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Abstract The detection of damage at an early stage that

affects the supporting element of civil structures proves to

be very significant to save invaluable human life and

valuable possessions. In this research work, the severity of

cracks in the supporting column is assessed using a new

technique. This piece of research study uses the soft

computing method of fuzzy cognitive map (FCM) to model

the domain experts’ knowledge and the knowledge

assimilated through relevant literature to grade the severity

of cracks in supporting column. The FCM grading model is

further improved by using the Hebbian learning algorithms.

The presented work demonstrates the classification and

prediction capabilities of FCM for the respective structural

health monitoring application, using two well-known and

efficient FCM learning approaches viz. nonlinear Hebbian

learning (NHL) and data-driven nonlinear Hebbian learn-

ing (DD-NHL). The proposed crack severity grading model

classifies the cracks in supporting column into three cate-

gories, namely fine crack, moderate crack and severe crack.

The proposed model uses DD-NHL algorithm. DD-NHL is

trained with 70 records and tested with 30 records and

gives an overall classification accuracy of 96 %. The

obtained results are better compared to other popular

machine learning-based classifiers. The proposed method

helps even the non-experts to find the possible causes of

crack and reports them to structural engineers, to start

maintenance in an appropriate stage, using various crack

control techniques. Also, a software tool for crack cate-

gorization was developed based on the FCM method and

its learning capabilities. Thus, it is easier for the users/civil

engineers to use this software to make decisions in civil

engineering domain and improve their knowledge about

the health of the structure.

Keywords Structural health monitoring � Fuzzy logic �
Fuzzy cognitive map � Crack categorization � Hebbian
learning � Data-driven nonlinear Hebbian learning

1 Introduction

Structural health monitoring (SHM) is a process for pro-

viding precise and timely information about the physical

condition of civil structures. SHM is emerging as an

essential tool to help structural engineers to improve the

protection and maintainability of civil structures. SHM

improves safety and functionality of structures and
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provides a timely warning of expected failures. Cracks

occur in structural elements when the stress of a part

increases more than its strength [7]. The stress could be

caused by outwardly applied forces such as dead, live,

wind loads foundation settlement or could be induced

inside due to thermal movements, moisture changes,

chemical action, etc. Figure 1 shows some sample images

of cracks occurrence in columns.

Cracks in buildings can be classified either as structural

or non-structural cracks. Structural cracks result from

incorrect design, faulty construction or overloading and

may cause danger to the safety of the building [7]. Non-

structural cracks result from internal stress of building

materials which do not cause any threat to the safety of

buildings [7]. Cracks which occur in supporting column

belong to structural crack category. The structural element

designed to support compression loads is termed as col-

umn. Columns support vertical loads from the floor and

roof slabs and transfer these loads to the footings. Since

failure of column often causes widespread destruction,

columns are designed with a higher reason of safety than

beams.

Diagnosis of cracks was performed by various organi-

zations [1, 10]. However, these methods were not helpful

for non-experts who perform regular inspection of cracks.

A fuzzy-based pattern recognition model [4] was proposed

for crack diagnosis along with cause and effect diagram.

The model was applied to three different forms like slab

surface, walls and columns. But this method was focused

on diagnosing only the possible causes of crack. A fuzzy-

based system for the assessment of the state of the build-

ings was proposed in [14]. The assessment focuses on the

state of building history, environmental conditions, struc-

tural capacity and durability. The limitation of the above

work was that it considered fixed values for assessment

criteria which are not similar for all the building regions.

Fuzzy set theory was used by [15] which helped non-ex-

perts to diagnose crack causes. However, this method did

not provide information about whether the crack occurred

due to a single cause or multiple causes. Rough set theory

for the diagnosis of crack in concrete structures was pro-

posed by [13]. The causes of the cracks were classified

based on the crack characteristics like time of formation

and shape.

All the related works discussed above were used pri-

marily for the categorization of crack causes. Also, domain

experts’ knowledge was not employed for crack cause

categorization. As it comes from our knowledge, the pro-

posed work is the first of its kind to use fuzzy cognitive

map (FCM) to model domain experts’ knowledge together

with the data collected from reliable structural tests for

predicting the severity level of cracks occurring in the

supporting columns. The main reason to employ the FCM

for crack modeling and severity grading is their abilities for

modeling and analyzing complex systems. FCM consists of

state variables connected by links that indicate the causal

relationships in contrast to the mathematical and statistical

approaches which have difficulty to accomplish this task

[16]. FCM is usually created by human experts who design

it based on the knowledge gained through experience at

different circumstances. Human knowledge and experience

prove to be valuable for the selection of concepts and

determination of weights between the interconnected con-

cepts devoted to the structured FCM. The main advantage

of FCM is its ability to integrate and adapt human

knowledge [28]. FCM has been used for knowledge rep-

resentation [31], fault detection [22], process control [9],

data mining in Internet [17] and medical decision support

system [25, 31]. A two-level integrated FCM model was

used in tumor grading and breast cancer risk prediction

[11]. In the field of precision agriculture, FCM has been

used for categorizing the coconut yield level for the given

set of agro-climatic conditions [12].

The use of FCM for structural damage detection was

initiated by [3] for detecting structural damage in a can-

tilever beam from measured frequencies. This work was

Fig. 1 Cracks in columns
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motivated by the above cited work of [3], focusing on

analyzing the possible mechanical, thermal and chemical

causes for cracks occurring in the supporting columns.

Also it concentrates on grading the severity level of cracks

occurring in the supporting columns.

The proposed method uses FCM for crack diagnosis in

the supporting element column. The various causes influ-

encing the severity of cracks are analyzed using FCM

modeling features, and the cracks are categorized into three

grades, namely fine crack, moderate crack and severe

crack. As cracks with a width of more than 0.3 mm cause

durability problems [6], they have to be attended promptly;

thus, crack categorization plays a crucial role in SHM. The

objectives of the proposed work are to: (1) investigate the

effectiveness of fuzzy cognitive maps for the reported

SHM application, (2) develop a soft computing-based

crack diagnosis expert system using FCM to help non-

experts to diagnose the causes of crack and its severity

level and (3) analyze the influence of various chemical,

mechanical and thermal agents on the development of

cracks and its prognosis.

This paper is structured in the following way: Sect. 2

summarizes the main aspects of the FCM construction using

expert knowledge. Section 3 explains the FCM modeling

process for crack categorization. Section 4 explains the

details of the evaluation of FCM grading model and gives a

comparison with other existing techniques. Section 5 dis-

cusses the results, and Sect. 6 concludes the paper by citing

the advantages and limitations of the proposed method.

2 Fuzzy cognitive maps

2.1 Overview of FCM

FCM is a soft computing technique that follows a reason-

ing approach similar to the human reasoning and human

decision-making process [16]. FCM is constructed using

nodes and edges among them. Nodes represent the con-

cepts in the problem domain. Concepts denote the attri-

butes and states of the system. The interconnection

between the concepts, also known as weighted link, rep-

resents the cause and effect relationship that a concept has

on others. The causal relationships among the concepts are

illustrated by either positive or negative values. In a posi-

tive relationship, an increase or decrease in the cause

variable causes the effect variable to move in the same

direction. In a negative relationship, the cause concept

causes the effect concept to move in opposite direction.

Concepts take values in the range [0, 1], while weights of

the edges take values in the range [-1, 1].

After drawing the FCM, a diagram to matrix transfor-

mation takes place representing the weights. There are two

general groups of methods for constructing the weight

matrix [23]. These are the expert knowledge methods and

the historical data methods. In the first group, the expert

knowledge is used to generate the important factors and

interrelationships. In the second group, the historical data

are used to extract the interrelationships between concepts.

A comparative study on different learning techniques for

FCM can be found in [23] and [26].

An N 9 N matrix is formed where N is the number of

concepts used in FCM. Each entry at row i, column j rep-

resents the degree to which the ith concept influences the

jth concept along with the sign. In the absence of causal

relation between any pair of concept, a zero value in the (i,

j) place of matrix is defined. Once the FCM has been

created, it should be initialized. Each concept Ci represents

one of the key factors of the modeled system. Let the value

assumed by Ci be Ai. Initial weights are based on the

available experts’ perceptions about the possible casual

associations between the cause–effect nodes. The experts’

perceptions are collected in the form of linguistic variables

like positively high, positively low, negatively high and

negatively low. Next, these perceptions are aggregated

using the SUM method and the overall linguistic weight is

defuzzified with the center of gravity (CoG) method [32] to

produce the respective numeric value in the range [-1 1].

The numerical weight is represented as Wij. In a similar

way, all the weights of FCM are calculated and the weight

matrix is constructed. When the FCM is initialized, it

interacts freely until it:

1. Reaches a fixed equilibrium.

2. Exhibits a limit cycle behavior.

3. Exhibits a Chaotic behavior.

The FCM converges after several cycles. Among the

above-listed situations, the fixed equilibrium state is the

most valuable compared to others.

2.2 Learning in FCM

Learning in FCM involves updating the weights among the

concepts of an FCM model. A learning strategy helps the

development of the FCMs by fine-tuning their initial

weights. This can be succeeded by applying training

algorithms like that of artificial neural networks [21, 22].

Learning algorithms help on overcoming the gaps found in

expert knowledge and make the system converge in the

desired regions so as to get more acceptable classification

and inference capabilities.

Hebb-based learning FCM models are very effective for

solving complex problems with small and incomplete data

sets [19]. The main drawback of Hebb-based learning

methods is that their strength and accuracy depend purely

on the expert knowledge which in turn decreases the
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efficiency of the model. The more the number of nodes, the

more complex the model building becomes. In addition,

often no expert is available for building the FCM model.

The NHL [27] is a learning algorithm of this type which

learns from initial expert-developed FCM model, and a set

of conditions are imposed on output concepts.

In the second group, historical data are used to learn the

FCM model comprising concept values at successive points

in time. Learning FCM by using historical data means

finding a connection matrix where successive FCM deci-

sion-making iterations provide concept values as close as

possible to the historical data. The evolutionary algorithms

[29, 34] have proven to be seen as fast and robust methods

for learning an FCM model; however, they use historical

data for learning FCM and they are out of scope in this

study. DD-NHL [33] which is an extension to NHL uses

historical data to improve the quality of learned FCM

model and does not rely on initial, expert-based developed

FCM when compared to the generic NHL method. The

DD-NHL method [33] produces better FCM models based

on their quality when compared to those developed by

using the generic NHL method.

2.3 FCM learning using Hebbian learning

algorithm

The Hebbian learning rule is one of the oldest learning

rules that specify how much the weight of the intercon-

nection between two concepts is to be adjusted in propor-

tion to the product of their activation. In NHL algorithm,

the concepts in FCM can be triggered synchronously in

each iteration step using Eq. (1). In each iteration step, the

weights Wij (weight from ith concept to jth concept) are

updated using Eq. (3) and these modified weights and

concept values are used in the next iteration.

A
ðkÞ
i ¼ f A

ðk�1Þ
i þ

XN

j6¼1
j¼1

A
ðk�1Þ
j �W

ðk�1Þ
ji

0
BB@

1
CCA ð1Þ

In the above equation, Ai
(k) is the value of concept i in kth

iteration. Wji
(k-1) is the weight from jth concept to the ith

concept in iteration step (k - 1). f is the sigmoid threshold

function and is calculated as given in Eq. (2).

f ¼ 1

1þ e�kx
ð2Þ

where k determines the steepness and is a positive value,

assumed as 1 in the proposed work. The learning rule

which used in this model is given in Eq. (3). This equation

is used in each iteration step to update the weight matrix.

W
kð Þ

ji ¼ W
k�1ð Þ
ji þ gkAj A

kð Þ
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k�1ð Þ
ji

� �
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where Wji
(k) is the updated weight in kth iteration. gk is the

learning parameter value in kth iteration, which is a small

positive value. In NHL algorithm, the weights of the con-

cepts with no relations that have zero values and only the

nonzero weights in the weight matrix are updated. The

values of the concepts are updated till all the concepts

converge at their desired region. The termination condi-

tions of the algorithm are represented in Eqs. (4) and (5),

which utilize the information on desired values of the

output concept which has predefined range of values.

F1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

DCi � Tið Þ2
vuut ð4Þ

F2 ¼ DC
kð Þ
i � DC

k�1ð Þ
i

���
��� \ e ð5Þ

where DC represents decision concept, Ti is the desired

target value of the decision concept, and e is the tolerance

level in the magnitude of the difference in DC in two

successive iterations. Normally e is assumed as a very

small positive value like 0.001. If the learning process is

repeated indefinitely without convergence, then the itera-

tion process needs to be stopped and the model requires

reconstruction with the help of experts’ knowledge. The

maximum number of iterations is generally set to a high

value like 500, and if the iterations go beyond this level

without convergence, then the model needs to be recon-

structed so that it would be able to converge in the pre-

ferred region.

In DD-NHL algorithm, the historical data are considered

for learning of FCM. The historical data form a matrix D,

where dij corresponds to the ith concepts value at jth time

point. The difference between NHL and DD-NHL [33]

algorithms lies in concept value calculation. In NHL,

Eq. (1) is used for concept value updating, whereas in the

case of DD-NHL, in each iteration, the next row of matrix

D is considered as the new concept value. So, the matrix

updating is carried out based on the historical data. If the

termination condition is not reached, we start using the

same data points again, i.e., the first row of matrix D.

3 FCM modeling process for crack categorization

The SHM process is a complex one, consisting of different

factors and many possible interrelations among them [8].

Based on the expert knowledge in the field of structural

engineering, the factors which are influencing the occur-

rence of cracks in column were identified. These factors are

crucial for the prediction of severity of cracks. A team of

domain experts’ was pooled to find these factors and their

relationships. Eleven factors were identified by domain

experts as influencing factors listed as (C1–C11) in
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Table 1. These are the factors that stimulate the crack

occurrence. The C12 is defined as the output/decision

concept that predicts the grade of the crack and can be

called Fine crack, Moderate crack and Severe crack.

The range of values for the above-listed factors complies

with the IS 456-2000 (Indian Standard, Plain and Rein-

forced Concrete; Code of Practice) standards. The reported

work is under standard loading conditions of column [19,

20]. The column load (Pu) is calculated using Eq. (6) given

below for short axially loaded member type.

Pu ¼ 0:4fck � Ac þ 0:67fy � Asc ð6Þ

where Pu = axial load on the member, fck = characteristic

compressive strength, Ac = area of concrete, fy = charac-

teristic strength of the compression reinforcement, and

Asc = area of longitudinal reinforcement for columns

The causal relationships between the factors listed in

Table 1 are subjectively defined by the domain experts using

linguistic terms and always in accordance with the recom-

mendations and guidelines available in [6]. Even though the

experts’ suggestions agree with the recommendations and

guidelines (as given in [6]) in a macro-context, the subtle

variations on their subjective opinions about the influence of

each concept on the decision concept should be properly cap-

tured and precisely modeled at the stage of system designing.

This is well accomplished by FCM’s inherent ability to

aggregate the subjective opinions about the causal interactions

of the participating elements. The weights of the edges of the

interconnected concepts are determined by aggregating the

linguistic causal associations assigned by several experts. In the

proposed system, three domain experts, namely a structural

engineer, a structural engineering researcher and a technical

cite supervisor, were involved in deciding the concepts and the

weight interconnections among the concepts. Theweightswere

determined by the domain experts in terms of linguistic

expressions and later aggregated using CoG method [32].

Wherever possible, the domain experts followed the IS

456-2000 standards in deciding the causal associations between

the various influencing factors. For instance, the influence

between some of the factors selected for building the FCM can

be found in [6]. Some of them are:

• Cracks cause corrosion of reinforcement (as per the

guidelines in Sect. 2).

• Cracks occur due to load and thermal variation (as per

the guidelines in Sect. 2.2).

• Thickness of cover strongly influences cracks (as per

Sect. 2.3.1 of [6]).

• High water–cement ratio increases crack occurrence (as

per Appendix 2.1 of [6]).

• The lesser the cover, the more the crack occurrence (as

per Appendix 2.1 of [6]).

• If the chloride value exceeds the permissible value, it will

lead to crack development (as per Appendix 2.1 of [6]).

• Shrinkage and thermal movement, which are due to

design deficiency, if not considered will lead to crack

(as per Appendix 2.1 of [6]).

Complementing the available literature, the domain

experts linguistically described the strength of causal

associations between each pair of concepts. Subsequently,

the calculation of the weight of the edge connecting a pair

of concepts is described below.

Let us consider the interconnection between column

load (C2) and crack width (C12) for illustration. The three

experts stated their opinions to decide the weight as

follows:

Table 1 Main features influencing cracks in columns

Concepts Range of values Clause number in IS 456-2000 standardb

C1: eccentricity Normal (B20 mm), high ([20 mm) 25.4

C2: column load Normal ([Pu
a), low (\Pu

a) 39.3

C3: thickness of cover Low (\40 mm), normal (=40 mm) 26.4.2.1

C4: water cement ratio Normal (=0.55), high ([0.55) As per expert opinion

C5: corrosion of reinforcement Absent (0–0.4), present (0.3–0.7), intense (0.5–1) As per expert opinion

C6: shrinkage Absent (0–0.4), present (0.3–0.7), intense (0.5–1) As per expert opinion

C7: spacing of bars Normal (B300 mm), high ([300 mm) 26.5.1.3

C8: crazing Absent (0.1–0.6), present (0.5–1) As per expert opinion

C9: temperature changes Normal (=300 �C), high ([300 �C) As per expert opinion

C10: thermal movement Absent (0.1–0.6), present (0.5–1) As per expert opinion

C11: chloride attack Normal (0.6 kg m-3) Table 7 of 8.2.5.2

C12: crack Fine, moderate, severe As per expert opinion

a Pu is calculated as discussed in Eq. (6) given below
b Wherever possible, the valid range of concept values is fixed as per standard guidelines; in case of absence of standards, experts were asked to

fix ranges
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3.1 First expert

If a small change in value of concept C2 occurs, then a

large change in value of concept C12 is caused.

Inference The influence from C2 to C12 is positively

high.

3.2 Second expert

If a very small change in value of concept C2 occurs, then a

large change in C12 is caused.

Inference The influence from C2 to C12 is positively

very high.

3.3 Third expert

If a very small change in the value of concept C2 occurs,

then a medium change in the value of the concept C12 is

caused.

Inference The influence from C2 to C12 is positively

high.

The three linguistic variables inferred from the domain

experts are summed up, and an overall linguistic weight is

produced. With the defuzzification method of CoG, the

weight is transformed into the numerical value 0.70 in the

range [-1, 1].

The 11 identified concepts (Table 1) keep relations with

each other, to characterize the process of predicting the

severity of cracks in the column. The prediction gives the

level of the severity of cracks to the structural engineer,

who plans the healing of column crack using standard

crack control method.

Using the same approach as described above, weights

between each pair of relationship are calculated and the

weight matrix W is produced. This weight matrix W is used

in the simulation process of FCMs, constituting an essential

part in the inference process. Figure 2 illustrates the con-

structed FCM model for predicting the severity of crack

with the numerical value of weights.

4 Evaluation of FCM grading model

4.1 FCM learning using DD-NHL

In order to classify the cracks, a classification algorithm

based on the FCM learning approach of DD-NHL was

implemented. This learning approach was selected due to

the availability of a relatively small data set after the initial

FCM construction by experts’ knowledge.

The historical data set consists of 100 records which are

used for training, testing and later for classifying the crack

into three classes. The categorization of the crack is based

on the width of the crack [7] as: Fine crack is the one with

less than 1 mm in width; moderate crack has width

between 1 mm and 2 mm, and the crack larger than 2 mm

width is considered as severe crack as per expert recom-

mendations. The corresponding values are normalized

using the formula given in Eq. (7)

Xnormalized ¼
ðX � XminÞ

ðXmax � XminÞ
ð7Þ

For example, the crack width of 2.3 mm is normalized

as 0.8, assuming that the most crack width occurring is

2.7 mm and the least crack width is 0.5 mm in the provided

historical data set. After normalization, the ranges have

been assigned as: 0.1 B fine B 0.19, 0.2 B moder-

ate B 0.69 and 0.7 B severe B 1.

The historical records were used for both learning and

testing by the DD-NHL algorithm. Seventy samples out of

100 input samples were considered to be used for train-

ing, and the 30 remaining samples were considered for

testing. For each algorithm performance, there is a ran-

dom selection of these cases for training and testing.

During each run, the classification accuracy is calculated

by the testing cases. The overall classification accuracy is

estimated by the mean value of the calculated classifica-

tion accuracies produced after a large number of

experiments.

Based on the DD-NHL, the proposed classification

algorithm consists of the following steps:

Input For a system with N concepts and K data points,

the input data form a matrix D = [dti], where dti corre-

sponds to the value of ith concept (i = 1, …, N) at the tth

pattern, where t = 1, …, K (K is the number of records),

with size K 9 N, which is called input data matrix. Each

row of the given matrix, illustrated as A(t) = [A1(t),

A2(t),…An(t)] where t = 1, …, K, stores values of acti-

vations of the concepts at the tth iteration.

Fig. 2 The FCM model for crack categorization
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In the learning phase, the algorithm has to find the

decision boundaries that partition the underlying output

vector from step one into three sets, one for each class. For

this purpose, one-dimensional decision boundaries were

determined by using the least Euclidean distance method

[5]. The FCM model is learned using Eq. (1) through

Eq. (3) till the termination condition in Eq. (4) is reached.

The learning rate was set as 0.001. After reaching the

termination state, the produced weight matrix is used for

testing the remaining 30 cases referring to the category of

the crack.

Next, in the testing phase, the remaining 30 cases of the

sample records following the steps of DD-NHL were

classified using the previously produced decision bound-

aries at each experiment which were used to estimate the

classification accuracy. Thus, for a total number of 70

experiments, the mean classifier accuracy was estimated.

The result of classification for the concept C12 in the

convergence region by the FCM model is depicted in

Fig. 3. The decision line separates the grades into three

categories. Grade values \0.51 show fine crack cases,

while the values between 0.51 and 0.56 are considered as

moderate cracks. Values[0.56 are categorized as severe

crack cases. The overall classification accuracy of the

proposed method is 96 %.

A comparative analysis was made to compare the clas-

sification accuracy of DD-NHL with other benchmark

machine learning classifiers. Four machine learning algo-

rithms namely Naı̈ve Bayes, multilayer perceptron, J48 and

Bayes net were used for testing using WEKA Tool [18].

As shown in Table 2, the proposed DD-NHL-FCM

grading model gives diagnostic output with very high

accuracy. A classification accuracy of 100 % (5/5) was

achieved for fine grade, 87 % (7/8) of the records were

graded as moderate cases, and 100 % (17/17) of the

remaining ones were graded as severe cases. The results in

Table 2 prove that FCM is able to give crack diagnosis

with a degree of accuracy higher than the well-known

classification engines.

4.2 FCM learning using NHL

This section discusses the applicability of NHL-FCM to

infer the knowledge about categorization in supporting

column without using earlier historical data for training and

testing as in the earlier case of DD-NHL-FCM of Sect. 4.1.

For this purpose, the unsupervised learning of FCM using

NHL rule is adopted on the proposed FCM model given in

Fig. 2. The NHL algorithm is used to reinforce the initial

causal weights assigned by the group of experts to get the

desired mapping between input and output [2]. The unsu-

pervised learning of FCM for crack categorization is tested

using different scenarios as illustrated below.

4.2.1 Scenario A: influence of column load on crack

severity

Column load is one of the mechanical agents which are

considered by the domain experts as a strong influential

parameter affecting the occurrence of crack in columns.

Thus, an increase in column load is highly likely to cause a

severe crack. To test the above-mentioned fact using NHL,

a scenario with increased column load was formulated

where the values of other parameters were assumed to fall

within their normal limits. The input vector is defined as

follows. The range of values for each factor is given in

Table 1. If the value of a factor considered as input is

within its normal range, then this factor will not be con-

sidered as a factor affecting the crack occurrence. If the

input factor takes values other than the normal range, it will

be a factor that induces crack. Based on this, the input

values are chosen for all the factors affecting the crack

occurrence.

Eccentricity is 20 mm, column load is 0.9, thickness of

cover is 40 mm, water–cement ratio is 0.55, corrosion is

0.3, shrinkage is 0.3, spacing of bars is 300 mm, crazing is

0.1, temperature change is 300 �C, thermal movement is

0.2, and chloride attack is 0.6 kg m-3.

The values given in the input vector are experimental

values. These input values need to be normalized in the 0–1

scale, using Eq. (7) in order to be used in FCM simulation

process. For example, the temperature value of 300 �C is

normalized to the value 0.5000, assuming that the maxi-

mum temperature value Xmax is 303 �C and the minimum

temperature value Xmin is 297 �C. Similarly, all other

concept values are normalized. After normalizing the

above values, the input vector is formed as:Fig. 3 Categorization of cracks
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Ainit�1 ¼ ½0:0000 0:9000 1:0000 0:5500 0:3000 0:3000

0:0000 0:1000 0:5000 0:2000 0:6000 0�

The concepts and weights are learned using Eq. (1) through

Eq. (3) till they converge to a steady state, according to the

termination criteria in Eqs. (4) and (5). The learning rate

was set initially to 0.1 and decreased exponentially at each

iteration k as:

gðkÞ ¼ gðk�1Þ

ð2k þ 1Þ ð8Þ

The concepts reach the steady state after 10 iterations, and

the values of concepts are:

Afinal�1 ¼ ½0:6590 0:6590 0:6590 0:6590 0:8612

0:7480 0:6590 0:7503 0:6590 0:6590

0:7305 0:9869�

The value of DC (C12) converges at 0.9869 after 10 iter-

ations. The value above 0.7 is considered as severe crack

by the experts. Therefore, the final result obtained corre-

sponds to the severe crack.

4.2.2 Scenario B: influence of chemical attack on crack

severity

Chloride attack is one of the chemical agents that are

believed by the experts to moderately influence the

occurrence of crack in column. Thus, an increase in chlo-

ride value is likely to cause a moderate crack. To test the

above-mentioned fact, using NHL, a scenario with

increased chloride value was formulated where the values

of the other parameters were assumed to be within their

normal limits. The initial values of factors for this scenario

are given below: Eccentricity is 20 mm, column load is

0.1, thickness of cover is 40 mm, water–cement ratio 0.5,

corrosion is 0.1, shrinkage is 0.2, spacing of bars is

300 mm, crazing is 0.1, temperature change is 300 �C,
thermal movement is 0.2, and chloride attack is

0.66 k gm-3.

After normalizing the above values using Eq. (7), the

input vector is formed as:

Ainit�1 ¼ ½0:0000 0:1000 1:0000 0:500 0:1000

0:2000 0:0000 0:1000 0:5000 0:2000

0:6600 0�

The concepts and weights are learned using Eq. (1) through

Eq. (3) till they converge to a steady state or equilibrium

point according to the termination criteria in Eq. (4) and

Eq. (5). The concepts reach the steady state after 10 iter-

ations, and the values of concepts are:

Afinal�1 ¼ ½0:5590 0:6590 0:5490 0:4690 0:3322

0:3320 0:4590 0:5513 0:4523 0:5469

0:5305 0:5242�

The value of DC (C12) converges at 0.5242 after 10 itera-

tions. The DC values between 0.2 and 0.69 are considered as

moderate crack decisions by the experts. Therefore, the final

result obtained corresponds to the moderate crack.

4.2.3 Scenario C: influence of thermal agents on crack

severity

According to the experts’ recommendations, thermal

agents have a mild influence on the occurrence of crack. To

study the effect of thermal agent on the severity of crack,

Table 2 Comparison of

different classifiers using

confusion matrix

Classifier Crack class Severe Moderate Fine Classification accuracy (%)

DD-NHL-FCM Severe 17 1 0 96 (29/30)

Moderate 0 7 0

Fine 0 0 5

Multilayer perceptron Severe 13 0 0 86 (26/30)

Moderate 0 5 3

Fine 0 1 8

Bayes net Severe 7 0 6 70 (21/30)

Moderate 0 5 3

Fine 0 0 9

Naı̈ve Bayes Severe 13 0 0 80 (24/30)

Moderate 0 6 2

Fine 3 1 5

J48 Severe 13 0 0 76.6 (23/30)

Moderate 1 5 2

Fine 4 0 5
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the following values of input factors were considered as

input values to the proposed system: Eccentricity is

20 mm, column load is 0.1, thickness of cover is 40 mm,

water–cement ratio 0.5, corrosion is 0.1, shrinkage is 0.2,

spacing of bars is 300 mm, crazing (0.2), temperature

change is 300 �C, thermal movement is 0.8, and chloride

attack is 0.6 kg m-3.

After normalizing the above values using Eq. (7), the

input vector is formed as:

Ainit�1 ¼ ½0:0000 0:1000 1:0000 0:500 0:1000

0:2000 0:0000 0:2000 0:5000 0:8000

0:6000 0�

The concepts and weights are learned using Eq. (1) through

Eq. (3) till they converge to a steady state according to the

termination criteria in Eq. (4) and Eq. (5). The concepts

reach the steady state after 10 iterations, and the values of

concepts are:

Ainit�1 ¼ ½0:1290 0:3790 1:3590 0:4590 0:4322

0:7320 0:5590 0:4513 0:6523 0:6459 0:6305

0:0312�

The value of DC (C12) converges to 0.1312 after 10 iter-

ations. The values between 0.1 and 0.2 are considered as

fine crack decisions by the experts. Therefore, the final

result obtained corresponds to the fine crack.

A user-friendly decision support tool has been designed

for predicting the severity of crack for the given set of

mechanical, chemical and thermal agents. This software is

functional and is available for structural engineers. The

details of the software are given in the next subsection.

4.3 Description of suggested GUI

Crack categorization software has been developed for this

study intending to provide the structural engineers with a

front-end decision support tool for estimating the level of

crack for the given set of factors which influence the occur-

rence of crack. The tool helps even the non-experts to find the

causesof crack and report the results to structural engineers, so

as to start maintenance in an appropriate stage. The user

interface of the crack categorization software, developed for

the purpose of this study, asks experts to define the values of

each concept and predicts the crack severity level for the given

set of factors by invoking the proposed NHL-FCM model.

5 Results and discussion

The proposed work is focused on crack categorization

using DD-NHL-FCM and NHL. The DD-NHL-FCM gives

96 % classification accuracy which is superior to the other

computational intelligence-based methods as shown in

Table 2. The real strength of DD-NHL-FCM is that it is

capable of learning even from a small data set as it is built

over domain experts’ knowledge, while other machine

learning algorithms like multilayer perception and back

propagation network are very much dependent on a large

data set to be used for training. Additionally, they need

many epochs to converge (which means to reach a deci-

sion). Hence, FCM approach enhanced with the DD-NHL

learning algorithm is superior over the other machine

learning algorithms in terms of (1) smaller training set

required for learning and (2) faster convergence.

The inference ability of NHL learning algorithm was

used for testing new knowledge. From the various case

studies conducted, it was observed that the NHL algorithm

produces expected result in concurrence with the expert

opinions. The main reason that we used Hebbian learning

algorithm for FCM in this study is the availability of

domain knowledge from experts which is used for the

initial FCM construction. Usually, when the data set is

relatively small for learning (small number of historical

records), the DD-NHL algorithm is selected for FCM

learning, thus to change the initial structure providing

better modeling and system performance.

Furthermore, we have not selected genetic or evolu-

tionary learning algorithms for FCM reconstruction, due to

the specific type and number of available historical data.

More specifically, the DD-NHL-FCM is capable of learn-

ing even from a small data set as the FCM is initially built

over domain experts’ knowledge, while the other evolu-

tionary FCM learning algorithms need a relatively large

data set of historical data to be used for FCM training.

Previous studies have also shown the suitability of this type

of learning when small data sets are available [24].

Moreover, evolutionary algorithms need an objective

function (maximization or minimization function) to be

defined and the performance of these algorithms in deter-

mining the best weights largely depends on how well the

objective function is defined. The higher computational

complexity involved in these algorithms is justified only

when there is no expert knowledge available to decide the

weights. As FCMs are constructed on the basis of domain

expertise, the DD-NHL algorithm acts upon the initial

weights defined by the experts to further refine them and thus

to fill the gaps in the expert knowledge with the help of the

available historical data. Nevertheless, a future extension of

the presented work is planned by utilizing the evolutionary

algorithms to experiment whether these algorithms give a

higher accuracy than what is obtained in the current work.

Themain limitation of the FCMmodel is its dependence on

expert knowledge to deduce the causal relationships. Besides,

FCM becomes unstable and gives unpredictable results if the

causal weights are not properly assigned.
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In summary, this work mainly elaborates the develop-

ment of the knowledge-based system using FCM modeling

approach for crack categorization in civil structures as well

as the development of a software tool for supporting civil

engineers in predicting the crack severity. We selected to

develop a software tool with an easy-to-use GUI for

structural engineers (end users) to give them a front-end

decision support tool for estimating the category of crack

for the given set of interrelated parameters.

6 Conclusion

The purpose of the proposed work was to introduce and

highlight the capabilities of FCM as a promising tool for

crack modeling and categorization in SHM. The novelty of

the proposed approach is not on the theory of FCM method

but on the application domain on a new case study of civil

engineering of crack prediction in SHM. The efficient

NHL-based algorithm for FCM learning has been used for

crack categorization, providing better results than other

machine learning algorithms. The ability of FCM based on

the DD-NHL method has shown high accuracy. The pro-

posed DD-NHL-FCM uses historical data for classification.

DD-NHL method helps even the non-experts to find the

possible causes of crack and reports them to structural

engineers, to start maintenance in an appropriate stage,

using various crack control techniques. Also, the NHL for

FCM is used for scenario testing and analysis, helping on

the decision support capabilities of the proposed tool.

Moreover, a software tool for crack categorization was

developed based on the FCM method and its learning

capabilities. Thus, it is easier for the users/civil engineers

to use this software to make decisions in civil engineering

domain and improve their knowledge through the provided

results of SHM. Also, the proposed model is an easily

interpretable and transparent soft computing tool and is

useful even for naive users.

The proposed method agrees much with the way an

expert makes a perceptive classification based on his/her

accumulated experience. In future, the DD-NHL-FCM

model application could be investigated for crack diagnosis

in other structural elements like slabs and beams. The

proposed work can also be extended for diagnosing the

flexural crack and shear cracks in structural members

which are also complex problems.
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