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Abstract To realize the dynamic balance optimization

and control of biped robots under the perturbing external

forces in the double-support phase, a systematic scheme is

proposed in this paper. First, a constrained dynamic model

of biped robots and a reduced order dynamical model for

the double-support phase are formulated. Considering the

dynamic external wrench applied on biped robots, we

present a dynamic force distribution approach based on

quadratic objective function for computing the optimal

contact forces to equilibrate the dynamic external wrench.

As a result, the sum of the normal force components is

minimized for enhancing safety and energy saving. Then,

one primary recurrent neural network (RNN) is adopted to

solve the optimization problem subject to both equality and

inequality constraints. For the derived optimized contact

force and motion, hybrid motion/force control is proposed

based on another RNN to approximate unknown dynamic

functions. Adaptive learning algorithms for learning the

parameters of the RNN are provided as well. The proposed

control can deal with the uncertainties including approxi-

mation errors and external disturbances. Extensive simu-

lations are presented to demonstrate the effectiveness of the

proposed optimization and control approach.

Keywords Biped robots � Dynamic force distribution �
Balance optimization � Motion/force control

1 Introduction

The biped robot locomotion attracts much attention from

the research community [1–8]. A biped robot is not fixed to

the floor, while it must be able to interact with the envi-

ronment through multiple contacts to maintain dynamic

balance and enhance its flexibility, dexterity, and func-

tionality so as to follow and work with human autono-

mously. Therefore, the dynamic balance control for biped

robots is particularly important. Ground reaction force for

the biped legs must be regulated to maintain dynamic

balance that is robust to unknown disturbances. In this

respect, several research results have been reported. In [9],

a kind of dynamically stable and collision-free trajectories

are planned for full-body posture goals of biped robots. In

[10], control design was constructed for stabilization of

non-periodic trajectories of underactuated robots traversing

rough or uneven terrain. In [11], a simple balance control

algorithm compatible with a typical walking control system

in the 2D plane was proposed. In [12], the authors con-

structed an efficient control using implicit function with

support vector regression-based data-driven model for

holonomic constrained under-actuated biped robots.

Different from performance indicators of manipulators

and vehicles, good performance for a walking robot can be

simply defined as maintaining the dynamic balance during

its locomotion [13–19]. In this respect, the main control

objective of a walking robot is to guarantee a suit-

able ground reaction force to maintain the dynamic bal-

ance, and it is also desirable to have a controller that allows

the robot to adapt (compliantly) to unknown external for-

ces. Traditionally, a general strategy is to use the dynamics

based walking pattern generation which provides the

desired trajectories for underlying position controllers [20–

23]. In [24], a locomotion control system using nonlinear
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oscillators for a biped robot was proposed to achieve robust

walking. In [25], an approach was proposed to find

stable as well as unstable hybrid limit cycles for a planar

compass-like biped on a shallow slope without integrating

the full set of differential equations and approximating the

dynamics. In [2], an approach for the closed-loop control of

a fully actuated walking biped that leverages on its natural

dynamics was presented, and the input state-dependent

torques were built using a combination of low-gain spring-

damper couples. Researches were also made to construct

complete models to represent the whole periodic walking

motion and three phases of the walking cycle (single-sup-

port, double-support, and transition phase). The perfor-

mance and stability analysis of the whole closed-loop

motion system are improved because that the integrated

biped model is studied carefully [26, 27]. On the other

hand, to maintain dynamic balance in various situations,

learning algorithms for biped walking were presented in

[28–32].

For biped robots, appropriate ground reaction forces are

necessary to guarantee the dynamic balance especially

when there are disturbances of external wrenches (forces

and moments) including the gravity force and the inertia

wrench exist. Since each toe and heel are independently

characterized by non-penetration and no-slip constraint

with the ground, and the external wrench is usually time-

varying, the contact forces must satisfy certain constraints

and be solved in real time to balance the change of the

external wrench, typically the friction cone constraint such

that it can be feasible. Therefore, how to determine the

existence of feasible contact forces to resist an external

wrench and maintain the system’s equilibrium need to be

considered. On the other hand, for a resistable external

wrench, there will be infinite solutions to counterbalance it,

since there are many configurations. Then some opti-

mization criterion should be adopted in computing the

contact forces, usually to minimize their overall magnitude.

To perform dynamic balance control for the biped, the

result of contact-force optimization must be used in the

control law, and thus, the optimal force-distribution prob-

lem can be solved in real time. Parallel and distributed

approaches to contact-force optimization for the biped are

deemed necessary and desirable. In recent years, neural

network-based approaches have demonstrated their great

promise for optimization. Neural networks for constrained

optimization problems have been widely explored for real-

time applications [33]. Reported results of numerous

investigations have shown many advantages over the tra-

ditional optimization algorithms, especially in real-time

applications [34].

In this paper, we consider dynamical balance opti-

mization and biped locomotion in double-support phase.

The biped robot usually starts and stops motion at the

double-support configuration. The analysis of biped loco-

motion in the double-support phase is very important for

improving the smoothness of the biped locomotion system

and dynamic balance [35]. This paper investigates the

dynamic balance optimization and control of biped robots

with the perturbing external forces in the double-support

phase. First, we formulate a constrained dynamic model of

the biped robot and a reduced order model for the double-

support phase. Considering the dynamic external wrench

on the biped, a dynamic force distribution approach based

on quadratic objective function [36] is proposed for com-

puting the optimal contact forces to equilibrate a dynamic

external wrench, such that the sum of the normal force

components is minimized for enhancing safety and energy

saving. Then, a primary recurrent neural network (RNN)

with self-stabilizing ability is adopted to deal with the

complicated optimization problem subject to both equality

and inequality constraints. For the obtained contact forces

and desired trajectories, we propose the hybrid motion/-

force control based on the second RNN to approximate

unknown dynamic functions with the adaptive weight

parameters updating, and the adaptive learning algorithms

that can learn the parameters of the RNN are derived using

Lyapunov stability theorem. The proposed control can

confront the uncertainties including approximation error,

optimal parameter vectors, higher-order terms in Taylor

series, and external disturbances. The verification of the

proposed control is conducted using extensive simulations.

2 Dynamics of biped robots

The constraints for the biped robot in the double-support

phase are assumed to be holonomic, arising from geo-

metrical constraints on the joint coordinates. For a biped

robot with n joint coordinates q and n input torques s, these

constraints can be represented by

UðqÞ ¼ 0 ð1Þ

where U 2 Rm, and m is the dimension of the constraints,

for example, m = 3 for a two-dimensional (2-D) biped

model and m = 6 for a three-dimensional (3-D) model.

Define the augmented Lagrangian

L ¼ K � P þ f TU ð2Þ

where K is the total kinematic energy, P is the potential

energy, and f is an m-vector of constraint force. The

equations of motion can be written as

d

dt

oL

oq
� oL

oq
¼ s ð3Þ

Thus, the dynamic equations of the biped robot in the

double-support phase can be represented by
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MðqÞ þ Cðq; _qÞ _q þ GðqÞ ¼ sþ JT f ð4Þ
M ¼ ½mkj�k¼1;...;n;j¼1;...;n ð5Þ

Cðq; _qÞ ¼
Xn

i¼1

omkj

oqi

þ omkj

oqj

� omkj

oqk

" #

k¼1;...;n;j¼1;...;n

ð6Þ

GðqÞ ¼ oP

oq
ð7Þ

J ¼ oU
oq

ð8Þ

where M(q) 2 Rn9n is a symmetric positive definite inertia

matrix, Cðq; _qÞ 2 Rn�n, G(q) 2 Rn, and J 2 Rm9n.

When the biped is in the double-support phase, the

number of DOF becomes (n - m) and the left m DOF

contribute to the contact forces. We assume that the con-

straints can be written as

UðqÞ ¼ U1ðq1Þ � U2ðq2Þ ¼ 0 ð9Þ

where q1 are (n - m) independent coordinates and q2 are m

constraint coordinates. The physical interpretation of this

assumption is that the position and orientation of the biped

body can be calculated either starting from the left foot or

the right foot, and each involves either of the joint coor-

dinates q1 or q2. By differentiating (9), we obtain

JðqÞ _q ¼ J1ðq1Þ _q1 þ J2ðq2Þ _q2 ¼ 0 ð10Þ

where

J ¼ oU
oq1

;
oU
oq2

� �
¼ ½J1; J2� ð11Þ

and J1(q1) = q U/ q q1, and J2(q2) = -q U/ q q2, with

J1 2 Rm9(n-m) and J2 2 Rm9m, implying that

_q2 ¼ oq2

oq1

_q1 ¼ �J�1
2 J1 _q1 ð12Þ

The generalized displacement and velocity can be expres-

sed in terms of the independent coordinates q1 and _q1, as

q ¼ ½qT
1 ; qT

2 �
T ð13Þ

_q ¼ In�m

�J�1
2 J1

� �
_q1 ¼ HðqÞ _q1 ð14Þ

Due to the velocity transformation (14), the generalized

acceleration satisfies q ¼ HðqÞq1 þ _HðqÞ _q1. The motion

(4) is further represented by the independent coordinates

q1, _q1, and q1 as

MðqÞHðqÞq1 þ MðqÞ _HðqÞ þ Cðq; _qÞHðqÞ
� �

_q1

þ GðqÞ ¼ sþ JT f
ð15Þ

Remark 2.1 By (15), there is an actuator redundancy

because the dimension of the control input is larger than

that of the controlled output. The extra dimension of

actuators should be used to produce the ground reaction

force, which can balance the external dynamic wrench.

Lemma 2.1 [37] Let e = H(s)r with H(s) representing an

(n 9 m)-dimensional strictly proper exponentially

stable transfer function, and r and e denoting its input and

output, respectively. Then r 2 L2
m \ L?

m implies that

_e 2 Lm
2 \ Lm

1, e is continuous, and e ? 0 as t ? ?. If, in

addition, r ? 0 as t ? ?, then _e ! 0.

Lemma 2.2 Given a differentiable function

/ðtÞ : Rþ ! R, if /(t) 2 L2 and _/ðtÞ 2 L1, then /(t) ? 0

as t ? ?, where L? and L2 denote bounded and square

integrable function sets, respectively.

The dynamic system (4) has the following properties

[37].

Property 2.1 Matrices M(q), G(q) are uniformly bounded

and uniformly continuous if q is uniformly bounded and

continuous. Matrix Cðq; _qÞ is uniformly bounded and uni-

formly continuous if _q is uniformly bounded and

continuous.

Property 2.2 Matrix _M � 2C is skew-symmetric. i.e.,

xTð _M � 2CÞx ¼ 0, Vx = 0

3 Dynamical balance optimization

Consider double-support phase shown in Fig. 1, of the

biped in a 3-D workspace with i point contacts between the

ground and the feet, fixed with a right-handed coordinate

frame. Assume that each foot contacts the ground with

Coulomb friction. Let ni, oi, and ti be the unit inward

Fig. 1 Double-support phase
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normal and two unit tangent vectors at contact i(i = l, r),

where l denotes the left leg, and r denotes the right leg, in

the COM coordinate frame such that ni = oi 9 ti. The

contact force fi can be expressed in the local coordinate

frame {ni, oi, ti} by

fi ¼ ½fin; fio; fit�T ð16Þ

where fin, fio, and fit are the components of fi along ni, oi,

and ti, respectively.

A contact force fi 2 Rj is applied by each foot to the

ground to hold the biped without slippage and tip-over, and

balance with any external forces. To ensure nonslipping at

a contact point, with the contact normal along z direction

and directed outward and a Coulomb friction coefficient li

at contact i, the contact force fin must satisfy the contact

constraint
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
io þ f 2

it

q
� lfin ð17Þ

where l is the static friction coefficient of the substrate.

The friction constraint can be geometrically represented as

a cone with its axis orthogonal with respect to the support

surface and with an ‘‘opening angle’’ equal to

a ¼ arctanðlÞ.
In order to overcome the nonlinearities induced by the

friction cone equations, it is possible to substitute the

friction cone with an inscribed pyramid (see Fig. 1).

Hence, we have a more restrictive constraint, expressed by

fiok k� lpfin; fitk k� lpfin ð18Þ

where lp ¼ l=
ffiffiffi
2

p
.

A definite foot contacts with the ground, only if there is

an fin such that

fin � 0 ð19Þ

Concerning the adhesion constraint, it can be satisfied if

the absolute value of the sum of the distributed forces is

less than the maximum allowable friction force. The fric-

tion force constraints may be rewritten as

1 0 � lffiffiffi
2

p

�1 0 � lffiffiffi
2

p

0 1 � lffiffiffi
2

p

0 �1 � lffiffiffi
2

p

2
66666666664

3
77777777775

fio

fit

fin

2

64

3

75�
0

0

0

2

64

3

75 ð20Þ

which gives a conservative but linear set of constraints

describing a friction pyramid inscribed within the desired

friction cone.

We can rewrite the above equation as

Sifi � 0 ð21Þ

where Si 2 Ri is the matrix coefficient of the friction

constraints for the ith foot. Considering the boundedness of

fi, we assume that

n�i � fi � nþi ð22Þ

with the known boundary vectors ni
- 2 Rj and ni

? 2 Rj.

The wrench in the global coordinate frame produced by

fi is

Wi ¼ Gifi ð23Þ

where Gi 2 Rl9j is the balance matrix for contact i

Gi ¼
ni oi ti

ri � ni ri � oi ri � ti

� �
ð24Þ

Let Wext denote the ‘‘dynamic’’ external wrench on the

biped. For equilibrium, the resultant wrench W applied by

the feet should always conform to

W ¼
X

i¼fl;rg
Wi ¼

X

i¼fl;rg
Gifi ¼ �Wext ð25Þ

In real-time control of the balance of the biped, Wext is

sampled at a sequence of instants with sufficiently small

intervals. Thus we encounter the dynamic force distribution

problem.

Besides the form-closure constraints, to balance any

external wrench Wext to maintain a stable balance, we

consider the quadratic objective function of contact forces.

The optimal contact force with holding the balance can be

formulated as the following optimization problem with

linear and nonlinear constraints

minimize Jðf Þ ¼ 1

2
f T Qf þ bTf ð26Þ

subject to Gf ¼ W ð27Þ
Sf �C ¼ 0 ð28Þ

n� � f � nþ ð29Þ

where f = [fl
T, fr

T]T 2 R2j, Q is an 2j 9 2j symmetric and

positive definite matrix, G = [Gl, Gr] 2 Rl92j, S = [Sl, -

Sr] 2 Ri92j. The above quadratic object function repre-

sents the minimum weighted norm of joint torque vectors

and minimum norm force when b = 0.

From (26) to (29), a unified QP formulation for the

external forces and the friction force constraints is devel-

oped. Motivated by the work in [33], the neural network was

developed to solve online solution of the QP problem for foot

force optimization for quadruped robots. In this paper, the

primal–dual neural network is adopted to perform the opti-

mization of the reaction forces from the environments.

For constraints (27) and (28), the corresponding dual

decision vector is defined as y 2 Rl. Hence, the primal–

dual decision vector u and its upper/lower bounds u± are

defined, respectively, as
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u :¼
f

y

b

2

4

3

5; uþ :¼
nþ

þyþ

þyþ

2

4

3

5; u� :¼
n�

þyþ

�y�

2

4

3

5 2 R2jþlþi ð30Þ

where for the convenience of hardware implementation or

simulation, for any i, the elements yi
? � 0 in y? are sufficiently

positive to represent ? ?. Thus, the convex set X made by

primal–dual decision vector u isX ¼ fu� � u� uþg. Defining

the coefficient matrix M and vector p as

M ¼
Q �GT ST

G 0 0

�ST 0 0

2

4

3

5 2 Rð2jþlþiÞ�ð2jþlþiÞ ð31Þ

p ¼
b

�W
C

2
4

3
5 2 Rð2jþlþiÞ ð32Þ

we have the following equivalent result.

Theorem 3.1 [33] (LVI Formulation) Quadratic pro-

gram (26)–(29) is equivalent to the following linear vari-

ational inequalities problem, i.e., to find a vector

u	 2 X ¼ fuju� � u� uþg such that

ðu � u	ÞTðMu	 þ pÞ� 0; 8u 2 X ð33Þ

where coefficients M, p, and u± are defined in (30) and

(31), respectively.

It is known that linear variational inequality (33) is

equivalent to the following system of piecewise linear

equation (also called linear projection equation)

PX u � ðMu þ pÞð Þ � u ¼ 0 ð34Þ

where PX(�) is the projection operator onto X and defined

as PX(u) = [PX(u1), ���, PX(u2j?l?i)]
T with

PXðuiÞ ¼
u�

i if ui\u�
i

ui if u�
i � ui � uþ

i

uþ
i if ui [ uþ

i

8
<

: ; 8i

2 f1; . . .; 2jþ l þ ig:

To solve linear projection Eq. (34), we may follow the dual

dynamical system design approach [33, 34] to build a

dynamical system. However, such a system is not

stable due to M being asymmetric. The design experience

motivates us to develop the following modified dynamical

system to solve (34)

_u ¼ cðI þ MTÞfPX u � ðMu þ pÞð Þ � ug: ð35Þ

where c is a strictly positive design parameter used to scale

the convergence rate of the system.

Theorem 3.2 [33] Starting from any initial state, the

state vector u(t) of primal–dual dynamical system (35) is

convergent to an equilibrium point u*, of which the first n

elements constitute the optimal solution f* to the quadratic

programming problem in (26)–(29). Moreover, the expo-

nential convergence can be achieved, provided that there

exists a constant q[ 0 such that u � PXðu � ðMuþk
pÞÞk2

2 � q u � u	k k2
2.

Remark 3.1 For the double-support phase, in order to

balance the biped under external wrench, and avoid the

slipping or slippage and tip-over, we can obtain the

ground applied constraints force to a desired value f*.

Therefore, the constraint force errors and f - f* should

be within a small neighborhood of zero, i.e.,

kf - f*k B 1.

Remark 3.2 The second control objective is to design a

position control such that the tracking error of q1 and _q1

from their respective desired trajectories q1
d and _qd

1 are

within a small neighborhood of zero, i.e., q1 � qd
1

�� ��� e1,

and _q1 � _qd
1

�� ��� e2. The desired reference trajectory q1
d is

assumed to be bounded and uniformly continuous, and has

bounded and uniformly continuous derivatives up to the

second order.

In summary, the control structure is shown in Fig. 2.

Fig. 2 The control structure
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4 Hybrid motion/force control using RNN

4.1 Recurrent neural network

A three-layer RNN shown in [38] comprises an input layer,

a hidden layer with a feedback unit, and an output layer.

The Gaussian function is adopted as the activation function

in the hidden layer due to its continuous and differential

characteristics. The mapping of the RNN is according to

the following equation

zðNÞ ¼
Xn

i¼1

wkHkð xiðNÞ � vikk k; rik; rk;HkðN � 1ÞÞ ð36Þ

where x = xi, i = 1, 2, …, m are the input variables; z is

the output variable; N is the number of iterations; wk rep-

resents the connective weights between the hidden layer

and the output layer; Hk represents the output of the kth

neurons in the hidden layer; vik and rik are the center and

width of the Gaussian function; rk is the internal feedback

gain; and �k k denotes the Euclidean norm. The weight can

be represented as

netkðNÞ ¼
Xm

i¼1

d2
ik½xiðNÞ þHkðN � 1Þrk � vik�2 ð37Þ

or

netkðNÞ ¼
Xm

i¼1

½xiðNÞ þHkðN � 1Þrk � vik�2

r2
ik

ð38Þ

and

HkðNÞ ¼ expð�netkðNÞÞ ð39Þ

where dik = 1/rik is the inverse radius of the Gaussian

function. Define vectors d, v and r to be the collection of all

parameters in the hidden layer in RNN as

d ¼ ½d11; . . .; dm1; d12; . . .; dm2; . . .; d1n; . . .; dmn�T ð40Þ

v ¼ ½v11; . . .; vm1; v12; . . .; vm2; . . .; v1n; . . .; vmn�T ð41Þ

r ¼ ½r1; . . .; rn�T ð42Þ

Then the output of the RNN can be represented in a

vector form as

yðx; d; v; r;WÞ ¼ WTHðx; d; v; rÞ ð43Þ

where W = [w1, …, wn]T and H = [H1, …, Hn]T. It has

been proven in [26] that there exists an RNN of (43) such

that it can uniformly approximate a nonlinear, even time-

varying function.

The approximation error of the RNN output is denoted

as

~y ¼ y � ŷ ¼ W	THðx; d	; v	; r	Þ � ŴTHðx; d̂; v̂; r̂Þ þ e

ð44Þ

where e is a minimum reconstructed error due to the

insufficient number of neurons at the hidden layer; d*, v*

and r* are optimal parameters of d, v and r, and d̂, v̂ and r̂

are the estimates of the optimal parameters d*, v* and r*.

Assumption 4.1 The ideal RNN vectors W*, d*, v*, r* and

the RNN approximation error are bounded over the com-

pact set, i.e.,

W	k k�wm; d	k k� dm; v	k k� vm; r	k k� rm; �ðxÞj j � �	

Vx 2 Xx with wm, dm, vm, rm and �	 being unknown positive

constants.

Remark 4.1 The optimal weight vector W*, d*, v*, r* in

(43) is an ‘‘artificial’’ quantity required only for analytical

purposes. Typically, W*, d*, v*, r* are chosen as the values

that minimize �ðxÞ for all x 2 Xx 
 Rni , i.e.,

ðW	; d	; v	; r	Þ :¼ arg min
W ;d;v;r

fsup
x2Xx

y � WTHðx; d; v; rÞ
�� ��g

Remark 4.2 The approximation error �ðxÞ is a critical

quantity and can be reduced by increasing the number of

neurons in the hidden layer. According to the universal

approximation theorem, it can be made as small as possible

if the number of neurons is sufficiently large [39, 40].

From the above analysis, we see that the system

uncertainties are converted to the estimation of unknown

parameters W*, d*, v*, r* and unknown bounds �	.

As the ideal vectors/constants W*, d*, v*, r* and �	 are

usually unknown, we use their estimates Ŵ , d̂, v̂, r̂ and �̂

instead. The following lemma gives the properties of the

approximation errors ŴTHðx; d̂; v̂; r̂Þ � W	T

Hðx; d	; v	; r	Þ.
The definition of induced norm of matrices is given here

first.

The approximation error can be expressed as

~y ¼ ŴTHðx; d̂; v̂; r̂Þ � W	T

Hðx; d	; v	; r	Þ
¼ W	T ~Hþ ~WTĤþ du ð45Þ

where Ĥ ¼ Hðx; d̂; v̂; r̂Þ, ~W ¼ Ŵ � W	, ~d ¼ d̂� d	, ~v ¼
v̂ � v	 and ~r ¼ r̂ � r	 are defined as approximation errors,

and The expansion of ~H in Taylor series is obtained as

follows
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~H ¼

~H1

~H2

..

.

~Hk

2
66664

3
77775
¼

oH1

od
oH2

od

..

.

oHk

od

2
6666666664

3
7777777775

T

d¼d̂ðd
	 � dÞ þ

oH1

ov
oH2

ov

..

.

oHk

ov

2
6666666664

3
7777777775

T���������������

v¼v̂ðv	 � vÞ þ

oH1

or
oH2

or

..

.

oHk

or

2
6666666664

3
7777777775

T���������������

r¼r̂ðr	 � rÞ þ Nj ð46Þ

¼ HT
d
~dþHT

v ~v þHT
r ~r þ N

where Hd ¼
oH1

od
oH2

od
. . .

oHk

od

� �
d¼d̂ 2 Rj�k
�� ; Hv ¼

oH1

ov

oH2

ov
. . .

oHk

ov

� �
v¼v̂ 2 Rj�k
�� ; Hv ¼

oH1

or

oH2

or
. . .

oHk

or

� �
r¼r̂ 2 Rj�k
�� ; and N is a vector of

higher-order terms and assumed to be bounded by a posi-

tive constant. Substituting (46) into (45), one obtains [41]

ŴTHðx; d̂; v̂; r̂Þ � W	T

Hðx; d	; v	; r	Þ ¼ ð ~W þ W	ÞT

Hðx; d̂; v̂; r̂Þ � W	T ½Hðx; d̂; v̂; r̂Þ �HT
d
~d�HT

v ~v �HT
r ~r

þ Oðx; ~d; ~v; ~rÞ� ¼ ~WTĤþ ðŴ � ~WÞTĤd
~dþ ðŴ � ~WÞT

HT
v ~v þ ðŴ � ~WÞTHT

r ~r � W	T

Oðx; ~d; ~v; ~rÞ
¼ ~WTĤþ ŴTHT

d
~d� ~WTHT

d ðd̂� d	Þ þ ŴTHT
v ~v

� ~WTHT
v ðv̂ � v	Þ þ ŴTHT

r ~r � ~WTHT
r ðr̂ � r	Þ

� W	T

Oðx; ~d; ~v; ~rÞ ¼ ~WTðĤ�HT
d d̂�HT

v v̂ �HT
r r̂Þ

þ ŴTðHT
d
~dþHT

v ~v þHT
r ~rÞ þ D ð47Þ

where D ¼ W	TðHT
d d

	 þHT
v v	 þHT

r r	 þ OÞ � ŴTðHT
d d

	

þHT
v v	 þHT

r r	Þ is defined as the lumped uncertainty.

4.2 Hybrid motion/force control

Inspired by pure-motion tracking, some notations are

defined as

e1 ¼ q1 � qd
1 ð48Þ

r ¼ _e1 þ Ke1 ð49Þ

_qr
1 ¼ _qd

1 � Ke1 ð50Þ

where K 2 R(n-m)9(n-m) is a positive diagonal matrix.

If the system satisfies lim t?? = 0, then position and

velocity tracking errors e1 and _e1 exponentially converge to

zero. In other words, the error signal r is an error mea-

surement deviating from the stable subspace

fe1; _e1 2 Rn�mjr ¼ 0g. The motion tracking problem is,

therefore, transformed to the problem of stabilizing r. On

the other hand, a force-error and its filter are accordingly

defined as

ef ¼ f � f 	 ð51Þ

_a ¼ �q1a� q�1
2 ð1 þ kf ÞJT ef ð52Þ

where q1, q2[ 0, kf[ 0 are design parameters, ef =

f - f*. Then, the reduced-state-based scheme is to drive the

motion trajectory into the stable subspace, while the con-

tact force is separately controlled, maintaining a zero ef.

Combine r 2 Rn-m to form the following new hybrid

variables

r ¼ Hr þ a ð53Þ
m ¼ H _qr

1 � a ð54Þ

From (50), (53), and (54), we have

rþ m ¼ H _q1 ð55Þ

The time derivatives of m and r are given by

_m ¼ _H _qr
1 þ Hqr

1 � _a ð56Þ

_r ¼ _H _qr
1 þ Hqr

1 þ _a ð57Þ

From the dynamic Eq. (15) together with (55) and (57), we

have

MðqÞ _rþ l ¼ sþ JT f ð58Þ

where l ¼ MðqÞ _mþ Cðq; _qÞðmþ rÞ þ GðqÞ. We can

rewrite Eq. (58) as

MðqÞ _r ¼ s� lþ JT f ð59Þ

Consider the control law

s ¼ M̂ðqÞ _mþ Ĉðq; _qÞmþ ĜðqÞ � Krr� JT f 	

þ kf J
T ef � KssgnðrÞ � D̂ ð60Þ

where matrix Kr[ 0, constant kf[ 0, matrix Ks ¼
diagfksiig with ksii C |Ei| and Ei is the element of vector E

(defined later), ef = f - f*, and D̂ is an on-line estimated

value of the lumped uncertainty D, and ~D ¼ D̂� D, M̂ðqÞ,
Ĉðq; _qÞ, and ĜðqÞ are the estimates of M(q), Cðq; _qÞ and

G(q), respectively, the elements of which, i.e., mij(q),

cijðq; _qÞ, and gi(q) can be expressed by RNN as

mijðqÞ ¼ W	T

mij
Hðq; d	mij

; v	mij
; r	mij

Þ þ �mij
ðqÞ ð61Þ

cijðq; _qÞ ¼ W	T

cij
Hðq; _q; d	cij

; v	cij
; r	cij

Þ þ �cij
ðq; _qÞ ð62Þ

giðqÞ ¼ W	T

gi
Hðq; d	gi

; v	gi
; r	gi

Þ þ �gi
ðqÞ ð63Þ
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where W	
mij

, W	
cij

, W	
gi

are ideal constant weight vectors, d	mij
,

d	cij
, d	gi

are the ideal vectors, v	mij
, v	cij

, v	gi
are the ideal

vectors, r	mij
,r	cij

, r	gi
are the ideal vectors, and �mij

ðqÞ,
�cij

ðq; _qÞ, �gi
ðqÞ are the approximation errors.

Using the GL matrix (denoted by ‘‘fHg’’) and operator

(denoted by ‘‘�’’) introduced in [37, 42], the function

emulators (61)–(63) can be collectively expressed as

MðqÞ ¼ ½fW	
Mg

T � fHMg� þ EM ð64Þ

Cðq; _qÞ ¼ ½fW	
Cg

T � fHCg� þ EC ð65Þ

GðqÞ ¼ ½fW	
Gg

T � fHGg� þ EG ð66Þ

where [{WM
* }, {HM}], ½fW	

Cg; fHCg� and ½fW	
Gg; fHGg�

are the desired weights and basis function GL matrices

pairs of the RNN emulation of M(q),Cðq; _qÞ and G(q) re-

spectively; and EM, EC, EG are the collective RNN recon-

struction errors, respectively.

The estimates M̂ðqÞ, Ĉðq; _qÞ, ĜðqÞ, can be accordingly

expressed as

M̂ðqÞ ¼ ½fŴMgT � fĤMg� ð67Þ

Ĉðq; _qÞ ¼ ½ffŴCgT � fĤCg� ð68Þ

ĜðqÞ ¼ ½ffŴGgT � fĤGg� ð69Þ

Substituting (60) and (67)–(69) into the dynamic

Eq. (58) yields the closed-loop system error equation as

M _rþ Cr ¼ ð½fŴgT � fHg� � ½fW	gT � fHg�Þ � Krr

þ JTð1 þ kf Þef � E � KssgnðrÞ � D̂

ð70Þ

where

fŴgT ¼ ½fŴMgT ; fŴCgT ; fŴGgT �T

fĤg ¼ ½fĤMg _m; fĤCgm; fĤGg�T

fW	gT ¼ ½fW	
Mg

T ; fW	
Cg

T ; fW	
Gg

T �T

fHg ¼ ½fHMg _m; fHCgm; fHGg�T

where E ¼ EM _mþ ECmþ EG.

Theorem 4.1 Consider the system described by dynamic

Eq. (4) and m independent constraints (9). If the control

law is chosen by (60), and the parameter adaptation laws

are chosen by

_̂
W ¼ �Cw � fĤ�HT

d d̂�HT
v v̂ �HT

r r̂gr ð71Þ
_̂d ¼ �Cd½Ŵ �Hd�r ð72Þ
_̂v ¼ �Cv½Ŵ �Hv�r ð73Þ
_̂r ¼ �Cr½Ŵ �Hr�r ð74Þ

_̂D ¼ Chr ð75Þ

where matrices Cw, Cd, Cr, Cv, Ch are symmetric positive

definite, then, the signals e1 and _e1 asymptotically converge

to zero, and all the other closed-loop signals are semi-

globally uniformly ultimately bounded.

Proof The time derivative of 1
2
rT Mr along (70) is

rT MT _r ¼ �rTKrr� rT E � rT KssgnðrÞ � rT D̂

þ rT JTð1 þ kf Þef � rT Cr

þ rTð½fŴgT � fĤg� � ½fW	gT � fHg�Þ
ð76Þ

Consider the Lyapunov function candidate

V ¼ 1

2
rT Mrþ ~W

T
C�1

w
~Wþ 1

2
~dTC�1

d
~dþ 1

2
~vTC�1

v ~vþ 1

2
~rTC�1

r ~r

þ 1

2
~DTC�1

h
~Dþ 1

2
q2a

Ta

ð77Þ

with ~x ¼ x̂ � x	.
The time derivative of V is given by

_V ¼ rT M _rþ 1

2
rT _Mrþ ~WTC�1

w Ŵ þ ~dTC�1
d

_~dþ ~vTC�1
v

_~v

þ ~rTC�1
r

_~r þ ~DTC�1
h

_~D� 1

2
rT _Mr� rTCr� rT Krr

� rT E � rT KssgnðrÞ � rT D̂þ rT JTð1 þ kf Þef

þ rTð½fŴgT � fĤg� � ½fW	gT � fHg�Þ

þ ~WTC�1
w

_̂W þ ~dTC�1
d

_~dþ ~vTC�1
v

_~v þ ~rTC�1
r

_~r

þ ~DTC�1
h

_~Dþ q2a
T _a ð78Þ

As matrix _M � 2C is skew-symmetric, rTð _M � 2CÞr ¼ 0,

Vx = 0. Integrating (47) into (78), we have

_V � �rT Krr�rT E�rT KssgnðrÞ�rT D̂þrT JTð1þ kf Þef

þrT ½f ~WTg � fĤ�HT
d d̂�HT

v v̂�HT
r r̂g�þ ½fŴTg�

	

HT
d
~dþHT

v ~vþHT
r ~rg�þD

n 

þ ~WTC�1

w Ŵ þ ~dTC�1
d

_~d

þ ~vTC�1
v

_~vþ ~rTC�1
r

_~rþ ~DTC�1
h

_~Dþq2a
T _a

ð79Þ

Substituting the weight vectors updating laws (71–75) into

(79) yields

_V � � rT Krr� rTE � rT KssgnðrÞ
þ rT JTð1 þ kf Þef þ q2a

T _a
ð80Þ

Noting that ksii C |Ei|[ 0, it is obvious that

½�rT E � rT KssgnðrÞ� � 0. In addition, from (52), we know

that _a ¼ �q1a� q�1
2 ð1 þ kf ÞJT ef and from (53), rT = rT-

HT ? aT. Thus, we have
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rT JTð1 þ kf Þef þ q2a
T _a ¼ �q1q2a

Taþ rTHT JTð1 þ kf Þef

ð81Þ

Noting HTJT = 0 from (11) and (26), we then have

_V � � rT Krr� q1q2a
Ta� 0 ð82Þ

As V C 0 and _V � 0, V 2 L?. From the definition of V, it

follows that r, m 2 L?
n .

Integrating both sides of (82), we have
Z t

0

rT Krr�Vð0Þ � VðtÞ�Vð0Þ ð83Þ

Hence r 2 L2
n. From (53), we have r = (HTH)-1-

HT(r - a), hence r 2 L?
n-m since H is bounded. From

Lemma 2.1, it can be concluded that e1; _e1 2 Ln�m
1 . From

(53–56), we have

M̂ _mþ Ĉmþ Ĝ ¼ M̂ð _H _qr
1 þ Hqr

1 � _aÞ þ ĈðH _qr
1 � aÞ þ Ĝ

¼ M̂ð _H _qr
1 þ Hqr

1Þ þ ĈH _qr
1 þ Ĝ

þ ðq1M̂ � ĈÞaþ q�1
2 ð1 þ kf ÞM̂JT ef ð84Þ

From (48–50), it is known that

_q ¼ H _qr
1 þ Hr ð85Þ

q ¼ _H _qr
1 þ Hqr

1 þ _Hr þ H _r ð86Þ

Replacing s by (60) in dynamic Eq. (15), and Eqs. (84–86),

the closed-loop system becomes

M _Hr þ MH _r þ CHr � ðM̂ � MÞð _H _qr
1 þ Hqr

1Þ
� ðĈ � CÞH _qr

1 � ðĜ � GÞ þ ðĈ � q1M̂Þaþ Krr

þ KssgnðrÞ ¼ ðq�1
2 ð1 þ kf ÞM̂ þ InÞJT ef ð87Þ

Invoking (64–66) and (67–69), Eq. (87) then becomes

M _Hr þ MH _r þ CHr � ð½fŴMgT � fĤMg� � ½fW	
Mg

T �
fHMg�Þð _H _qr

1 þ Hqr
1Þ � ð½fŴCgT � fĤCg� � ½fW	

Cg
T �

fHCg�ÞH _qr
1 � ð½fŴGgT � fĤGg� � ½fW	

Gg
T � fHGg�Þ

þ ðĈ � q1M̂Þa þ Krrþ KssgnðrÞ þ EMð _H _qr
1 þ Hqr

1Þ
þ ECH _qr

1 þ EG ¼ ðq�1
3 ð1 þ kf ÞM̂ þ InÞJT ef ð88Þ

Since M(q) is nonsingular, multiplying H(q)M-1(q) on both

sides of (88) yields

H _HrþHM�1½CHr �ð½fŴMgT � fĤMg�� ½fW	
Mg

T � fHMg�Þ
ð _H _qr

1 þHqr
1Þ� ð½fŴCgT � fĤCg�� ½fW	

Cg
T � fHCg�ÞH _qr

1

�ð½fŴGgT � f b̂HGg�� ½fW	
Gg

T � fHGg�Þþ ðĈ �q1M̂Þa
þKrrþKssgnðrÞþEMð _H _qr

1 þHqr
1ÞþECH _qr

1 þEG�
¼ HM�1ðq�1

3 ð1þ kf ÞM̂ þ InÞJT ef ð89Þ

Since we have established that e1; _e1 2 Ln�m
1 , from (50), it

can be concluded that _qr
1; qr

1 2 Ln�m
1 . As r is shown to be

bounded, so is _q1 from (50). Hence, _qðtÞ ¼ H _q1 2 Ln
1. It

follows that MðqÞ; M̂ðqÞ;Cðq; _qÞ; Ĉðq; _qÞ 2 Ln�n
1 , and

GðqÞ; ĜðqÞ 2 Ln
1. Thus, the left-hand side of (89) is

bounded. In fact, q3 can be properly chosen to keep

ðq�1
3 ð1 þ kf ÞM̂ þ InÞ on the right-hand side of (89) from

being singular. Hence, we have ef 2 L?
n-m. As f* is

bounded, so are ef and s.

As k 2 L?
n-m and a 2 L?

m , from Eq. (52), it is obvious

that _a 2 Lm
1. Thus, from (56), we have _m 2 Ln

1. Since

_q1; q1 2 Ln�m
1 have been established before, we can con-

clude from (57) that _r 2 Ln
1. Now, with r, a 2 L2

n,

_r; _a 2 Ln
1, according to Lemma 2.2, we can conclude that

r and l asymptotically converge to zero. Hence, from (53),

it can be concluded that r ? 0 as t ? ?. According to

Lemma 2.2, we can also obtain e1; _e1 ! 0 as t ? ?.

Since _q; q 2 Ln
1, q and _q are uniformly continuous.

Therefore, from Property 2.1, we can conclude that

matrices M(q), Cðq; _qÞ, G(q), H(q),J(q), M̂ðqÞ, Ĉðq; _qÞ,
and ĜðqÞ are uniformly continuous.

5 Simulations and experiments

5.1 Simulations

In this section, to show the effectiveness of the proposed

approach, we first present simulation results for dynamic

balance optimization and control.

Consider a 12-DOF biped robot shown in Fig. 3, which

is modeled using ADAMS and consists of a torso, and a

pair of legs composed of six links. The left and right legs

are numbered as Leg 1 and Leg 2, respectively. The height

of the biped is 1.2 m, the length of the lower limbs is

460 mm, and the height of the foot is 90 mm.

Both the balancing optimization and the motion/force

tracking under perturbing external forces are evaluated in

Fig. 3. In the simulations, diverse external forces with

different directions and acting points are considered. Three

cases (Case 1: fext = 50 N, a = 0o, d = 1.0 m; Case 2:

fext = 50 N, a = 30o, d = 1.0 m; Case 3: fext = 50 N,

a = 0o, d = 1.2 m) are illustrated in Fig. 3. We can obtain

the corresponding matrices in (26)–(29) as

G ¼

1 0 0 �1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 l 0 0 l

2

664

3

775
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S ¼

1 0 � lffiffiffi
2

p

�1 0 � lffiffiffi
2

p

0 1 � lffiffiffi
2

p

0 �1 � lffiffiffi
2

p

2
666666664

3
777777775

f ¼ ½flx; fly; flz; frx; fry; frz�T

W ¼ ½0; fextcosðaÞ;G; fextcosðaÞd�T

We assume -20 N B flx B 20 N, -20 N B frx B 20 N,

-20 N B fly B 20 N, -20 N B fry B 20 N, therefore,

f? = f- = [20, …, 20]T. We choose Q ¼ diag½1:0�,
b = 0. The friction coefficient of each foot is l = 0.6.

Under the perturbing external force, both feet are on the

ground and the body sways to the right, to the left and then

returns to its original position. Because the motion is

constrained on the lateral plane, only four joints h6
l , h1

l , h1
r

and h6
r are actuated and the other eight joints are locked by

axis brakes. Figure 3 shows the simplified biped model

from the frontal plane. Let the state X and the control U be

represented as

X ¼ ½x1; x2; x3; x4�T ¼ ½hl
6; h

l
1; h

r
1; h

r
6�

T

U ¼ ½u1; u2; u3; u4�T ¼ ½sl
6; s

l
1; s

r
1; s

r
6�

T

The constraints can be denoted by

L cosðx1Þ
L sinðx1Þ

x1

2
4

3
5�

2l þ L cosðx4Þ þ l sinðx3 þ x4Þ
L sinðx4Þ � l cosðx3 þ x4Þ

x3 þ x4 � x2

2
4

3
5 ¼ 0

where L is the length of the leg and l is half the width of the

body. Let x1 and x2 be defined by

X ¼ ½X1;X2�T ;X1 ¼ ½x1�;X2 ¼ ½x2; x3; x4�T ð90Þ

It is easy to have _X2 ¼ ½�1;�1; 1�T _X1.The dynamic

equation of motion involving only X1 becomes

M _X1 þ G ¼ u1 � u2 � u3 þ u4 ð91Þ

where M = 2(I2 ? I4) ? 4(m2 ? m3)d2
2 ? m4L2, and

G = -(m2 ? m3 ? m4)gL sin (x1).and m4 is the mass of

the body; m3 is the mass of the upper leg; m2 is the length

of the lower leg; I2 is the inertial moment of the lower leg

in the frontal plane; and I3 is the inertial moment of the

upper leg in the frontal plane; and g is the gravity term. For

the M and G, 35 nodes are chosen for each variable, with

the variances rM = rG = rt = 2.0; moreover, the centers

are evenly distributed to span the input space [-1.0, 1.0].

The weight matrices UM and UG are all initialized to zero.

The gains for the controller are chosen as Kr ¼ diag½50�,
K ¼ diag½20�, Kf = 800 and Ks = 10.0, D̂ ¼ 0,

q1 = q2 = 0.5. The adaptation algorithm as given in (71)–

(75) is activated with Cw ¼ Cd ¼ Cv ¼ Cr ¼ Ch ¼
diagð0:5Þ.

Fig. 3 Diverse external forces

in three Cases are applied in the

simulations
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The simulation results for the biped can be found in

Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13. The ground reaction

forces of the legs are shown in Figs. 4, 5, 6, 7, 8 and 9. In

Case 2, the magnitude of fz is bigger than that in Case 1

because of the change of the direction of the external force.

In Case 3, the difference between ground reaction forces

for the two legs is bigger than that in Case 1 because the

acting point of the external force is higher. However, all the

simulation results show that the force tracking errors tend

to the origins in cases of diverse external forces with dif-

ferent directions and acting points.

The input torques for the joints in all three cases can be

found in Figs. 10 and 11. The joint velocities for both legs

are shown in Figs. 12 and 13. The simulation results

indicate that the simulated biped robot remains dynamical

balance under diverse perturbing external forces, which

validate the effectiveness of the control law in Theo-

rem 4.1. The proposed control scheme achieves good

performance, which is mainly due to the ‘‘adaptive’’

mechanism, even if the nominal dynamics are uncertain.

Although the parametric uncertainties and the external

disturbances are both introduced into the simulation model,

the force/motion control performance of system, under the

proposed control, is not degraded. The simulation results

demonstrate the effectiveness of the proposed adaptive

control in the presence of unknown nonlinear dynamics

and environments.
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Fig. 4 Ground reaction force for the left leg in Case 1
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Fig. 5 Ground reaction force for the right leg in Case 1
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Fig. 6 Ground reaction force for the left leg in Case 2
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Fig. 7 Ground reaction force for the right leg in Case 2
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5.2 Experiments

Experiments are carried out on a physical robot ‘‘Alpha’’.

Alpha is a mini-type humanoid robot that is built at the

Department of Electronic Engineering, Shunde Polytech-

nic, Guangdong of China. Alpha has 18 degree of freedom

with a 0.394 m height and a 1.7 kg weight. The mechanical

structure of the robot is shown in Fig. 14.

The biped carries a control board for controlling and

communicating, a lithium-polymer battery in the robot’s

upper body for the servo motors. A RS-232 wireless

transmission link connects the control software, which is

running on a PC, to the robot’s control board. Degrees of

freedom (DOFs) of Alpha are schematically shown in
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Fig. 9 Ground reaction force for the right leg in Case 3
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Fig. 14. The robot is driven by 18 servo motors: six per leg

and three in each arm. The six leg-servos allow for flexible

leg movements: Three orthogonal servos constitute the

3-DOFs hip joint. Two orthogonal servos form the 2-DOFs

ankle joint. One servo drives the knee joint. The sensors

such as infrared sensors, force sensors and gyro sensors are

interpreted to improve the ability of autonomous walking.

Closed-loop control for the humanoid robot is constructed.

Daily movements of Alpha, such as going straight, walking

sideways, obstacle avoidance, and turning around, have

been realized. The basic parameters of Alpha are shown in

Table 1.

Continuous-force external disturbances are applied on

the right shoulder of the biped robot until the joint angles of

the hips and the ankles changed obviously. The distur-

bances are carried out by a hand of an experimenter. The

ground reaction forces are measured via the pressure sen-

sors embedded in each of the soles of the biped robot. As

we can see from Figs. 15 and 16, ground reaction forces for

the both legs become steady gradually under the proposed

adaptive control. Figure 17 shows the snapshots of the

biped under the implemented continuous-force external

disturbances in double-support phase. After swaying

smoothly to the left and then to the right, the prototype
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Fig. 14 The implemented prototype robot

Table 1 Basic parameters of

Alpha
Parameters Value

Height (cm) 39.4

Weight (kg) 1.7

Degree of freedom 18
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Fig. 15 Ground reaction force for the left leg of Alpha
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Fig. 16 Ground reaction force for the right leg of Alpha
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humanoid robot always restores the initial balance posture.

The robot is able to react appropriately to the disturbances

as desired. The experimental results show that the proposed

adaptive control is effective.

6 Conclusions

In this paper, the dynamic balance optimization and control

of biped robots have been investigated under the external

disturbances in the double-support phase. First, a con-

strained dynamic model of the biped robot is formulated

and a reduced order model for the double-support phase is

derived. Then, a recurrent neural network has been adopted

to deal with the complicated optimization problem subject

to both equality and inequality constraints. For the given

contact force and motion, we propose the hybrid motion/-

force control based on Recurrent Neural Networks to

approximate unknown dynamic functions, and the adaptive

learning algorithms that can learn the parameters of the

Recurrent Neural Networks are derived using Lyapunov

stability theorem. The verification of the proposed control

is conducted by simulations and experiments. We believe

that the proposed method will be promising for dynamical

balance optimization and control of biped robots under

perturbing external forces.
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