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Abstract Time series forecasting is one of the most

important issues in numerous applications in real life. The

objective of this study was to propose a hybrid neural

network model based on wavelet transform (WT) and

feature extraction for time series forecasting. The motiva-

tion of the proposed model, which is called PCA-WCCNN,

is to establish a single simplified model with shorter

training time and satisfactory forecasting performance.

This model combines the principal component analysis

(PCA) and WT with artificial neural networks (ANNs).

Given a forecasting sequence, order of the original fore-

casting model is determined firstly. Secondly, the original

time series is decomposed into approximation and detail

components by employing WT technique. Then, instead of

using all the components as inputs, feature inputs are

extracted from all the sub-series obtained from the above

step. Finally, based on the extracted features and all the

sub-series, a famous neural network construction method

called cascade-correlation algorithm is applied to train

neural network model to learn the dynamics. As an illus-

tration, the proposed model is compared with two classical

models and two hybrid models, respectively. They are the

traditional cascade-correlation neural network, back-prop-

agation neural network, wavelet-based cascade-correlation

network using all the wavelet components as inputs to

establish one model (WCCNN) and wavelet-based cas-

cade-correlation network with combination of each sub-

series model (WCCNN multi-models). Results obtained

from this study indicate that the proposed method improves

the accuracy of ANN and can yield better efficiency than

other four neural network models.

Keywords Time series forecasting � Wavelet transform �
Principal component analysis � Feature extraction � Neural
network � Cascade-correlation algorithm

1 Introduction

Time series forecasting is an energetic research area which

has drawn significant attention in a variety of domains such

as economy, industry engineering and hydrology. By using

time series forecasting, past observations of the same

variable are collected and analyzed to develop a model

describing the underlying relationships. Over the past

several decades, many efforts have been devoted to the

development and improvement of time series forecasting

models. These models are developed from traditional linear

prediction models and gradually improved and transited to

nonlinear models.

Traditional statistical models have been focused on and

applied because of their relative simplicity in understand-

ing and implementation [1–5]. Linear prediction methods

mainly include a series of classical statistical models based

on autoregressive moving average (ARMA) model. Non-

linear prediction methods include complex models repre-

sented by all kinds of new types of machine learning

methods. The limitation of linear models is that the

underlying process studied is assumed to be linear, and

consequently, the models may fail to capture nonlinear

features commonly encountered in practice [6]. In recent

years, machine learning methods have gradually become

the main methods of solving the nonlinear and non-
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stationary complex time series prediction problems due to

their strong nonlinear approximation ability. ANNs are one

type of extensively used machine learning methods.

Approaches based on ANNs for time series forecasting

have produced convincing results [7–15], and the vast body

of the literature is still growing.

Wavelet transform (WT) is a frequently used data pre-

processing method. It can analyze a signal in both time and

frequency domain, so that it surmounts the shortcomings of

conventional Fourier transform. WT has been successfully

embedded in various time series prediction models and has

achieved satisfying results [16–19]. It provides an effective

decomposition of time series; therefore, the sub-series can

improve the performance of the forecasting models by

seizing the available information on different resolution

levels.

Principal component analysis (PCA) is a statistical

procedure that uses an orthogonal transformation to con-

vert a set of observation of possibly correlated variables

into a set of values of linearly uncorrelated variables called

principal components (PCs). The number of PCs is less

than or equal to the number of original variables.

Y. Ouyang [20] used PCA to evaluate the water quality

monitoring stations and showed that the number of moni-

toring stations can be reduced from 22 to 19. Wang [21]

presented an improved method which integrates the PCA

into a stochastic time strength neural network for fore-

casting financial time series. PCA extracted 2 PCs as the

input data from six variables.

In many existing literature, sub-models are established

separately according to the decomposition levels. Fore-

casting results are combined based on these sub-models

finally. The combination of these results would improve

forecasting accuracy compared with using original series

without decomposition. However, the problems brought

about are that both the calculation load and training time of

the whole model would be magnified. Another problem is

that the more sub-models are established, the more

parameters need to be determined. This may lead to worse

model generalization ability. The main objective of this

paper is to provide an improved method for time series

forecasting to solve these problems. A single simplified

hybrid neural network model is proposed in this study. This

model applies PCA to extract useful information from the

wavelet components to construct model inputs. The model

is trained by cascade-correlation algorithm. Combination

of WT and PCA provides a method for solving feature

extraction problems. The effectiveness of the proposed

hybrid approach is demonstrated by the results obtained

from both artificial data set and real-world data set. Fore-

casting of benchmark time series of Mackey-Glass as a

hand-designed system is carried out. The mean daily flow

of Oldman River near Brocket is used as real-world data

set.

The rest of this paper is organized as follows. In Sect. 2,

methodologies used in this paper are introduced. Section 3

illustrates the proposed hybrid model, and the modeling

procedures are given. The experimental results are pre-

sented and discussed in Sect. 4. Conclusions based on the

study are highlighted in Sect. 5.

2 Methodology

In this section, methodologies which will be used for

constructing forecasting models are introduced. The WT

and PCA methods are applied to decompose and feature

extraction. An ANN model with cascade-correlation (CC)

architecture as learning algorithm introduced in this section

is employed as the prediction model. The principles of

these methods are presented in detail in the following

subsections.

2.1 Wavelet transform (WT)

WT is an essential time–frequency analysis tool for signal

processing. It has been widely used because of its better

performance compared with the Fourier transform. The

basic aims of wavelet analysis are both to determine the

frequency (or scale) contents of a signal and to assess and

determine the temporal variation of this frequency content

[22]. It has an advantage of having flexibility in choosing

the mother wavelet in light of the characteristics of time

series. Elaborate mathematical definitions of the wavelets

are given in the literature [23].

WT can be divided into two categories: continuous

wavelet transform (CWT) and discrete wavelet transform

(DWT). The CWT for an original signal f(t) with respect to

a mother wavelet function w(t) can be defined as [22]:

CWTf ða; bÞ ¼ f ðtÞ;wa;bðtÞ
� �

¼ 1
ffiffiffiffiffiffi
aj j

p
Zþ1

�1

f ðtÞw� t � b

a

� �
dt

ð1Þ

where * is the complex conjugate of w(t) and a and

b denote the scale parameter and translation index,

respectively. In CWT, wavelet coefficients are produced

by continuously dilating and translating the mother

wavelet, so that the wavelet coefficients are calculated for

all possible scales and times. In DWT, it produces only

the minimal number of coefficients necessary to recon-

struct the original signal function f(t). This reduction is

achieved by the discretization of the parameters a and b,

so that
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a ¼ 2�s

b ¼ k2�s

(

ð2Þ

where s and k belong to the integer set Z and control the

wavelet dilation and translation, respectively. Thus, a dis-

crete version of CWT is obtained as

DWTf ða; bÞ ¼ f ðtÞ;wa;bðtÞ
� �

¼ 1
ffiffiffiffiffiffiffiffiffiffi
2�sj j

p
Zþ1

�1

f ðtÞw� t � k=2s

1=2s

� �
dt ð3Þ

By using wavelet discretization, timescale space can be

sampled at discrete levels.

In this study, DWT is employed to process an original

time series into a group of sub-series. An algorithm

developed by Mallat [24] is employed in multi-solution

computation, which represents an efficient way to imple-

ment the DWT using filters. The original series are passed

through two kinds of filters. The low-pass filters which are

associated with the scaling function allow the analysis of

low-frequency components. The high-pass filters which are

associated with the wavelet function allow the analysis of

high-frequency components. An n levers wavelet decom-

position showing the decomposition process is presented in

Fig. 1. Signal A represents low-frequency approximation

component, while signal D contains detail information of

high-frequency component. The decomposition processes

will be continued until reach the required number of

n levels.

Many types of wavelets, including Daubechies, Symm-

let, Gaussian, Mexican hat, Morlet and Shannon wavelets,

can be used for wavelet-based time series analysis [31].

Daubechies wavelets are one of the most extensively used

wavelets. They represent a collection of orthogonal mother

wavelets with compact support, characterized by a maxi-

mal number of vanishing moments for some given length

of the support. They often express as dbN, where N refers

to the number of vanishing moment. The Daubechies

wavelet transform is defined by computing running aver-

ages and differences via scalar products with scaling sig-

nals and wavelets [26]. The scaling signals and wavelets

produce averages and differences using just a few more

values from the signal. This provides a tremendous

improvement in the capabilities of the Daubechies trans-

forms. Daubechies wavelets are concerned in this paper.

2.2 Principal component analysis (PCA)

Feature extraction which contributes to removing redun-

dant or irrelevant inputs features, not only reduces com-

puting time for learning, but also improves forecasting

accuracy. In order to make sure that the features of

WCCNN model are useful and the scale is small, PCA is

introduced to extract the feature inputs and reduce the data

size. Results of a PCA are usually discussed in terms of

components scores (the transformed variable values corre-

sponding to a particular case in the data) and loading (the

weight by which each standardized original variable should

be multiplied to obtain the component score). Assume the

data matrix with p variables, x1, x2,…, xp, m times obser-

vations, the specific steps of PCA are as follows:

X ¼

x11 x12 . . . x1p
x21 x22 . . . x2p

..

. ..
. ..

. ..
.

xm1 xm2 . . . xmp

2

6664

3

7775
ð4Þ

The decomposition components are normalized by using

the following method:

Yji ¼ ðxji � �xiÞ=Si ð5Þ

where

�xi ¼
1

m

Xm

j¼1

xji; Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m� 1

Xm

j¼1

ðxji � �xiÞ2
vuut

Let k1 C k2 C���C kp C 0 be the eigenvalues of

covariance matrix of normalized data and L1, L2, … , Lp be

the corresponding eigenvectors, the ith PC is such that

PCi ¼ LTi X ð6Þ

where i = 1,2, … , p. The contribution rate of kth PC and

the cumulative contribution rate of first k PCs are as

follows:

kk=
Xp

i¼1

ki;
Xk

i¼1

ki=
Xp

i¼1

ki

In PCA, the cumulative contribution rate represents the

ability of synthesizing information. If the cumulative

contribution rate exceeds some values, it can be considered

that the first k PCs contain the most information of p orig-

inal variables. These values need to be determined

according to the concrete issues. The PCs reduce input

variables and achieve the purpose of simplifying the

problem. By selecting the most significant PCs, it is pos-

sible to identify certain relationships among the parameters

of the data set under consideration.

Original series cA1

... cDn

... cAn

cD2cD1

cA2

Fig. 1 Computational process of DWT
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2.3 Artificial neural networks (ANNs)

ANNs are data-driven and nonparametric models. A

supervised learning algorithm for ANNs used in this paper

is CC architecture, which was proposed by Fahlman and

Lebiere (1900) [27]. This architecture is able to construct

an appropriate small network automatically, which only

needs to adjust the new weights. The processes of CC

architecture are illustrated in Fig. 2. Black circles are fro-

zen connection weights, and white circles are weights

trained during output-training phase. The vertical lines sum

all incoming activation. This architecture begins with a

minimal network that has some inputs and one or more

outputs units. The network which has no hidden units is a

single layer network and is equivalent to a linear model

(Fig. 2a). The hidden units are added to the network one by

one as needed during learning, obtaining a multilayer

structure (Fig. 2b, c). Each of the hidden units is placed

into a new hidden layer. These units receive a connection

from each of the network’s original inputs and also from

every preexisting hidden unit. This makes it possible to

create high-order nonlinear feature detectors, customized

for the problem at hand. There is also a bias input, per-

manently set to ?1. Once a new unit has been added to the

network, its input weights are fixed; only the output

weights are trained repeatedly.

CCNN was first developed in attempt to overcome

certain problems and limitations of the popular back-

propagation learning algorithm. The benchmark problem

chosen for CCNN was ‘‘two-spirals,’’ proposed by Alexis

Wieland of MITRE Corp because it is an extremely hard

problem for back-propagation algorithms; the network

determines its own size and topology. A feed forward BP

network model is established to compare the performance

with the CC network in this study.

In order to prove the advantages of proposed model, the

flowcharts of WCCNN and WCCNN multi-models which

are the conjunction models of wavelet decomposition and

CCNN are illustrated in Fig. 3.

In WCCNN model, the original time series are decom-

posed by DWT after identifying model order. The

approximation and detail components obtained are then

used as the CCNN model inputs. In WCCNN multi-mod-

els, the approximation and detail components are applied to

set up sub-models, respectively. Forecasting values of these

models are added to obtain the final results.

3 Proposed PCA-WCCNN model

A hybrid PCA-WCCNN model is proposed in this paper.

The purpose of decomposition and feature extraction is, on

one hand, to improve the predictive accuracy and, on the

other hand, to present a single simplified model to reduce

the training time.

Before constructing input–output pairs, the potential

orders are needed to be determined. The Box–Jenkins

methodology is adopted to achieve this objective [28].

Box–Jenkins methodology is a five-step process for iden-

tifying, selection and assessing conditional mean models

for discrete, univariate time series data. The sample auto-

correlation function (ACF) and partial autocorrelation

function (PACF) are used in this paper. If time series are

not stationary, successively difference series to attain sta-

tionarity is necessary. The ACF and PACF of a stationary

series cut off completely after a few lags. In time series

analysis, PACF gives the partial correlation of a time series

with its own lagged values, controlling for the values of the

time series at all shorter lags. The use of these functions is

introduced as part of the Box–Jenkins approach to time

series modeling. By plotting the partial autocorrelative

+1 

Add 
Hidden Unit 2 

Outputs 

Inputs 

(c) 

+1 

Add 
Hidden Unit 1 

Outputs 

Inputs 

(b) 

+1 

Outputs 

Inputs 

Initial State 
No Hidden Units 

(a) 

Fig. 2 Cascade-correlation (CC) architecture
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functions, one could determine the appropriate lags, which

give the potential model orders.

Multilevel wavelet decomposition is considered to

decompose the original time series into an approximation

series and a set of detail series using DWT technique. In

the feature selection process, models require that the input

variables should have poor correlation. Because strong

correlation between input variables implies that they carry

more repeated information, and it may increase the com-

putational complexity and reduce the prediction accuracy

of the model. The essence of PCA is the rotation of space

coordinates that does not change the data structure. The

obtained PCs are the linear combination of variables,

reflecting the original information to the greatest degree.

These PCs are uncorrelated with each other. The frame-

work of forecasting steps of PCA-WCCNN model is

illustrated in Fig. 4.

4 Experiments

For evaluating the performance of the proposed forecasting

model, the Mackey-Glass time series [29] and a mean daily

flow of Oldman River near Brocket from Time Series Data

Library (TSDL) [30] are used in this study. The time series

forecasting based on the chaotic Mackey-Glass differential

equation is a standard benchmark in the areas of neural

networks for comparing the learning and generalization

abilities of different algorithms. River flow modeling and

prediction is one of the earliest forecasting problems to

have attracted the interest of a good number of scientists

and is one of the most frequently analyzed problems in

hydrology.

4.1 Performance evaluation

To evaluate the accuracy of the proposed model, two dif-

ferent criterions including the root-mean-squared error

(RMSE) and the mean absolute error (MAE) are used in the

experiments. These performance indexes can be written as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ŷi � yi½ �2
vuut ð7Þ

MAE ¼ 1

N

XN

i¼1

ŷi � yij j ð8Þ

where N is the number of observed values, ŷi is the pre-

dicted value and yi is the actual value. The elapsed time is

calculated in the experiments in order to compare the

training speed of the models.

4.2 Application to the Mackey-Glass time series

forecasting

4.2.1 Analysis

The Mackey-Glass equation was first introduced as a model

of white blood cell production equation. One interesting

feature of the Mackey-Glass problem is that real-value

outputs are required instead of the discrete output values

found in most neural network benchmarks. Time series

which will be predicted with network algorithm is gener-

ated from the following equation

dðxÞ
dt

¼ bxðtÞ axðt � sÞ
1þ xðt � sÞ10

ð9Þ

Fig. 3 Flowcharts of WCCNN

multi-models and WCCNN

Original time series 

Discrete wavelet 
decomposition

Details(D1,D2, ,Dn)
Approximation(An)

Identify model order

Artificial Neural 
Networks

inputs

Forecasting results

Select feature inputs(PCA)

Fig. 4 Framework of forecasting steps of PCA-WCCNN model
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with parameters a = 0.2, b = -0.1, and s = 17 [31].

Three thousand and five hundred data points are generated

with an initial condition of x(0) = 1.2 and x(t) = 0 when

t\ 0 based on the second-order Runge–Kutta method to

discrete the differential equation. Figure 5 shows the por-

tion of the series used for this study. The standard method

for this prediction is to create a mapping f from D points of

the time series spaced D apart, i.e., [x(t - (D - 1)D), …,

x(t - D),x(t)], to predict future point x(t ? P). The

embedding dimension D = 2 as the model orders are two

in this case. Previous studies have used the value D = 6

and prediction interval values of P = 6 and P = 85 [32,

33]. The characteristic time constant of x(t) is tchar = 50,

which makes it particular difficult to forecast x(t ? P) with

P[ tchar [31]. By choosing P = D, it is possible to predict

the value of time series at any multiple of D time steps in

the future by feeding the output back into the input and

iterating the solution. Based on the analysis above, the

model inputs consist of two past values of x(t), i.e.,

(x(t - 6),x(t)) and the model is to predict the value of

x(t ? 6) in this study.

The optimal decomposition levels and mother wavelet

must be selected in advance to determine the performance

in the wavelet domain. Several researchers have used an

empirical equation to determine the decomposition level

[34, 35]. The empirical equation is

L ¼ intðlogðNÞÞ ð10Þ

where L is the decomposition level, N is the sample

numbers and int is the integer-part function. The trial-and-

error procedure is used to determined the decomposition

levels in this study and three decomposition levels are

obtained which is coincide with the result of the empirical

equation. The original time series are decomposed using

Daubechies wavelets, and sub-series components are D1,

D2, D3 and A3. There are many Daubechies wavelets, but

they are all very similar. Definition and advantages of db4

wavelet can be found in the literature [25]. Based on the

analysis of this time series, the db4 WT will be concerned.

Original and decomposed time series are shown in Fig. 6.

The values of detail D1 are too small. In order to see it

more clearly, only a part of the series are given. Since the

other four series have significant regularity, more data than

D1 are used to draw this picture.

To compare with the CC algorithm, BP algorithm is

used to ANNs. Chester [36] and Zhang [37] studies suggest

that the ideal number of hidden layers in BP architecture is

often one or two, and it is accepted that a network with

three layers connected toward ahead can approximate any

continuous function in a reasonable way [38]. BPNN used

this study has one input layer, one output layer and one

hidden layer between the input and output layers. Although

there are some experimental suggestions for determining

the number of hidden neurons, the trial-and-error procedure

used in the current research which is more reliable in spite

of its time consume inherence.

4.2.2 Forecasting results

The original time series is decomposed into sub-series. All

the wavelet components are as follows:

½xD1ðt � 6Þ; xD1ðtÞ; xD2ðt � 6Þ; xD2ðtÞ; xD3ðt � 6Þ; xD3ðtÞ;
xA3ðt � 6Þ; xA3ðtÞ�

Fig. 5 Mackey-Glass time

series
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PCA is applied to extract the PCs from the above

wavelet components. The contribution rate and cumulative

contribution rate of the principal components are presented

in Table 1. In this paper, if the cumulative contribution rate

exceeds 85 %, it can be considered that the first k PCs

contain the most information of p original variables.

This table indicates that the cumulative contribution

rates of the first five PCs exceed 85 %, namely the first five

PCs contain 85% information of the wavelet components.

These five PCs are conducted as the inputs of the PCA-

WCCNN model instead of using all the wavelet compo-

nents. The training sample is 3000, while 500 data are used

to test the model.

In BPNN, the original time series are used without

decomposition. A number of experiments are carried out to

set parameters, viz. initial input–hidden–output nodes,

learning rate, epochs, activation function and learning error

to obtain the optimal results. The values that exhibit the

best behavior in terms of accuracy have been chosen. The

determined optimal values of all these parameters includ-

ing BP and CC algorithms are listed in Table 2. The blank

in the table means that different models using CC algo-

rithm have different initial node values. That should be

determined in the specific model.

The testing results of PCA-WCCNN, WCCNN,

WCCNN multi-models, CCNN and BPNN models are

illustrated in Fig. 7. The elapsed time of each model is

computed under the same condition. The performance of

the five models and the elapsed time are shown in

Table 3.

4.3 Application to the mean daily flow forecasting

4.3.1 Analysis

The second data set used in this paper is the mean daily

flow of Oldman River near Brocket from Time Series Data

Fig. 6 Original and

decomposed MG time series

using db4 wavelet

Table 1 PCA results of MG time series components

Component Eigenvalues Contribution

rate (%)

Cumulative

contribution rate (%)

1 1.7056 0.2132 0.2132

2 1.6830 0.2104 0.4236

3 1.5103 0.1888 0.6124

4 1.0726 0.1341 0.7464

5 0.8924 0.1115 0.8580

6 0.4896 0.0612 0.9192

7 0.3313 0.0414 0.9606

8 0.3152 0.0394 1.0000

Table 2 Parameters and their values during learning processes of the

BPNN and CCNN

Parameter BPNN value CCNN value

Initial nodes 2-20-1 –

Learning rate 0.0001 0.01

Epochs 10000 1000

Activation function Sigmoid Sigmoid

Learning error 0.05 0.025
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Library (TSDL), which was created by Rob Hyndman,

professor of the statistics at Monash University, Australia.

This data set has 1460 fact values in one time series, from

January 01, 1988, to December 31, 1991. The original time

series are shown in Fig. 8.

The mean daily flow data set is used for PCA-WCCNN,

WCCNN, WCCNN multi-models, CCNN and BPNN

models, respectively. The training samples are accounted

for 80 %, and the rest 20 % are used as testing samples.

The original and decomposed mean daily flow time series

using db4 wavelet are presented in Fig. 9. Before training,

the sample autocorrelation function (ACF) and partial

autocorrelation function (PACF) are used to determine the

model orders. Figure 10 plots the sample ACF and PACF

Fig. 7 Forecasting results of five models
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for the series and the significant, linearly decaying ACF

indicate a nonstationary process (Fig. 10a). In order to

remove the linear trend, we take a first difference of the

data and plot the sample ACF and PACF of the differenced

series as shown in Fig. 10b. The blue lines are the upper

and lower confidence bounds. The red dots are ACF and

PACF values.

The differenced series appear more stationary. The

sample ACF of the differenced series decays more quickly.

The sample PACF cuts off after lag 3. Therefore, the model

orders are identified as 3. Assume that all the wavelet

components are expressed as follows:

½yD1ðt � 2Þ; yD1ðt � 1Þ; yD1ðtÞ; yD2ðt � 2Þ; yD2ðt � 1Þ;
yD2ðtÞ; yD3ðt � 2Þ; yD3ðt � 1Þ; yD3ðtÞ; yA3ðt � 2Þ;
yA3ðt � 1Þ; yA3ðtÞ�

New feature inputs for WCCNN model from the wavelet

components must be constructed. The same method applied

in the MG time series is also used in this case.

4.3.2 Forecasting results

Table 4 gives the computed results of the contribution rate and

cumulative contribution rate of the principal components. It

canbe seen that the cumulative contribution rate of the seventh

component exceeds 85 %. The first to seventh components

contain more than 85 % information of the wavelet compo-

nents. These seven PCs are conducted as the input data of the

PCA-WCCNN model instead of the wavelet components.

Table 3 The performances of the four models forecasting MG time

series

Model RMSE MAE Elapsed time (s)

PAC-WCCNN 0.0511 0.0381 35.81

WCCNN 0.0611 0.0437 33.25

WCCNN multi-model 0.0561 0.0419 130.64

CCNN 0.0740 0.0548 27.36

BPNN 0.1066 0.0898 35.02

Fig. 8 Original time series of the mean daily flow (m3/s)

Fig. 9 Original and

decomposed time series using

db4 wavelet
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The values that exhibit the best behavior in terms of

accuracy of BP and CC algorithms have been chosen are

illustrated in Table 5. The blank in the table means that

different models using CC algorithm have different initial

node values. That should be determined in the specific

model.

Since the inputs are determined, the input–output pairs

are extracted in order to train and test model. The testing

results of five different models are illustrated in Fig. 11.

The mean daily flow forecasting performances and elapsed

time computed under the same condition are shown in

Table 6.

5 Discussion

For each example, five models are constructed: CCNN,

BPNN, WCCNN, WCCNN multi-models and PCA-

WCCNN. The first two are single models, which are built

using the original time series. The other three are wavelet

decomposition-based models. Compare the performance of

the five models from Tables 1, 2, 3, 4, 5, 6, conclusions can

be summarized as follows:

1. CCNN and BPNN: The elapsed time illustrated that

CCNN learns quickly than BPNN in these examples.

The RMSE and MAE of the two models indicated that

CCNN has better performance. This is because CC

algorithm requires no back-propagation of error signals

through the connections of the network. Moreover, it

dose not need to decide the hidden layer structure

beforehand as the network determines its own size and

topology.

2. WCCNN and CCNN: Wavelet decomposition-based

CCNN model outperform CCNN in terms of RMSE

and MAE. This reveals the effectiveness of the wavelet

decomposition. By selecting suitable filters, WT can

greatly reduce the correlation between different char-

acteristics of the original time series. As for training

speed, WCCNN model is a little bit slower than

Fig. 10 Order identification for mean daily flow time series

Table 4 The PCA results of mean daily flow time series components

Component Eigenvalues Contribution

rate (%)

Cumulative

contribution rate (%)

1 2.9812 0.2484 0.2484

2 2.0443 0.1704 0.4188

3 1.6292 0.1358 0.5546

4 1.3104 0.1092 0.6638

5 1.0596 0.0883 0.7521

6 0.9740 0.0812 0.8332

7 0.7367 0.0614 0.8946

8 0.6791 0.0566 0.9512

9 0.3431 0.0286 0.9798

10 0.2238 0.0186 0.9984

11 0.0183 0.0015 0.9999

12 0.0003 0.0001 1.0000

Table 5 Parameters and their values during learning processes of the

BPNN and CCNN

Parameter BPNN value CCNN value

Initial nodes 3-20-1 –

Learning rate 0.0001 0.01

Epochs 10,000 1000

Activation function Sigmoid Sigmoid

Learning error 0.05 0.025
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CCNN. This can be interpreted as time taken by

wavelet decomposition.

3. WCCNN and WCCNN multi-models: WCCNN multi-

models use all the wavelet components as inputs to

construct model for each sub-series. Although the RMSE

and MAE in this time series are slightly better than

WCCNN, the training time is much longer thenWCCNN

model. This greatly reduces the model efficiency.

4. PCA-WCCNN: The proposed PCA-WCCNN performs

better than other model as illustrated by the calculated

Fig. 11 Forecasting results of five models
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values of RMSE and MAE from tables. Appropriate

inputs are selected through the PCA to extract

significant information from wavelet components and

insure the choice is better than others. PCA-WCCNN

is concise compared to the WCCNN multi-models and

more accurate than WCCNN. It also can help to

shorten training time although the elapsed time is a

little bit longer than WCCNN and CCNN models. This

can be interpreted as time taken by wavelet decompo-

sition and PCA processes.

6 Conclusions

From the above studies, it can be found that the model

performance has much to do with feature inputs and

learning algorithms. On the one hand, the combination of

wavelet decomposition and feature selection improve the

performance of neural networks significantly. On the other

hand, CCNN takes shorter elapsed time then BPNN. It can

be concluded that CC algorithm learns faster than tradi-

tional BP algorithm. Thus, CC algorithm can speed up the

learning. Moreover, the feature selection also simplified

model structural. Given consideration to forecasting accu-

racy and training efficiency, the proposed neural network

model has the advantage of applying to time series fore-

casting. Further studies can also investigate the models

using different kinds of mother wavelets.

Acknowledgments The authors gratefully acknowledge the financial

support of this research by the National Natural Science Foundation

of China (Grant No. 61374006), the Major Program of National

Natural Science Foundation of China (Grant No. 11190015) and the

Natural Science Foundation of Jiangsu (Grant No. BK20131300).

References

1. Kumar Jain VK (1999) Autoregressive integrated moving aver-

ages (ARIMA) modeling of a traffic noise time series. Appl

Acoust 58(3):283–294

2. Ediger VS, Akar S (2007) ARIMA forecasting of primary energy

demand by fuel in Turkey. Energy Policy 35(3):1701–1708

3. Zhang GP (2003) Time series forecasting using a hybrid ARIMA

and neural network model. Neurocomputing 50:159–175

4. Khashei M, Bijari M (2011) A novel hybridization of artificial

neural networks and ARIMA models for time series forecasting.

Appl Soft Comput 11:2664–2675

5. Gan M, Cheng Y, Liu K, Zhang G (2014) Seasonal and trend time

series forecasting based on a quasi-linear autoregressive model.

Appl Soft Comput 24:13–18

6. Chen R, Tsay RS (1993) Functional-coefficient autoregressive

models. J Am Stat Assoc 88(421):298–308

7. Gan M, Peng H, Dong X (2012) A hybrid algorithm to optimize

RBF network architecture and parameters for nonlinear time

series modeling. Appl Math Model 36(7):2911–2919

8. Silva CGD (2008) Time series forecasting with a non-linear model

and the scatter search meta-heuristic. Inf Sci 178:3288–3299

9. Zhang GP, Kline DM (2007) Quarterly time-series forecasting

with neural networks. IEEE Trans Neural Netw 18(6):1800–1814

10. Gerald C, Dimitri S (2007) Knowledge-based modularization and

global optimization of artificial neural network models in

hydrological forecasting. Neural Netw 20(4):528–536

11. Hippert HS, Taylor JW (2010) An evaluation of Bayesian tech-

niques for controlling model complexity and selecting inputs in a

neural network for short-term load forecasting. Neural Netw

23(3):386–395

12. Talaee PH (2014) Multilayer perceptron with different training

algorithms for streamflow forecasting. Neural Comput Appl

24:695–703

13. Adhikari R (2015) A neural network based linear ensemble

framework for time series forecasting. Neurocomputing 157:

231–242

14. Donate JP, Cortez P, Sánchez GG, Miguel AS (2013) Time series

forecasting using a weighted cross-validation evolutionary arti-

ficial neural network ensemble. Neurocomputing 109:27–32

15. Firmino PRA, Neto PSGDM, Ferreira TAE (2014) Correcting

and combining time series forecasters. Neural Netw 50:1–11

16. Joo TW, Kim SB (2015) Time series forecasting based on

wavelet filtering. Expert Syst Appl 42:3868–3874

17. Seo Y, Kim S, Kisi O, Singh VP (2015) Daily water level fore-

casting using wavelet decomposition and artificial intelligence

techniques. J Hydrol 520:224–243

18. Liu H, Tian H, Pan D, Li Y (2013) Forecasting models for wind

speed using wavelet, wavelet packet, time series and artificial

neural networks. Appl Energy 107:191–208

19. Karthikeyan L, Nagesh Kumar D (2013) Predictability of non-

stationary time series using wavelet and EMD based ARMA

models. J Hydrol 502:103–119

20. Ouyang Y (2005) Evaluation of river water quality monitoring

stations by principal component analysis. Water Res 39:2621–

2635

21. Wang J, Wang J (2015) Forecasting stock market indexes using

principle component analysis an stochastic time effective neural

networks. Neurocomputing 156:68–78

Table 6 The performances of

the five models forecasting

mean daily flow

Model RMSE (m3/s) MAE (m3/s) Elapsed time (s)

PCA-WCCNN 4.314 1.623 27.31

WCCNN 4.625 1.738 27.08

WCCNN multi-models 4.406 1.641 92.85

CCNN 4.854 2.382 25.64

BPNN 5.519 3.235 28.46

S194 Neural Comput & Applic (2017) 28 (Suppl 1):S183–S195

123



22. Heil CE, Walnut DF (1989) Continuous and discrete wavelet

transforms. SIAM Rev 31(4):628–666

23. Gencay R, Selcuk F, Whitcher B (2001) an introduction to

wavelets and other filtering methods in finance and economics.

Academic Press, Elsevier

24. Mallat SG (1989) A theory for multiresolution signal decompo-

sition: the wavelet representation. IEEE Trans Pattern Anal

11(7):674–693

25. Walker JS (2008) A primer on wavelets and their scientific

applications. CRC Press

26. Amiady N, Keynia F (2009) Short-term load forecasting of power

systems by combination of wavelet transform and neuro-evolu-

tionary algorithm. Energy 34(1):46–57

27. Fahlman SE, Lebiere C (1990) The cascade-correlation learning

architecture, in advances in neural information processing sys-

tems 2. Morgan Kaufmann, San Mateo, pp 524–532

28. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series

analysis: forecasting and control. Wiley

29. Mackey MC, Glass L (1977) Oscillation and Chaos in physio-

logical control systems. Science 197:287

30. https://datamarket.com/data/set/235b/mean-daily-flow-oldman-

rivernear-brocket-jan-01-1988-to-dec-31-1991

31. Crowder RS (1991) Predicting the mackey-glass time series with

cascade-correlation learning, connectionist models. In: Proceed-

ings of the 1990 summer school, pp 117–123

32. Zhao JS, Yu XJ (2015) Adaptive natural gradient learning algo-

rithms for Mackey-Glass chaotic time prediciton. Neurocomput-

ing 157:41–45

33. Mohammadi R, Fatemi Ghomi SMT, Zeinali F (2014) A new

hybrid evolutionary based RBF networks method for forecasting

time series: a case study of forecasting emergency supply demand

time series. Eng Appl Artif Intell 36:204–214

34. Nourani V, Alami MT, Aminfar MH (2009) A combined neural-

wavelet model for prediction of Ligvanchai watershed precipi-

tation. Eng Appl Artif Intell 22(3):466–472

35. Adamowski J, Chan HF (2011) A wavelet neural network con-

junction model for groundwater level forecasting. J Hydrol

407(1):28–40

36. Chester DL (1990) Why two hidden layers are better than one?

In: Proceedings of the international joint conference on neural

networks, pp 1265–1268

37. Zhang X (1994) Time series analysis and prediction by neural

networks. Optim Method Softw 4:151–170

38. Hornik K, Stinchcombe M, White H (1989) Multilayer feedfor-

ward networks are universal approximators. Neural Netw

2(5):359–366

Neural Comput & Applic (2017) 28 (Suppl 1):S183–S195 S195

123

https://datamarket.com/data/set/235b/mean-daily-flow-oldman-rivernear-brocket-jan-01-1988-to-dec-31-1991
https://datamarket.com/data/set/235b/mean-daily-flow-oldman-rivernear-brocket-jan-01-1988-to-dec-31-1991

	Time series forecasting based on wavelet decomposition and feature extraction
	Abstract
	Introduction
	Methodology
	Wavelet transform (WT)
	Principal component analysis (PCA)
	Artificial neural networks (ANNs)

	Proposed PCA-WCCNN model
	Experiments
	Performance evaluation
	Application to the Mackey-Glass time series forecasting
	Analysis
	Forecasting results

	Application to the mean daily flow forecasting
	Analysis
	Forecasting results


	Discussion
	Conclusions
	Acknowledgments
	References




