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Abstract Image denoising is an important component of

image processing. The interest in the use of Riesz fractional

order derivative has been rapidly growing for image pro-

cessing recently. This papermainly introduces the concept of

fractional calculus and proposes a new mathematical model

in using the convolution of fractional Tsallis entropywith the

Riesz fractional derivative for image denoising. The struc-

tures of n 9 n fractional mask windows in the x and y di-

rections of this algorithm are constructed. The image

denoising performance is assessed using the visual percep-

tion, and the objective image quality metrics, such as peak

signal-to-noise ratio (PSNR), and structural similarity index

(SSIM). The proposed algorithm achieved average PSNR of

28.92 dB and SSIM of 0.8041. The experimental results

prove that the improvements achieved are compatible with

other standard image smoothing filters (Gaussian, Kuan, and

Homomorphic Wiener).

Keywords Fractional calculus � Fractional mask �
Fractional Tsallis entropy � Riesz fractional derivative

1 Introduction

Fractional calculus is a major area in mathematical analysis

that concerns the potential of considering real number powers

or complex number powers of the differentiation operator.

The advantages of fractional derivatives are obvious in

engineering applications, including automatic control,

finite impulse response filter designs, biomedical applica-

tions, and in many other fields [1, 2]. Noise is defined as

any unwanted signal that contaminates an image. Image

noise is essential in all electronic image sensors and elec-

tronic components in the image environment. Image

denoising is the process of removing the noise from an

image and is important for further image processing steps,

such as segmentation and texture analysis. Image denoising

in the fractional domain has recently received significant

research attention. Many fractional calculus algorithms for

image denoising have been proposed [3–5].

Current developments in image processing have been

established by the concept of non-extensive entropy, also

known as Tsallis entropy, which intensified research on the

possible addition of Shannon’s entropy to information

theory. In this theory, a new parameter } is presented as a

real number connected with the non-extensivity of the

system and is system dependent.

In a previous study [1], Riesz fractional order derivative

is used for image sharpening; image sharpening is con-

trolled by adjusting the fractional order of derivative.

However, the use of a Riesz fractional differential-based

approach for textural enhancement in image processing is

applied in [6]. The second-order Riesz fractional differen-

tial operator is used for image texture enhancement. This

present study proposes a simple and effective approach for

image denoising by using fractional Riesz filter (FRF)

convolutedwith the Tsallis entropy. The new approach uses

two mask windows in the x and y directions. The benefits of

using FRF include its ability to remove the image noise

efficiently. FRF emphasizes the edges in the image by the

convolution between the proposed mask window and the

corrupted image, which are important clues for image
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denoising. The denoising performance is measured by

experiments that are conducted based on the standard of

visual perception and by using both the peak signal-to-noise

ratio (PSNR) and the structural similarity index (SSIM)

values. This paper is organized as follows. The Riesz

fractional derivative, which is the new method proposed in

this work, is presented in Sect. 2. Sections 3 describe the

Tsallis entropy. The construction of FRF is described in

Sect. 4. Sections 5 and 6 show the experimental results of

the proposed approach and the quantitative comparison

with other methods, respectively. Finally, Sect. 7 presents

the conclusion.

2 Riesz fractional derivative

In this study, we utilize the Riesz fractional operator, which

is defined as follows [1]:

aD
�}
t /ðtÞ ¼a I

}
t /ðtÞ ¼

1

Cð}Þ

Z t

a

ðt � sÞ}�1/ðsÞds:

The corresponding derivative is computed by utilizing

the Lagrange’s rule for differential operators. When cal-

culating n-th order derivative over the integral of order

(n - a), the a order derivative is observed as follows:
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The Caputo fractional derivative is another method of

evaluating fractional derivatives. Caputo’s definition is

illustrated as follows:

C
a D

}
t /ðtÞ ¼

1

Cðn� }Þ

Z t

a

/ðnÞðsÞds
ðt � sÞ}þ1�n

:

In image processing, the well-known fractional differ-

ential operator is the Grünwald–Letnikov derivative, as

follows:

D}
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The Riesz fractional derivative operator is defined as

follows:
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More details about fractional calculus are described in

[7–10]. In [11], for }[-1, the fractional center difference

is formulated for the signal, as follows:
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For two variables v and g, we have the following forms

(in the negative direction):
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In our study, we use the approximate operators, as

follows:
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which yield the following coefficients:
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3 Tsallis entropy

An entropy of the scalar variable is imposed by Mathai

[12]; however, in this study, we propose a measure of

entropy, which is defined by Tsallis as follows [13]:
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where / is the probability of each pixel value in the cor-

rupted image.

4 Construction of FRF

By using the fractional operators defined in Sect. 2, we

construct the FRF based on Eqs. (6) and (8).

The FRF denoised image Id is computed from corrupted

image Ic using the following formula:

Id x; yð Þ ¼ F � Ic x; yð Þ ð9Þ

where F is the filter mask, and * is the convolution product.

The filter mask represented by the product of Riesz frac-

tional derivative hn and Tsallis entropy T} /nð Þ:

Un ¼ hn � T} unð Þ ð10Þ

The logic behind applying Tsallis entropy for image

denoising is that the probability of the corrupted image is

determined at each pixel which defines the frequency

details of corrupted image. Thus, we utilize Riesz frac-

tional derivative and Tsallis entropy to reduce the image

noise, by enhancing the low-frequency details in areas

where probability of gray level is insignificant.

Two masks are created for x and y directions based on

Eq. (10), as shown in Fig. 1. After defining the fractional

power values of both the proposed mask windows with

ranges of 0\} B 1, we perform a convolution between

the mask window and the corrupted image.

4.1 Selection of fractional power parameters

To select the optimal value of fractional power parameter }

of the Riesz operator and the Tsallis entropy, we study the

relationship between PSNR and }.

Figure 2 shows the relationship between PSNR and } by

using ‘‘Lena’’, corrupted by different additive white

Gaussian noise of standard deviation r = 15, 20, and 25.

The trade-off between } and PSNR is required to effi-

ciently remove the noise and detail preservation. Based on

Fig. 2, we select } = 0.27 for the proposed FRF algorithm

due to the highest PSNR value.

4.2 Steps for FRF

The steps for the proposed image denoising algorithm

using FRF are presented as follows:

1. The Gaussian noise and Speckle noise are added to the

input images.

2. The FRF mask window with 3 9 3 sizes is initialized

based on Eq. (10).

3. The values of the fractional power } of the proposed

FRF mask windows are experimentally defined.

4. The proposed FRF filter is applied in the x and y

directions, and the resulting denoised image is calcu-

lated as follows:

FRF image ¼ Fxj j þ Fy

�� �� ð11Þ

where Fx and Fy are the FRF denoised images in the

x and y directions, respectively.

5. Three different standard smoothing filters (Gaussian,

Homomorphic Wiener, and Kuan) are applied.

6. The average PSNR, and SSIM between the original

and denoised image are computed for both Gaussian

filter and the proposed FRF filter.

PSNR has been commonly used in literature to deter-

mine the quality of a denoised image [3–5].

PSNR is calculated as:

PSNR ¼ 10 log10
R2

MSE
ð12Þ

where MSE is the mean-squared error between the original

image and the denoised image, and R is the maximumFig. 1 Fractional Riesz filter mask in x, y directions

Fig. 2 PSNR with different choices of fractional power parameter }
for ‘‘Lena’’, corrupted by different additive white Gaussian noise of

standard deviation r = 15, 20, and 25
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possible pixel value of the image. R is equal to 255 in a

grayscale image.

The denoising performance is also quantified using the

structural similarity index (SSIM) value [14]. SSIM is

defined as follows:

SSIM x; yð Þ ¼ l x; yð Þ½ �a� c x; yð Þ½ �b� s x; yð Þ½ �g ð13Þ

where l is the luminance function, c is the contrast function,

and s is the structure function. The three parameters a, b
and c are used to adjust the three components.

5 Experimental results

The performance tests of the denoising performance of

FRF are implemented by using MATLAB2013b in Win-

dows 8.1. The following sets of images are used in this

study:

1. Grayscale images ‘‘Lena’’ and ‘‘Boat’’.

2. Color images ‘‘Pepper’’ and ‘‘House.’’

We study the performance of the proposed approach by

using images corrupted by additive white Gaussian noise

and by speckle noise. The FRF is assumed to operate with

3 9 3 processing masks. To verify the quality of the

denoised image, we use PSNR and SSIM.

Validation is also performed by comparing the proposed

algorithm with three standard filters for image denoising,

namely Gaussian, Kuan filter, and Wiener filter [15].

The experimental results of all images are shown in

Figs. 3, 4, 5, and 6. These Figures show the denoising

results of different images corrupted with Gaussian

noise with different standard deviations (r). The pro-

posed FRF algorithm has good denoising performance

for all tested images. Hence, the image noise is suc-

cessfully removed.

Table 1 shows the numerical results of both the PSNR

and SSIM obtained using the optimal } values and with

different values of r (15, 20, and 25) for two sets of

standard images (grayscale and colored images). The

reported PSNR and SSIM values are obtained averaging

over the PSNR and SSIM results with respect to the four

images. The proposed FRF demonstrates the denoising

performance by eliminating the Gaussian noise efficiently.

At the same time, the FRF shows good performance in

terms of preserving the fine details of the corrupted images.

We study the performance of the proposed approach

using images corrupted by Speckle noise (vari-

ance = 0.04). The performance of the proposed algorithm

was evaluated by computing the PSNR.

Table 2 shows the result of PSNR obtained for grayscale

images ‘‘Lena’’ and ‘‘Boat’’ corrupted by the artificial

Speckle noise. The Kuan filter, Homomorphic Wiener fil-

ter, and proposed filter were applied to the corrupted

images. The maximum PSNR value was obtained by the

proposed FRF algorithm.

Fig. 3 Experiment with artificial Gaussian noise. Grayscale images

‘‘Lena’’. a Original image; b image with Gaussian noise with r = 25;

c Gaussian smoothing filter; and d FRF proposed filter

Fig. 4 Experiment with artificial Gaussian noise. Grayscale images

‘‘Boat’’. a Original image; b image with Gaussian noise with r = 20;

c Gaussian smoothing filter; and d FRF proposed filter
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6 Quantitative comparison with other methods

Table 3 shows the comparison of the experimental results

of the proposed algorithm with other denoising algorithms

based on fractional calculus. The former shows the com-

parison results for ‘‘Boat’’ with noise r values of 15, 20,

and 25. The latter shows the comparison results for ‘‘Lena’’

and ‘‘Pepper’’ corrupted with a noise r value of 25.

In a previous study [16], a partial differential equation

based on Volterra equation is proposed as a pixel-by-pixel

technique for filtering, denoising and enhancing. In another

study [18], a novel fractional integral image denoising

algorithm is used. A study in the literature [19] proposes an

image denoising algorithm called generalized fractional

integral filter based on generalized Srivastava–Owa frac-

tional integral operator. Meanwhile, in another study [17],

an image denoising algorithm is proposed, and the differ-

ential order is selected adaptively according to the noise

visibility of each pixel.

Tables 3 and 4 provide an overall view of the perfor-

mance of the different methods. However, these methods

use different images with different noise r values. For both

tested images, the PSNR values for FRF are slightly larger

than those for the four methods for noise r values of 15, 20,

and 25. The proposed algorithms for image denoising

provide satisfactory results. The good visual effect and

PSNR of our proposed algorithm serve as important

parameters for judging a method’s performance.

7 Conclusion

An image denoising algorithm based mainly on the use of

convolution of fractional Tsallis entropy with the Riesz

fractional derivative is introduced. The structures of FRF in

Fig. 5 Experiment with artificial Gaussian noise. Grayscale images

‘‘Pepper’’. a Original image; b image with Gaussian noise with

r = 25; c Gaussian smoothing filter; and d FRF proposed filter

Fig. 6 Experiment with artificial Gaussian noise. Grayscale images

‘‘House’’. a Original image; b image with Gaussian noise with

r = 15; c Gaussian smoothing filter; and d FRF proposed filter

Table 1 The experimental results

Images Gaussian filter FRF (proposed)

SSIM PSNR SSIM PSNR

Lena

r = 15 0.8282 28.22 0.8757 30.94

r = 20 0.7461 25.85 0.8118 29.03

r = 25 0.6714 23.97 0.7486 27.63

Boat

r = 15 0.8599 27.99 0.8925 29.98

r = 20 0.7900 25.74 0.8406 28.20

r = 25 0.7220 23.91 0.7896 27.64

Pepper

r = 15 0.8235 28.12 0.8622 29.16

r = 20 0.7395 25.85 0.7980 27.83

r = 25 0.6634 24.04 0.7355 27.47

House

r = 15 0.7795 28.35 0.8429 31.76

r = 20 0.6805 25.93 0.7635 29.58

r = 25 0.5957 24.04 0.6891 27.83

Average 0.7416 26.00 0.8041 28.92
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the x and y directions are constructed. The denoising per-

formance is measured by conducting experiments accord-

ing to visual perception and both PSNR and SSIM values.

The experiments using FRF demonstrate that the

improvements achieved in both PSNR and SSIM are

comparable with those achieved using the standard Gaus-

sian, Kuan, and Homomorphic Wiener filters. We analyze

the influence of parameter } on the performance of PSNR

denoising in images corrupted by Gaussian noise with 15 r
value. The main advantage of our algorithm is the

denoising improvement of the proposed FRF in the x and

y directions. Future works should involve the extension of

the proposed method for texture enhancement of digital

images by using Riesz fractional derivative. Different types

of fractional entropies can also be applied to improve the

abovementioned results.
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