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Abstract A variant of particle swarm optimization (PSO)

is represented to solve the infinitive impulse response (IIR)

system identification problem. Called improved PSO

(IPSO), it makes significant enhancement over PSO. To

begin with, the population initialization step makes use of

golden ratio to segment solution space so as to obtain high-

quality solutions. It is followed by all particles using dif-

ferent inertia weights in velocity updating step, which is

beneficial for preserving the balance between global search

and local search. Subsequently, IPSO uses normal distri-

bution to disturb the global best particle, which enhances

its capacity of escaping from the local optimums. The

above three operations cannot only guarantee high-quality

solutions, strong global search capacity, and fast conver-

gence rate, but also avoid low diversity, excessive local

search, and premature stagnation. These properties of IPSO

make it much better suited for IIR system identification

problems. IPSO is applied on 12 examples. The experi-

mental results amply demonstrate the capability of IPSO

toward obtaining the best objective function values in all

the cases. Compared with the other four PSO approaches,

IPSO has stronger convergence and higher stability which

clearly points out its desirable performance in search

accuracy and identifying efficiency.

Keywords Improved particle swarm optimization � IIR
system identification � Golden ratio � Inertia weight �
Normal distribution

1 Introduction

Many researchers and scholars are exhibiting increasingly

greater interest in adaptive infinitive impulse response

(IIR) filtering during the last few decades [1, 2]. This is

getting enhanced by the fact that a variety of application

areas, such as speech recognition, acoustics, and commu-

nications, strongly depend on adaptive signal processing.

For some system identification problems, the adaptive IIR

filter attempts to characterize the unknown system

according to some function of the error between the output

of the adaptive filter and the output of the plant. In order to

obtain a satisfactory identification result, it is necessary to

find suitable filter coefficients so as to produce minimal

error between the output of the adaptive IIR filter and the

output of the plant.

The task of choosing suitable parameters for the IIR

model is indeed a formidable one. After all, the constructions

of the adaptive IIR filter are itself complicated and the same

gets compounded when the environment is disturbed. In

order to address the IIR system identification problem, a

variety of efficient approaches have been developed in recent

years. The artificial bee colony (ABC) algorithm [3] is a

simple, robust, and flexible optimization technique. Armed
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with these advantages, the ABC has been turned into a

powerful tool for solving many global optimization prob-

lems. Recently, Karaboga [4] designed a new approach

based on the ABC algorithm for low- and high-order digital

IIR filters. The corresponding simulation results clearly

demonstrate the effectiveness of this new methodology

toward designing digital low- and high-order IIR filters.

Luitel et al. [5] used a particle swarm optimization with

quantum infusion (PSO-QI) [6] for IIR system identification.

According to the identification results of benchmark IIR

systems with full- and reduced-order models, the PSO-QI

can obtain lower mean squared error and more consistent

convergence than the other algorithms. Dai et al. [7] used a

seeker optimization algorithm (SOA) toward designing

digital IIR filter. SOA is based upon simulation of the

behavior of the process of human searching where the search

direction stems from the empirical gradient by evaluating the

response to the position changes and the step length stems

from uncertainty reasoning by using a simple fuzzy rule. The

simulation results exhibit the efficiency of the SOA toward

designing IIR filter. Panda et al. [8] formulated the IIR sys-

tem identification task as an optimization problem and

employed a cat swarm optimization (CSO) algorithm [9] in

order to establish an adaptive learning rule for the model.

Both actual and reduced-order identification of few bench-

marked IIR plants are conducted by simulation study.

Experimental results demonstrate the potential of the CSO

toward identification of the IIR plant as compared to the other

algorithms. Upadhyay et al. [10] proposed a craziness-based

particle swarm optimization (CRPSO) algorithm for IIR

system identification problem. The CRPSO utilizes some

random variables to enhance the process of exploration and

exploitation [65, 66] in multidimensional search space.

Furthermore, craziness factor is introduced into the velocity

updating of the particle swarmoptimization (PSO) algorithm

[11, 12]. As a result, the diversity of population is ensured

and the convergence is improved. In addition to these, many

adaptive system identificationmethods have been reported in

the literatures [13–17].

The remainder of this paper is organized as follows. In

Sect. 2, the adaptive IIR filter model and several system

data are introduced, while Sect. 3 reports four PSO algo-

rithms. In Sect. 4, the proposed version is presented. In

Sect. 5, five PSOs are used to solve 12 IIR system identi-

fication problems. Finally, the paper ends after presenting

the conclusions.

2 Adaptive IIR filter model

The goal of IIR system identification is to turn the coeffi-

cients of the adaptive IIR filter by adaptive algorithms. The

purpose was to bring the filter’s output closer to the output

of unknown system when the same input signal is applied

simultaneously to both, unknown plant and adaptive filter.

The block diagram of an adaptive IIR system identification

is shown in Fig. 1.

This section studies the design method of adaptive IIR

filter. The input–output relation can be described in terms

of the following difference equation [10, 18]:

XL

l¼0

alyðn� lÞ ¼
XK

k¼0

bkxðn� kÞ ð1Þ

where xðnÞ and yðnÞ denote the filter’s input and output,

respectively, and Lð�KÞ is the filter’s order. Suppose

a0 ¼ 1, the transfer function of the adaptive IIR filter is

given by

HðzÞ ¼
PK

k¼0 bkz
�k

1þ
PL

l¼1 alz
�l

ð2Þ

In the design method, the adaptive IIR filter HaðzÞ is

utilized to identify the unknown plant of transfer function

HuðzÞ so that the output of the unknown IIR system is well

matched by the output of the adaptive IIR filter. Moreover,

mean square error (MSE) of time samples is viewed as the

objective function, and it is given by

MSE ¼ J ¼ 1

Ns

XNs

n¼1

e2ðnÞ ð3Þ

Additionally, the dB form of the mean square error

(MSE) is given by

MSEðdBÞ ¼ 10 log10ðJÞ ð4Þ

where Ns is the number of time samples; eðnÞ ¼ dðnÞ �
yðnÞ stands for the error signal; yðnÞ stands for the response
of the adaptive IIR filter; dðnÞ ¼ y0ðnÞ þ vðnÞ stands for

the overall response of the unknown IIR plant; y0ðnÞ
denotes the output of the unknown IIR plant; vðnÞ denotes
an additive white Gaussian noise. The task of adaptive

algorithm is to minimize MSE by turning the coefficient

vector H of the transfer function HaðzÞ. Here,

Fig. 1 Adaptive algorithm for IIR system identification
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H ¼ ða1; . . .; aL; b0; b1; . . .; bKÞT ð5Þ

3 Particle swarm optimization-based algorithms

Particle swarm optimization (PSO) algorithm [11, 12, 19–

22] is one of the most popular evolutionary algorithms, and

it is a very simple but efficient optimization technique for

solving global optimization problems. Due to its simplicity

and convenience, the PSO has been applied in many real-

world applications, such as odor source localization [23],

aggregate production planning [24], switching instant

identification [25], defense against SYN flooding attacks

[26], and designing fuzzy logic controllers [27].

3.1 PSO algorithm

In order to better understand the working principle of PSO,

a simple flowchart of PSO is provided as follows (Fig. 2).

The PSO takes advantage of previous velocity vectors

and position vectors to generate current velocity vectors

and position vectors for the particles in the population. In

particular, each particle makes use of its own experience

and the most successful particle’s experience to adjust its

position. For each individual, its velocity and position can

be updated as given by Eqs. (6), (7), respectively:

vkþ1
i;j ¼ xvki;j þ c1r1ðpi;j � xki;jÞ þ c2r2ðgj � xki;jÞ ð6Þ

xkþ1
i;j ¼ xki;j þ vkþ1

i;j ð7Þ

Here, x represents inertia weight, and it decreases lin-

early during the iteration process. vki;j and xki;j are, respec-

tively, the jth velocity variable and the jth position variable

of particle i at generation k. vkþ1
i;j and xkþ1

i;j are, respectively,

the jth velocity variable and the jth position variable of

particle i at generation k ? 1. pi;j denotes the jth variable of

the personal best position of particle i, while gj signifies the

jth variable of the global best position of the population. c1
is defined as cognitive factor, while c2 represents social

factor. r1 and r2 denote the uniformly generated random

numbers in the range [0, 1].

3.2 Craziness-based particle swarm optimization

algorithm

In [28–30], the authors modified Eq. (6) using several

random numbers and a ‘‘craziness velocity’’ with a pre-

defined probability is executed before the process of

position updating. This PSO variant is described as crazi-

ness-based particle swarm optimization (CRPSO). The new

velocity updating equation is given by

Vkþ1
i ¼ r2 � signðr3Þ � Vk

i þ ð1� r2Þ � C1 � r1 � pbest
ðkÞ
i � Ski

n o

þ ð1� r2Þ � C2 � ð1� r1Þ � gbest
ðkÞ
i � Ski

n o

ð8Þ

where r1, r2, and r3 are the three different random numbers

which are uniformly generated in the interval [0,1], and

signðr3Þ is determined according to the following equation:

signðr3Þ ¼
�1; r3 � 0:05;
1; Otherwise:

�
ð9Þ

In addition, the CRPSO introduces a craziness operator,

intending to maintain the diversity of the particles, and it

can be expressed as follows:

Vkþ1
i ¼ Vkþ1

i þ Pðr4Þ � signðr4Þ � vcrazinessi ð10Þ

where r4 is a random number generated uniformly from the

interval [0,1]; vcrazinessi is a random number generated uni-

formly from the interval ½vmin
i ; vmax

i �; and Pðr4Þ and signðr4Þ
are defined, respectively, as

Pðr4Þ ¼
1; If r4 �Pcr;
0; Otherwise:

�
ð11Þ

where Pcr is a predefined probability of craziness.

Initialize problem parameters
and algorithm parameters

Initialize the population

Velocity updating

Position updating

Determine the personal best
particles and the global best

particle

Stop the algorithm procedure
and output the best result

Is the terminating
condition satisfied?

N

Y

Fig. 2 Flowchart of particle swarm optimization
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signðr4Þ ¼
�1; If r4 � 0:5;
1; Otherwise:

�
ð12Þ

vcrazinessi is set very small (=0.0001). r4 � 0:5 (or \0:5)

aims to use equal probability of direction reversal of

vcrazinessi .

3.3 A global particle swarm optimization algorithm

In [31], the authors modified Eq. (6) by introducing a new

inertia weight and adding small disturbance to the global

optimal solution. This PSO variant is described as global

particle swarm optimization (GPSO). The new velocity

updating equation is given by:

vtþ1
i;j ¼ xðtÞ � vti;j þ c1r1ðpi;j � xti;jÞ þ c2r2½pgjð1	 d

� Uð0; 1ÞÞ � xti;j� ð13Þ

Here, xðtÞ represents the inertia weight at generation t, and

it is given by:

xðtÞ ¼ a� expðb� t2Þ � R ð14Þ

where b ¼ ln xmax=xminf g=ðT2 � 1Þ, and a ¼ xmax�
expð�bÞ. Additionally, U(0,1) is a random number gener-

ated uniformly from the interval [0,1]; xmax (xmin) repre-

sents the maximal (minimal) inertia weight; d is termed as

disturbance factor. By using the above velocity updating

equation, the GPSO can make a good balance between

global search and local search.

3.4 A particle swarm optimization with time-

varying acceleration coefficients

In [32, 33], the authors modified Eq. (6) by introducing two

dynamical acceleration coefficients. Especially, they adjust

these coefficients in a way that the cognitive component is

reduced and social component is increased as iteration

proceeds. This PSO variant is described as particle swarm

optimization with time-varying acceleration coefficients

(TVAC-PSO). The novel velocity updating equation is

stated as follows:

viterþ1
in ¼ x� viterin þ C1i þ

C1f � C1i

itermax

� �
� rn1 � piterpbestin

� xiterin

� �

þ C2i þ
C2f � C2i

itermax

� �
� rn2 � giterbest � xiterin

� �

ð15Þ

where parameters C1i and C1f (C2i and C2f ) represent initial

and final values of cognitive (social) acceleration coeffi-

cients, respectively. Moreover, inertia weight x is given

by:

x ¼ xmax �
xmax � xmin

itermax

� iter ð16Þ

xmax and xmin denote maximal and minimal inertia

weights, respectively. iter stands for the maximum iteration

number. In addition, the position updating equation is

slightly modified as:

xiterþ1
in ¼ xiterin þ C � viterþ1

in ð17Þ

Parameter C is the constriction factor and can be cal-

culated by using the following equation:

C ¼ 2

2� u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4u

p ð18Þ

where u is set to 4.1. By using the above updating equa-

tion, the TVAC-PSO can improve solution quality and

avoid premature convergence.

In addition to PSO, there aremanyother swarm intelligence-

based algorithms that can be applied to IIR system identifica-

tion problems, such as harmony search algorithm [34, 35],

differential evolution [36], genetic algorithm [37], cuckoo

search [38–40], earthworm optimization algorithm (EWA)

[41], and elephant herding optimization (EHO) [42, 43],

monarch butterfly optimization [44, 45], bat algorithm [46, 47],

firefly algorithm [48], and krill herd algorithm [49–52]. Due to

space limitations, we only concentrate on the application of

several PSO algorithms to IIR system identification problems.

4 Improved particle swarm optimization

As already pointed out, this paper presents an improved

particle swarm optimization algorithm (IPSO) for solving

IIR system identification problems. In detail, IPSO and

PSO differ in three aspects, which are described below:

4.1 Population initialization

Golden ratio is a very mysterious and interesting issue, and

it has found many application areas, such as the human

heart [53], n-body problem [54], computation of a face

attractiveness index [55], and facial beauty [56]. Due to its

simplicity and usefulness, golden ratio is employed to

segment the solution space:

First, determine M values for the jth (j = 1, 2,…, N)

dimension of all M particles, and the ith (i = 1, 2,…, M)

value is calculated according to the following equation:

ai;j ¼ Uj � 0:618i � ðUj � LjÞ ð19Þ

where Uj and Lj represent the upper and lower bounds,

respectively, for the jth dimension. After calculating M

values, they are randomly assigned to the jth dimension of

M particles. Let xi;j be the jth (j = 1, 2,…, N) dimension of

the ith (i = 1, 2,…, M) particle, and then it can be deter-

mined by xi;j ¼ ai0;j. It should be noted that the index i0 is a

688 Neural Comput & Applic (2018) 30:685–698
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random integer in the range [1, M]. By using the above

initialization method, a population P1 is produced.

Second, calculate M values for the jth (j = 1, 2,…, N)

dimension of all M particles, and the ith (i = 1, 2,…, M)

value is obtained according to the following equation:

bi;j ¼ Lj þ 0:618i � ðUj � LjÞ ð20Þ

After calculating M values, they are randomly assigned

to the jth dimension of the other M particles. Thus, xi;j is

determined by xi;j ¼ bi0;j. By using the above initialization

method, a population P2 is produced.

Third, select M best particles from P1 [ P2 for the initial

population P. In population P, any solution vector xi ¼
ðxi;1; xi;2; . . .; xi;NÞ (i = 1, 2,…, M) stands for a candidate

solution of the parameters [as Eq. (5)] used for imple-

menting the IIR system identification. Besides, the length

of solution vector xi is equal to N, which is exactly the

number of the parameters in coefficient vector H. By using

this novel approach of population initialization, the quality

of solutions and convergence of the IPSO can be improved

simultaneously.

4.2 Global disturbance

In light of Eqs. (6), (7), the global best particle is a

potential candidate solution and it facilitates rapid move-

ment of all the particles toward the neighbors. However,

this tendency may lead to trapping into the local optima. As

a result, these particles will lose plenty of chances of

searching very large spaces of candidate solutions. In order

to help particles to easily get rid of the local optima, a

global disturbance strategy is utilized to update the global

best particle in each generation, and it can be expressed as

follows:

g0j ¼ gj � ð1þ k� ðNð0; 1ÞÞÞ ð21Þ

Here, gj represents the jth dimension of the global best

particle g; parameter k is defined as disturbance factor. We

have tried different values (i.e., 0.01, 0.02, 0.05, 0.1, 0.15,

and 0.2) for k, but we did not notice obvious difference in

experimental results. Thus, it is set to 0.1 in this paper. In

addition, N(0,1) denotes the normal distribution with mean

0 and variance 1. It should be emphasized that the global

best particle g will be replaced with g0 only when g0 is
superior to g. By using the above updating strategy, the

capacity of escaping from the local optimums can be fur-

ther enhanced for IPSO.

4.3 Randomly assigned inertia weights

Inertia weight x is responsible for iteratively adjusting the

velocities of all particles, and different values of x will

have distinct effects on the scope of particles’ search. To be

more specific, a large value of x contributes to the global

search, while a small value is helpful to the local search.

With regard to the traditional PSO algorithm, it has only

one value of inertia weight at each generation, which can

hardly give consideration to both global search and local

search. To overcome this shortage, M different inertia

weights are generated in terms of the following equation:

xi ¼ i� Dx ð22Þ

Here, i (i = 1, 2,…, M) is the index of particle, Dx is

equal to 1/M. After generating these M different inertia

weights, they are randomly assigned to M particles at each

generation. Based on this method, the velocity updating

equation can be stated as follows:

vkþ1
i;j ¼ xi0v

k
i;j þ c1r1ðpi;j � xki;jÞ þ c2r2ðgj � xki;jÞ ð23Þ

where pi,j stands for the jth dimension of personal best

particle pi. xi0 denotes a randomly selected inertia

weight from xi (i = 1, 2,…, M) for particle i, and each

particle adopts a different inertia weight from the others.

At each generation, the original PSO algorithm adopts

only one inertia weight. Unlike original PSO, the IPSO

uses M values of inertia weight. Furthermore, as men-

tioned earlier, the large values of xi0 are beneficial to

global search, and the small values of xi0 are useful for

carrying out local search. Clearly, the IPSO algorithm is

able to keep better balance between the global search

and the local search, as compared to that of the PSO

algorithm.

In addition to these three improvements, as resulted by

the application of the IPSO algorithm, we provide a more

detailed IPSO steps which is presented in Table 1.

In computer science, the traditional PSO algorithm is

a swarm intelligence-based approach which optimizes a

problem by gradually trying to improve candidate

solutions so as to meet the requirements of this prob-

lem. As a variant of PSO, IPSO optimizes the infinitive

impulse response system identification problem by

iteratively updating a population of candidate solutions

namely particles and disturbing them in the solution

space according to the mathematical model of adaptive

IIR filter. More specifically, the mean square error is an

important criterion that gains confidence in, or reject

the postulated mathematical model based on the final

parameters optimized by the IPSO algorithm. If the

mean square error reaches quite a small value, the

outputs of the adaptive IIR filter will be very close to

the outputs of the actual system outputs. Thus, it can be

safely claimed that the postulated model is reasonable

and accurate. On the other hand, if the mean square

error reaches a large value, the outputs of the adaptive

IIR filter will be far away from the outputs of the actual

Neural Comput & Applic (2018) 30:685–698 689
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system outputs, indicating that the postulated model is

unreasonable and inaccurate. This paper aims to utilize

the IPSO algorithm to optimize the parameters of the

adaptive IIR filter in order to validate the postulated

mathematical model.

5 Experimental results and analysis

This section aims to investigate the improvement made by

the proposed population initialization, global disturbance,

and dynamical inertia weight on solving the IIR system

Table 1 Procedure of IPSO

Line Pseudocode of IPSO

1 Set the number of time samples Ns = 100; the feedback filter order L; the feed forward filter order K

2 Set the number of variables N = L ? K ? 1; population size M = 40; the number of generations NG = 1000

3 Set Dx = 1/M; k = 0.1; xLj = -1000, xUj = 1000, vLj = -1000, vUj = 1000, j = 1,…, N

4 Generate two swarms P1 and P2 according to golden ratio

5 Select M best particles from P1 [ P2 for the initial population P

6 Produce M different inertia weights

7 For t = 1 to NG

8 Calculate the objective function values of all particles according to the mean square error

9 Disturb the global best particle according to normal distribution, and update g if g0 is better than g

10 Randomly assign M different inertia weights to M particles.

11 For i = 1 to M

12 If f(xi)\ f(pi)

13 pi = xi. % Update the personal best particle

14 If f(pi)\ f(g)

15 g = pi. % Update the global best particle

16 For j = 1 to N

17 Update the jth velocity variable of particle i using velocity updating equation based on modified inertia weights

18 Update the jth position variable of particle i using traditional position updating equation

19 Output the best results

NG denotes the total number of generations for adjusting the parameters associated with the IIR system identification. In each generation, any

new updated candidate solution will be accepted if it is superior to the solution before updating

Table 2 Twelve IIR system identification problems

Problems The transfer function of IIR plant Hu(z) The transfer function of the adaptive IIR filter model Ha (z)

Example I (Case 1) [2, 8, 10] 0:1084þ0:5419z�1þ1:0837z�2þ1:0837z�3þ0:5419z�4þ0:1084z�5

1þ0:9853z�1þ0:9738z�2þ0:3864z�3þ0:1112z�4þ0:0133z�5
b0þb1z

�1þb2z
�2þb3z

�3þb4z
�4þb5z

�5

1�a1z�1�a2z�2�a3z�3�a4z�4�a5z�5

Example I (Case 2) [8, 10] 0:1084þ0:5419z�1þ1:0837z�2þ1:0837z�3þ0:5419z�4þ0:1084z�5

1þ0:9853z�1þ0:9738z�2þ0:3864z�3þ0:1112z�4þ0:0133z�5
b0
0
þb0

1
z�1þb0

2
z�2þb0

3
z�3þb0

4
z�4

1�a0
1
z�1�a0

2
z�2�a0

3
z�3�a0

4
z�4

Example II (Case 1) [8, 10, 57] 1�0:9z�1þ0:81z�2�0:729z�3

1þ0:04z�1þ0:2775z�2�0:2101z�3þ0:14z�4
b0þb1z

�1þb2z
�2þb3z

�3

1�a1z�1�a2z�2�a3z�3�a4z�4

Example II (Case 2) [8, 10] 1�0:9z�1þ0:81z�2�0:729z�3

1þ0:04z�1þ0:2775z�2�0:2101z�3þ0:14z�4
b0
0
þb0

1
z�1þb0

2
z�2

1�a0
1
z�1�a0

2
z�2�a0

3
z�3

Example III (Case 1) [4, 7, 8, 10] 0:05�0:4z�1

1�1:131z�1þ0:25z�2
b0þb1z

�1

1�a1z�1�a2z�2

Example III (Case 2) [4, 7, 8, 10] 0:05�0:4z�1

1�1:131z�1þ0:25z�2
b0
0

1�a0
1
z�1

Example IV (Case 1) [5, 8, 10] �0:2�0:4z�1þ0:5z�2

1�0:6z�1þ0:25z�2�0:2z�3
b0þb1z

�1þb2z
�2

1�a1z�1�a2z�2�a3z�3

Example IV (Case 2) [5, 8, 10] �0:2�0:4z�1þ0:5z�2

1�0:6z�1þ0:25z�2�0:2z�3
b0
0
þb0

1
z�1

1�a0
1
z�1�a0

2
z�2

Example V [4, 5, 10] 1�0:4z�2�0:65z�4þ0:26z�6

1�0:77z�2�0:8498z�4þ0:6486z�6
b0þb2z

�2þb4z
�4þb6z

�6

1�a2z�2�a4z�4�a6z�6

Example VI [4, 10, 58] 1
1�1:2z�1þ0:6z�2

b0
1�a1z�1�a2z�2

Example VII [10, 59] 1

ð1�0:5z�1Þ3
1

1�a1z�1�a2z�2

Example VIII [2, 6, 10, 59] 1:25z�1�0:25z�2

1�0:3z�1þ0:4z�2
b1z

�1þb2z
�2

1�a1z�1�a2z�2
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identification problems. For this purpose, we compared the

performance of the following five PSO algorithms: the

original PSO [11, 12], the CRPSO [28–30], the GPSO [31],

the TVAC-PSO [32, 33], and our proposed IPSO. Twelve

problems are recorded in Table 2. In order to understand

the difference in the problems for algorithm validation, we

will describe and discuss these problems as follows:

Example I (Case 1) and Example I (Case 2) share the same

unknown plant that is inherently a fifth-order low-pass

Butterworth filter, but they employ different adaptive filters

to identify this plant. To be more specific, the first adaptive

filter has the same order as that of the unknown plant, and

the order of the second adaptive filter is four which is

slightly lower than that of the unknown plant. Obviously,

the first filter is more accurate than the second one, but it

introduces more parameters needed for solving IIR system

identification, hence it increases the computational cost.

However, the order of the adaptive filter should not be far

from that of the unknown plant; otherwise, it may lead to

serious mean square error. The same observations apply to

the other cases. In addition, the problem parameters are set

as follows: the number of time samples Ns = 100; the

variables’ upper bound xUj = 1000 and lower bound

xLj = -1000; the input common to both the unknown plant

and the identifying IIR filter is the randomly generated

Gaussian white noise signal with mean 0 and standard

deviation 1; the additive noise is a Gaussian white signal

with mean 0 and standard deviation 10-3.

The algorithm parameters are displayed in Table 3. Here,

‘‘PS’’ represents population size, NG represents the number

of generations. MATLAB 7.0 was used to execute the above

design steps under the environment of Intel(R) Core(TM)

i5-2410M CPU @ 2.30 GHz. Thirty independent runs were

performed for each problem, and the optimization results of

each of these are listed in Table 4.

Table 4 compares the five PSO approaches on the IIR

system identification problems with different feedback fil-

ter orders and feed forward filter orders. Here, the term

‘‘AET’’ stands for average execution time, and the term

‘‘Std’’ stands for standard deviation. Additionally, the best

results are highlighted in bold. According to Table 4, the

IPSO algorithm outperforms the other four PSO

approaches on most IIR system identification problems.

Especially for Example I (Case 1) and Example II (Case 1),

IPSO can obtain the best results according to the five cri-

terions ‘‘Best,’’ ‘‘Worst,’’ ‘‘Mean,’’ ‘‘Median,’’ and ‘‘Std.’’

For Example III (Case 1), Example III (Case 2), Example

IV (Case 1), Example IV (Case 2), Example VI, Example

VII, and Example VIII, IPSO finds their global optimal

solutions in each of the 30 runs. This indicates that the new

global disturbance strategy can offer much more accurate

solutions for IIR system identification problems, which

mainly benefits from its strong exploitation ability. With

regard to Example V, IPSO finds the second best solution

which is slightly worse than that of CRPSO, but better than

those attained by the other three PSO approaches. More-

over, IPSO can obtain the best results in terms of the other

four criterions involving ‘‘Worst,’’ ‘‘Mean,’’ ‘‘Median,’’

and ‘‘Std.’’ For Example I (Case 2), although the best

solution obtained by IPSO is not as good as that of TVAC-

PSO, the solutions it generates are all acceptable. For

Example II (Case 2), three PSO approaches, viz., CRPSO,

TVAC-PSO, and IPSO, can find the best solution which is

slightly better than those of the other two approaches. A

careful observation from Table 4 reveals that IPSO has the

best convergence among the five approaches. The reason

lies in its capability of attaining the smallest values of

‘‘Mean’’ for all the 12 problems. Furthermore, it can attain

the smallest values of ‘‘Std’’ for ten out of 12 problems,

which signifies its high reliability. Additional executing

steps lead to increased computing time for IPSO, and it

uses more average executing times as compared with the

other four PSO approaches for six problems according to

the term ‘‘AET’’. Nevertheless, there is no significant dif-

ference regarding the average executing times of five PSO

approaches. By and large, the comparison among five PSOs

is fair and acceptable.

To learn more about the evolution processes of different

PSO approaches, Fig. 3 plots the average optimization

curves of five PSO approaches in optimizing 12 IIR system

identification problems.

As can be seen from Fig. 3, the IPSO algorithm gener-

ates better solutions for most IIR system identification

problems in initial evolution progress. This indicates that

Table 3 Parameters of PSO, CRPSO, GPSO, TVAC-PSO, and IPSO

Algorithm PS NG Inertia weight Acceleration coefficients Velocity Other parameters

PSO 40 1000 xmax = 0.9, xmin = 0.4 c1 = 2, c2 = 2 vmax = 1000 –

CRPSO 40 1000 – c1 = 2.05, c2 = 2.05 vmax = 1000 Pcr = 0.3

GPSO 40 1000 xmax = 0.9, xmin = 0.4 c1 = 2, c2 = 2 vmax = 1000 d = 0.01

TVAC-PSO 40 1000 xmax = 0.9, xmin = 0.4 c1i = 2.5, c1f = 0.5, c2i = 0.5, c2f = 2.5, vmax = 0.4 xUj = 400 / = 4.1

IPSO 40 1000 xmax = 0.9, xmin = 0.4 c1 = 2, c2 = 2 vmax = 1000 k = 0.1
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Table 4 Comparison of PSO, CRPSO, GPSO, TVAC-PSO, and IPSO on 12 IIR system identification problems

Problem Algorithm AET(s) Best Worst Mean Median Std

Example I (Case 1) PSO 1.7031 3.1087e ? 001 1.1683e ? 003 2.2689e ? 002 6.2253e ? 001 3.8166e ? 002

CRPSO 1.6983 -2.4906e ? 001 1.0299e ? 003 2.5852e ? 002 5.9165e ? 001 3.4514e ? 002

GPSO 1.7021 -3.0789e ? 001 5.6210e ? 002 1.5058e ? 002 4.7680e ? 001 2.0751e ? 002

TVAC-PSO 1.6769 -3.3954e ? 001 4.4930e ? 002 9.3305e ? 001 4.4749e ? 001 1.3248e ? 002

IPSO 1.7364 25.3741e 1 001 23.8482e 1 001 24.4715e 1 001 24.4038e 1 001 3.7665e 1 000

Example I (Case 2) PSO 1.6257 4.8972e ? 001 6.4502e ? 001 5.8651e ? 001 5.9681e ? 001 3.7262e ? 000

CRPSO 1.6150 -4.0506e ? 001 1.0551e ? 003 8.6110e ? 001 4.4333e ? 001 2.1715e ? 002

GPSO 1.6083 -3.7016e ? 001 6.4256e ? 001 2.2467e ? 000 -2.7375e ? 001 3.8644e ? 001

TVAC-PSO 1.6099 24.6217e 1 001 3.2544e ? 002 1.6389e ? 001 -1.0256e ? 001 7.1473e ? 001

IPSO 1.6480 -3.5592e ? 001 23.0224e 1 001 23.3560e 1 001 23.3617e 1 001 1.0846e 1 000

Example II (Case 1) PSO 2.3832 -3.0109e ? 001 1.4393e ? 003 1.0187e ? 002 5.9511e ? 001 2.5312e ? 002

CRPSO 2.4016 -5.9877e ? 001 7.0831e ? 002 6.6121e ? 001 1.5800e ? 001 2.0150e ? 002

GPSO 2.3957 -3.7538e ? 001 1.8548e ? 002 -4.8401e ? 000 -2.6268e ? 001 4.7315e ? 001

TVAC-PSO 2.3559 -6.0049e ? 001 4.7228e ? 001 -1.7785e ? 001 -1.1880e ? 001 2.8503e ? 001

IPSO 2.4474 26.0164e 1 001 22.7259e 1 001 25.1965e 1 001 25.2910e 1 001 6.9944e 1 000

Example II (Case 2) PSO 2.2957 -1.1309e ? 001 6.4487e ? 001 3.5951e ? 001 5.4629e ? 001 3.0851e ? 001

CRPSO 2.2742 -1.1310e ? 001 5.9634e ? 001 -7.6463e - 001 -1.1310e ? 001 2.3674e ? 001

GPSO 2.2729 -1.1303e ? 001 -6.6007e ? 000 -1.0100e ? 001 -1.1173e ? 001 1.9645e ? 000

TVAC-PSO 2.2731 -1.1310e ? 001 2.2186e ? 000 -9.0110e ? 000 -1.1310e ? 001 3.7050e ? 000

IPSO 2.3299 -1.1310e ? 001 26.6099e 1 000 21.0286e 1 001 -1.1301e ? 001 1.8814e 1 000

Example III (Case 1) PSO 2.2559 -5.9840e ? 001 -2.0306e ? 000 -1.0464e ? 001 -2.0306e ? 000 1.9924e ? 001

CRPSO 2.1457 -5.9839e ? 001 -2.0306e ? 000 -5.0203e ? 001 -5.9838e ? 001 2.1912e ? 001

GPSO 2.1481 -5.8312e ? 001 -2.0306e ? 000 -4.9639e ? 001 -5.4565e ? 001 1.6223e ? 001

TVAC-PSO 2.1181 -5.9840e ? 001 -5.9840e ? 001 -5.9840e ? 001 -5.9840e ? 001 6.0097e - 013

IPSO 2.1844 -5.9840e ? 001 -5.9840e ? 001 -5.9840e ? 001 -5.9840e ? 001 2.1276e - 010

Example III (Case 2) PSO 0.3684 -6.4540e ? 000 -6.4540e ? 000 -6.4540e ? 000 -6.4540e ? 000 2.7892e - 015

CRPSO 0.2766 -6.4540e ? 000 -6.4540e ? 000 -6.4540e ? 000 -6.4540e ? 000 4.6228e - 011

GPSO 0.2762 -6.4540e ? 000 -6.4540e ? 000 -6.4540e ? 000 -6.4540e ? 000 1.8177e - 006

TVAC-PSO 0.2515 -6.4540e ? 000 -6.4540e ? 000 -6.4540e ? 000 -6.4540e ? 000 2.4740e - 015

IPSO 0.2741 -6.4540e ? 000 -6.4540e ? 000 -6.4540e ? 000 -6.4540e ? 000 2.6645e - 015

Example IV (Case 1) PSO 2.1870 -6.0038e ? 001 5.8715e ? 001 1.6615e ? 001 5.2618e ? 001 5.2232e ? 001

CRPSO 2.1716 -6.0037e ? 001 5.6253e ? 001 -5.2403e ? 001 -6.0036e ? 001 2.9048e ? 001

GPSO 2.1680 -5.7798e ? 001 -2.2609e ? 001 -4.9594e ? 001 -5.3728e ? 001 9.3060e ? 000

TVAC-PSO 2.1501 -6.0038e ? 001 4.3409e ? 001 -4.9256e ? 001 -6.0038e ? 001 2.5793e ? 001

IPSO 2.2262 -6.0038e ? 001 26.0038e 1 001 26.0038e 1 001 -6.0038e ? 001 2.5650e - 005

Example IV (Case 2) PSO 2.2846 -2.0943e ? 001 -4.6518e ? 000 -5.7378e ? 000 -4.6518e ? 000 4.1331e ? 000

CRPSO 2.1711 -2.0943e ? 001 -4.6518e ? 000 -2.0400e ? 001 -2.0943e ? 001 2.9743e ? 000

GPSO 2.1791 -2.0943e ? 001 -4.6518e ? 000 -1.8197e ? 001 -2.0942e ? 001 6.1633e ? 000

TVAC-PSO 2.1498 -2.0943e ? 001 -2.0943e ? 001 -2.0943e ? 001 -2.0943e ? 001 3.7898e - 015

IPSO 2.1982 -2.0943e ? 001 -2.0943e ? 001 -2.0943e ? 001 -2.0943e ? 001 3.6134e - 015

Example V PSO 1.8942 -2.8143e ? 001 6.4170e ? 001 4.7024e ? 001 5.7238e ? 001 2.6663e ? 001

CRPSO 1.9277 23.2180e 1 001 5.7611e ? 001 8.1697e ? 000 -1.5615e ? 001 3.7705e ? 001

GPSO 1.9220 -3.1153e ? 001 4.9858e ? 001 -6.9342e ? 000 -1.6705e ? 001 2.7055e ? 001

TVAC-PSO 1.9037 -3.1918e ? 001 4.8341e ? 001 -6.5120e - 001 -1.6000e ? 001 2.8355e ? 001

IPSO 1.9653 -3.2050e ? 001 1.3086e 1 001 21.9679e 1 001 21.8034e 1 001 9.6962e 1 000
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the novel population initialization strategy can provide

high-quality solutions for IIR system identification prob-

lems. In addition, the curves of IPSO descend much faster

than those of the other four PSO approaches, e.g., Example

I (Case 1), Example I (Case 2), Example II (Case 1),

Example IV (Case 1), and Example V, suggesting its better

performance in search speed. Moreover, IPSO converges to

the lowest levels for all the 12 problems, demonstrating its

best search ability among the five PSO approaches. So far

as Example III (Case 2) and Example VII are concerned,

PSO can converge to the same levels as those of IPSO.

Regarding Example III (Case 2), Example IV (Case 2), and

Example VII, CRPSO can converge to the same levels as

those of IPSO. With respect to Example II (Case 2),

Example III (Case 2), and Example VII, GPSO can achieve

the same levels as those of IPSO. With respect to Example

III (Case 1), Example III (Case 2), Example IV (Case 2),

Example VI, and Example VII, TVAC-PSO has the capa-

bility to achieve the same levels as those of IPSO. From the

above observation and analysis, the IPSO algorithm has

clearly demonstrated faster convergence rate and stronger

stability than the other four PSO approaches on solving

various IIR system identification problems.

The identifying results are visualized in order to testify

the identifying performance of the IIR model based on

IPSO, and Fig. 4 describes the comparison of actual plant

outputs and IIR model outputs for 12 IIR system identifi-

cation problems.

It is clear from Fig. 4 that IIR model outputs are very

close to actual plant outputs in most cases, which indicates

the high accuracy of IPSO. For Example II (Case 2),

Example IV (Case 2), and Example VII, there are minor

errors between actual plant outputs and IIR model outputs.

Regarding Example III (Case 2), the rough shape of IIR

model outputs is identical to that of IIR model outputs, but

there exist certain errors between these two kinds of out-

puts. In fact, the above four problems are all based on

reduced-order IIR filter models. Although this kind of

approximation model can reduce problem parameters and

simplify calculation of complexity, it may result in non-

negligible errors. To summarize, IPSO shows desirable

performance for most IIR system identification problems.

By combining suitable IIR model, it will play an important

role in IIR system identification.

IIR system identification is a process of identifying

or measuring the mathematical model of an infinitive

impulse response system based on the measurements of the

system inputs and outputs. In this paper, there are

mainly four steps to be carried out for IIR system identi-

fication: (1) gather the outputs dðnÞ of unknown system; (2)

calculate the outputs yðnÞ of the adaptive IIR filter

according to the postulated model; (3) use the IPSO

algorithm to adjust the parameters of the adaptive IIR filter

H ¼ ða1; . . .; aL; b0; b1; . . .; bKÞT ; step (4) model validation.

Step (1) is known as a necessary and basic part in the

process of IIR system identification, and the outputs dðnÞ
are composed of the useful signals and noise. Step (2) is

used to calculate the outputs yðnÞ based on the current

parameters of the adaptive IIR filter. Also, the more

accurate these parameters are, the smaller mean square

error (MSE) is. Step (3) aims to find the smallest mean

square error so as to find the most suitable parameters of

the adaptive IIR filter. After a number of generations, all

these three steps are stopped, and the best results are given.

Table 4 continued

Problem Algorithm AET(s) Best Worst Mean Median Std

Example VI PSO 0.4891 -6.0498e ? 001 5.1357e ? 000 -3.8834e ? 001 -6.0498e ? 001 3.0050e ? 001

CRPSO 0.4403 -6.0498e ? 001 5.1357e ? 000 -2.8720e ? 001 -4.3141e ? 001 3.2779e ? 001

GPSO 0.4339 -5.9602e ? 001 5.1357e ? 000 -2.0348e ? 001 -7.5901e ? 000 2.5080e ? 001

TVAC-PSO 0.3279 -6.0498e ? 001 -6.0498e ? 001 -6.0498e ? 001 -6.0498e ? 001 1.1285e - 013

IPSO 0.3523 -6.0498e ? 001 -6.0498e ? 001 -6.0498e ? 001 -6.0498e ? 001 1.0484e - 013

Example VII PSO 0.3462 -1.5350e ? 001 -1.5350e ? 001 -1.5350e ? 001 -1.5350e ? 001 6.0734e - 015

CRPSO 0.3146 -1.5350e ? 001 -1.5350e ? 001 -1.5350e ? 001 -1.5350e ? 001 1.5473e - 009

GPSO 0.3261 -1.5350e ? 001 -1.5350e ? 001 -1.5350e ? 001 -1.5350e ? 001 1.6202e - 004

TVAC-PSO 0.3214 -1.5350e ? 001 -1.5350e ? 001 -1.5350e ? 001 -1.5350e ? 001 8.3579e - 015

IPSO 0.3421 -1.5350e ? 001 -1.5350e ? 001 -1.5350e ? 001 -1.5350e ? 001 5.2881e - 015

Example VIII PSO 1.4983 -6.0614e ? 001 2.6652e ? 000 -9.4205e ? 000 2.6652e ? 000 2.4755e ? 001

CRPSO 1.3980 -6.0614e ? 001 2.6652e ? 000 -5.6395e ? 001 -6.0613e ? 001 1.6054e ? 001

GPSO 1.3884 -5.8887e ? 001 2.6652e ? 000 -5.3104e ? 001 -5.6892e ? 001 1.5200e ? 001

TVAC-PSO 1.3614 -6.0614e ? 001 -6.0614e ? 001 -6.0614e ? 001 -6.0614e ? 001 8.1411e - 014

IPSO 1.4146 -6.0614e ? 001 -6.0614e ? 001 -6.0614e ? 001 -6.0614e ? 001 4.9982e - 014
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Furthermore, the goal of step (4) is to gain confidence in, or

reject the postulated mathematical model based on the final

parameters optimized by the IPSO algorithm. Concretely,

if there is an adequate correspondence between the outputs

of the postulated model and the actual system outputs, the

postulated model is verified and vice versa.

In addition to the ABC, CSO, and PSO algorithms, our

future work will concentrate on the application of krill herd

algorithm [60–64] and other metaheuristic algorithms [65–

70] to IIR system identification, which has been proved to

be effective and efficient on solving some other complex

optimization problems.
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Fig. 3 Average optimization curves of five PSO approaches on

solving 12 IIR system identification problems. a Example I (Case 1),

b Example I (Case 2), c Example II (Case 1), d Example II (Case 2),

e Example III (Case 1), f Example III (Case 2), g Example IV (Case

1), h Example IV (Case 2), i Example V, j Example VI, k Example

VII, l Example VIII
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6 Conclusions

Identification of the actual unknown IIR plant based on IIR

model design is often a complex process. This research

presents an effective alternative approach namely IPSO for

optimizing the mean square error (MSE) associated with

IIR system identification problem. Specifically, IPSO is

utilized to determine suitable coefficients of IIR model

such that the objective function MSE is minimized. IPSO

improves PSO in three aspects as follows: To begin with, it

segments solution space using golden ratio at the beginning

of evolutionary process; next, it dynamically adjusts inertia

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Sample n Sample n Sample n 

Sample n Sample n Sample n 

Sample n Sample n Sample n 

Sample n Sample n Sample n 

d(
n)

 a
nd

 y
(n

)
d(n)
y(n)

10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

2

3

4

5

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

8

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

d(
n)

 a
nd

 y
(n

)

d(n)
y(n)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4 Comparison of actual plant output and IIR model output using

IPSO for 12 IIR system identification problems. a Example I (Case 1),

b Example I (Case 2), c Example II (Case 1), d Example II (Case 2),

e Example III (Case 1), f Example III (Case 2), g Example IV (Case

1), h Example IV (Case 2), i Example V, j Example VI, k Example

VII, l Example VIII

Neural Comput & Applic (2018) 30:685–698 695

123



weights according to a random assigning strategy; finally, it

introduces a global disturbance step by using normal dis-

tribution. The above three improvements are easily

implemented by MATLAB 7.0 in the environment of

Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz. Five PSO

approaches including PSO, CRPSO, GPSO, TVAC-PSO,

and IPSO are used to solve the identification problems of

12 unknown IIR systems. From the simulations, it is

observed that IPSO is able to converge very rapidly and

achieves the lowest levels for all cases. In light of this, we

can infer that IPSO is superior to the other four PSO

approaches for IIR system identification problem.

Most cases considered in this paper are small scale, and

thus, our future work will focus on the IIR system identi-

fication problems with larger scale. In addition, we will try

to use some other potential heuristic algorithms to solve

these large-scale problems.
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