non-ret) 151 47 33

Cancer wpbc (ret) 47 151 33

Spectf (0) 95 254 44

Spectf (1) 254 95 44

Balance-scale (left) 288 337 4

Balance-scale (middle) 49 576 4

Balance-scale (right) 288 337 4

Glass (building float) 70 144 9

Glass (building nonfloat) 76 138 9

Glass (vehicle float) 17 197 9

Glass (containers) 13 201 9

Glass (headlamps) 29 185 9

Liver (1) 145 200 6

Liver (2) 200 145 6

Thyroid (normal) 93 3679 21

Wine (1) 59 119 13

Wine (2) 71 107 13

Wine (3) 48 130 13

Housing (MEDV[ 35) 48 458 13
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each dataset, the best value among all the four algorithms is

underlined. In addition, the table can be split in half to

compare the performance between SVDD and eSVDD, or

nSVDD and neSVDD. The best value between each pair is

highlighted in bold.

From the table, we observe that the change from a

spherical descriptive boundary to an ellipsoidal one does

help improve the results as seen in the cases of SVDD vs.

eSVDD and nSVDD vs. neSVDD. In the experiment,

eSVDD performed better than SVDD on 18 out of 26

datasets, and neSVDD also provided better results than

nSVDD on 20 out of 26 datasets. However, since some of

the results only slightly differ, we further illustrate graph-

ically how the gaps between the results exist as shown in

Fig. 4. From the figure, by neglecting absolute area dif-

ferences less than 0.05 (or 5 %) due to their less signifi-

cance, the uses of an ellipsoid instead of a sphere only

degraded the performance in 4 and 1 datasets for the cases

of SVDD vs. eSVDD (	) and nSVDD vs. neSVDD (þ),

respectively.

In addition, the introduction of negative samples to

SVDD and eSVDD also helped improve the results in

many datasets, though we observed performances dropped

in some datasets. For the spherical case, negative samples

improved the area under the ROC curve for 19 datasets

with only one dataset (No. 9) whose value very slightly

decreased. For the ellipsoidal case, the improvement was

not obvious in terms of the number of datasets. We

observed that including negative samples improved the

results in 12 datasets, while it also degraded the results in

13 datasets. Although it may be seen that the inclusion of

negative samples in eSVDD worsens the results, those

results are, in fact, average values from multiple runs of

cross-validation which could also be biased if they are

compared directly digit by digit. Therefore, it is also

interesting to look at the results from another perspective.

By neglecting the absolute changes in the area under the

ROC curve which are less than 5 %, we observe from

Fig. 4 that the performance of eSVDD (h) did not sig-

nificantly degrade as negative samples were introduced.

Table 2 Comparison between the ellipsoidal and spherical SVDDs by the mean and standard deviation of the area under the ROC curve

Dataset (target) SVDD eSVDD nSVDD neSVDD

1 Iris (setosa) 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

2 Iris (versicolor) 0.9708 ± 0.0353 0.9920 ± 0.0194 0.9796 ± 0.0322 0.9888 ± 0.0233

3 Iris (virginica) 0.9688 ± 0.0456 0.9788 ± 0.0356 0.9692 ± 0.0459 0.9708 ± 0.0394

4 Sonar (mines) 0.7394 ± 0.0987 0.7879 ± 0.0919 0.7429 ± 0.0992 0.8015 ± 0.0918

5 Sonar (rocks) 0.7179 ± 0.1109 0.6273 ± 0.1296 0.7209 ± 0.1103 0.7063 ± 0.1281

6 Imports (low risk) 0.8338 ± 0.0968 0.7678 ± 0.1368 0.8351 ± 0.0964 0.8606 ± 0.0948

7 Hepatitis (live) 0.8183 ± 0.1252 0.8182 ± 0.1369 0.8183 ± 0.1252 0.8258 ± 0.1273

8 Ecoli (periplasm) 0.9580 ± 0.0608 0.9414 ± 0.0592 0.9599 ± 0.0586 0.9472 ± 0.0585

9 Cancer wpbc (non-ret) 0.5433 ± 0.1233 0.5254 ± 0.1373 0.5362 ± 0.1305 0.5177 ± 0.1456

10 Cancer wpbc (ret) 0.6128 ± 0.1509 0.6449 ± 0.1291 0.6283 ± 0.1578 0.6100 ± 0.1508

11 Spectf (0) 0.8978 ± 0.0570 0.9435 ± 0.0585 0.9008 ± 0.0564 0.9420 ± 0.0532

12 Spectf (1) 0.7153 ± 0.0845 0.6453 ± 0.0744 0.7327 ± 0.0834 0.6474 ± 0.0471

13 Balance-scale (left) 0.9665 ± 0.0204 0.9858 ± 0.0108 0.9671 ± 0.0201 0.9780 ± 0.0158

14 Balance-scale (middle) 0.8009 ± 0.1099 0.9224 ± 0.0475 0.8014 ± 0.1082 0.9884 ± 0.0371

15 Balance-scale (right) 0.9665 ± 0.0188 0.9853 ± 0.0108 0.9676 ± 0.0184 0.9770 ± 0.0152

16 Glass (building float) 0.8000 ± 0.0943 0.8317 ± 0.0824 0.8008 ± 0.0893 0.8021 ± 0.1125

17 Glass (building nonfloat) 0.6541 ± 0.1244 0.7509 ± 0.1125 0.6841 ± 0.1281 0.7097 ± 0.1269

18 Glass (vehicle float) 0.7116 ± 0.1230 0.8600 ± 0.1430 0.7324 ± 0.1258 0.8853 ± 0.1540

19 Glass (containers) 0.8269 ± 0.3286 0.9802 ± 0.0371 0.8269 ± 0.3286 0.9665 ± 0.0872

20 Glass (headlamps) 0.9425 ± 0.0808 0.8925 ± 0.1220 0.9425 ± 0.0808 0.9108 ± 0.1247

21 Liver (1) 0.5614 ± 0.0770 0.6155 ± 0.0782 0.5670 ± 0.0927 0.5928 ± 0.0847

22 Liver (2) 0.5485 ± 0.1068 0.5533 ± 0.0862 0.6057 ± 0.0972 0.6216 ± 0.0942

23 Thyroid (normal) 0.7928 ± 0.0735 0.9454 ± 0.0450 0.8453 ± 0.0676 0.9127 ± 0.0794

24 Wine (1) 0.9989 ± 0.0047 0.9983 ± 0.0054 0.9989 ± 0.0047 0.9991 ± 0.0037

25 Wine (2) 0.9011 ± 0.0703 0.9491 ± 0.0504 0.9011 ± 0.0703 0.9687 ± 0.0412

26 Wine (3) 0.9949 ± 0.0181 0.9986 ± 0.0062 0.9949 ± 0.0181 0.9986 ± 0.0062

27 Housing (MEDV[ 35) 0.8523 ± 0.0936 0.8905 ± 0.0766 0.8604 ± 0.0935 0.8862 ± 0.0853
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It is also worth noting that the decreases in performances

after negative samples were included are possibly because

the presence of some negative samples may not be useful in

constructing a better descriptive boundary since only 20

samples of outliers were used. In addition, in the case of

neSVDD, the decreases may contribute to occasional

numerical errors that occurred during the simulation. In

some situations, the matrix M in neSVDD is indefinite so

the optimization (D4) cannot be solved. In order to deal

with such a problem, any pair of cross-validation param-

eters was discarded whenever any particular training folds

could not be trained. Although this seems to be a limitation,

neSVDD is still in favor in terms of the average

performance.

Among all of the algorithms, the number of datasets that

each algorithm performed best was 14, 10, 5, and 3 out of

27 datasets, for eSVDD, neSVDD, nSVDD, and SVDD,

respectively, according to Table 2 highlighted with

underlines. In overall, the spherical SVDDs performed best

in 6 datasets (both the first and third columns), while the

ellipsoidal SVDDs did best in 22 datasets (both the second

and forth columns). Therefore, it may be concluded that

using ellipsoids could provide better results than using

spheres.

Furthermore, it may be interesting to see how negative

samples influenced the results. We provided a plot in Fig. 5

comparing the ratio of negative samples in each dataset

against how the results changed from eSVDD to neSVDD

when negative samples were added. However, from the

plot, no obvious relationship can be observed. This is

because the number of negative samples has no direct

effect on the results. In fact, what does matter is how the

locations of samples provide any meaningful information

to the construction of descriptive boundaries.

Despite being pointed out in [3] that the use of ‘1-re-

laxation to formulate a soft-margin ellipsoid could result in

unexpected outcomes, our experimental results practically

showed promising performance. We believe that this is

because the claim in [3] concerned only an appropriate

selection of the parameter c with no kernel method, which

is not the case for our experiments. In fact, the ability to

adjust the kernel parameter r is also so important that it

helps improve the solution. It is worthwhile noting that in

this research we chose the best pair of c and r using grid

search. From the experiments, we found that the values of c

and r are not very sensitive to the results. However, from

our observations, the value of r possesses more sensitivity

than that of c. The best method to determine the best

parameters is still an ongoing research area, and a basic

approach to choose the parameters is generally by brute

force. A better method in determining the values of training

parameters or how those parameters affect descriptive

boundaries is beyond the scope of this paper and is the

subjects of further studies.

5 Conclusions

In this paper, the proposed ellipsoidal SVDD is formed by

using the same concept as in SVDD. That is the size of

ellipsoids is limited by the minimum volume to cover a

given set of data. The soft-margin ellipsoid is also achieved

by minimizing one-norm empirical risk. The method also

embraces kernel methods to construct an ellipsoid in a

higher-dimensional space via empirical feature mapping. In

the empirical feature space, which is a finite Euclidean

space, the two-norm and inner products are also the same

as in the feature space. The experimental results on one-

class classification with standard benchmark datasets
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showed that eSVDD and neSVDD provided better results

than the others for most of the datasets. Therefore, the

ellipsoidal SVDDs can be good alternatives to SVDD. For

future work, a better approach in incorporating negative

samples into eSVDD is required in order to improve

numerical stability. A faster MVCE solver is also needed

so that the proposed method can perform on larger datasets.

It is also interesting to see if the ellipsoidal SVDDs also

perform well in multiclass classification.
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