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Abstract Supply chain finance (SCF) becomes more

important for small- and medium-sized enterprises (SMEs)

due to global credit crunch, supply chain financing woes

and tightening credit criteria for corporate lending. Cur-

rently, predicting SME credit risk is significant for guar-

anteeing SCF in smooth operation. In this paper, we apply

six methods, i.e., one individual machine learning (IML,

i.e., decision tree) method, three ensemble machine learn-

ing methods [EML, i.e., bagging, boosting, and random

subspace (RS)], and two integrated ensemble machine

learning methods (IEML, i.e., RS–boosting and multi-

boosting), to predict SMEs credit risk in SCF and compare

the effectiveness and feasibility of six methods. In the

experiment, we choose the quarterly financial and non-fi-

nancial data of 48 listed SMEs from Small and Medium

Enterprise Board of Shenzhen Stock Exchange, six listed

core enterprises (CEs) from Shanghai Stock Exchange and

three listed CEs from Shenzhen Stock Exchange during the

period of 2012–2013 as the empirical samples. Experi-

mental results reveal that the IEML methods acquire better

performance than IML and EML method. In particular,

RS–boosting is the best method to predict SMEs credit risk

among six methods.

Keywords Supply chain finance � Credit risk � Small- and

medium-sized enterprises � Core enterprises � Individual
machine learning � Ensemble machine learning � Integrated
ensemble machine learning

1 Introduction

In recent years, small- andmedium-sized enterprises (SMEs)

are confrontedwith huge challenges such as high operational

risks, capital constrained and financial information opaque.

The essential problem is that SMEs are still squeezed out of

conventional financing patterns even though the policies of

the Chinese government are quite helpful. As a result, the

solutions of SMEs’ financing issues today focus on the

design and optimization of the finance pattern. As ameans of

substituting for lower credit availability, supply chain

financing (SCF) is increasingly generating much enthusiasm

among SMEs, relevant CEs and relevant financial institu-

tions. Because SCF is strategic for overcoming SMEs’

financing difficulty, ensuring CEs’ continuity of production

and financial institutionsmaking correct credit loan decision.

SCF can be defined a kind of financing pattern that manag-

ing, planning and controlling all the transaction activities and

processes related to the flow of cash among supply chain

stakeholders in order to improve turnover efficiency of

working capital [1]. Roughly speaking, in SCF, the financial

institutions dramatically increase their incomes; the SMEs

obtain loans from financial institutions with looser con-

straints; and core enterprises (CEs) also alleviate the pressure

of funding [2–4]. Nevertheless, SCF is unable to completely

eliminate credit risk which is still one of the major threats to

credit-granting institutions [5–7].

It is well known that a fraction of improvement in

prediction accuracy also significantly eliminates credit risk
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for financial institutions [8, 9]. Therefore, predicting SMEs

credit risk is a hot topic due to its importance for financial

institutions making correct credit loan decision in SCF.

Prediction models of corporate credit risk are developed to

classify loan customers as either a credit non-risk group or

a credit risk group. The functions of prediction models

include reducing the cost of credit analysis, enabling fast

credit decisions, close monitoring of existing accounts, and

prioritizing collections [10]. To predict dichotomous out-

comes of good and bad credit classes in the financing

market, some traditional statistical methods and machine

learning methods (a field emerges from artificial intelli-

gence) are widely applied, such as logistic regression

analysis (LRA) [11] and decision tree (DT) [12].

In research of SCF, we focus on increasing the prediction

accuracy of SMEs credit risk, because a fraction of

improvement in SMEs credit risk accuracymay translate into

financial institutions’ noteworthy future savings. Research-

ers consider that individualmachine learning (IML)methods

are prominent to the traditional statistical methods in dealing

with corporate credit risk prediction issues [13]. Neverthe-

less, some ensemble machine learning (EML)methods show

higher accuracy of predictability than any IML method,

especially when the different structures of machine learning

methods lead to independent errors [9, 14, 15]. Moreover,

integrated ensemble machine learning (IEML) method (e.g.,

RS–boosting [8], the multi-boosting [16]) is a kind of

powerful analytical tool which is used for further improving

the prediction accuracy of SMEs credit risk by scholars. The

RS–boosting is integrated by EML methods of boosting and

random subspace (RS), which combine with the advantages

of instance partitioning method and attribute partitioning

method. The multi-boosting is integrated by EML methods

of boosting and wagging, which is able to harness both

boosting’s high bias and variance reduction with wagging’s

superior variance reduction. Although above intuitive

explanations are reasonable, they lack reliable experimental

analysis of prediction of SMEs credit risk in SCF.

Therefore, this paper includes two research purposes:

first, we prove that the two IEML methods (i.e., RS–

boosting and multi-boosting) are remarkably better than

IML method and EML methods in predicting SMEs credit

risk by experimental analysis; second, we try to select the

better one from two IEML methods by experimental

analysis, which is more accuracy prediction of SMEs credit

risk. The contributions of this paper are summed up as

follows: (1) Our findings show that SCF is unable to

completely eliminate credit risk which is still one of threats

to credit-granting institutions; (2) Our primary empirical

results show that the performance of DT as the base clas-

sifier is better than that of neural networks (NN); (3)

Compared to previous works on evaluating results of

machine learning experiments that is using type I and II

errors and ROC, the proposed evaluation criteria of ‘pre-

cision’ rate, ‘recall’ rate and ‘F-Measure’ rate are also

important for measuring the prediction performance; (4)

Our empirical outcomes show that the credit risks predic-

tion accuracy of EML method is not always better than that

of IML, and RS–boosting exhibits the strongest ability of

SMEs credit risk prediction in SCF than that of other five

methods; (5) The integrated EML can provide a new angle

of view for improving the prediction performance of

machine learning, and evaluating the China’s SMEs credit

risk in SCF. Overall, in practical terms, our proposed IEML

methods can be applied in credit risks prediction in SCF for

financial institutions.

The rest of the paper is organized as follows. Section 2

discusses the methodology. Section 3 presents the details

of data preparation and experiment design. The empirical

results and some relevant discussions are showed in

Sect. 4. Finally, some conclusions are drawn in Sect. 5.

2 Methodology

Machine learning evolves the study of pattern recognition

and computational learning theory in artificial intelligence,

which can learn from and make predictions on data. EML

is a machine learning paradigm where multiple learners are

trained to solve the same problem. In contrast to ordinary

IML methods which try to learn one hypothesis from

training data, EML methods try to construct a set of

hypotheses and combine them [17]. Meanwhile, EML

methods are noted in virtue of strong generalization ability.

Nonetheless, the prediction ability of IEML methods is

usually much stronger than that of a single EML method,

which makes IEML methods very attractive. In the next six

subsections, we firstly introduce a IML method (i.e., DT)

which is used as base classifier of IEML methods in this

study; then show three popular and representative EML

methods, i.e., bagging, boosting and RS; finally exhibit two

IEML method, i.e., RS–boosting and multi-boosting.

2.1 Decision tree (DT)

DT includes nodes, branches and leaves, which is widely

applied in predicting credit risk. Nodes in a decision tree

correspond to features, branches of the tree correspond to

their associated values, and leaves of the tree correspond to

classes. There are many specific DT algorithms such as

CART, CHAID, MARS, ID3 and C4.5. In this paper, we

apply the C4.5 algorithm which summarizes the training

data in the form of a DT and is based on improving ID3

algorithm. C4.5 algorithm chooses the attribute that gains

the most information to be at the root of the tree, which is

applied recursively to form sub-trees, terminating when a
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given subset contains instances of only one class [18, 19]. It

is noteworthy that we also use DT as base classifier of IEML

methods in our experiments according to Maclin and

Opitz [20], Fu et al. [21] and Wang and Ma [8]. Addition-

ally, Maclin and Opitz [20] find that the performance of DT

as the base classifier is better than that of NN. In this paper,

we evaluate two IEML methods on data sets using both NN

(i.e., Multilayer Perceptron) and DT (i.e., C4.5) as the base

classifier for choosing the appropriate one. The pseudocode

of C4.5 algorithm of DT is shown in Fig. 1 [19].

2.2 Bagging

The bagging is a method for generating multiple versions

of predictor and using these to obtain an aggregated pre-

dictor [22]. Beriman [22] considers that bagging demon-

strates remarkable consistency in its ability to reduce error

and give substantial gains in accuracy. Bagging can be

employed with any base classification technique. Further-

more, bagging operate by selectively re-sampling from the

training data to generate derived training sets to which the

base learner is applied [16]. The pseudocode of bagging is

shown in Fig. 2 [23].

2.3 Boosting

The weak learning algorithm means a little bit better than

random guessing, but Boosting can be used to significantly

reduce the error of any learning algorithm and is a general

method to improve the performance of some weak learning

algorithms [24]. There is an improved version of boosting,

which is called AdaBoost. Freund and Schapire [24] argue

that AdaBoost has some properties which make it more

practical and easier to implement than the legacy version

(i.e., boosting). They also propose another improved ver-

sion based on AdaBoost, i.e., AdaBoost.M1 [24]. More

precisely, in this paper we apply the AdaBoost.M1 with

three reasons: (1) It uses one step weight update process

that is less subject to numeric underflow than the original

two-step process [16]; (2) It prevents numeric under-

flow [16]; and (3) It continues producing more committee

members beyond the point when et [ 1=2, which is

claimed to improve predictive accuracy [23]. The pseu-

docode of AdaBoost.M1 is shown in Fig. 3 [24].

2.4 Random subspace (RS)

In order to avoid over-fitting a set of training data while

achieving maximum accuracy when use DT method.

Ho [25] proposes a method for systematic construction of

decision forest, which relies on a pseudorandom procedure

to select components of a feature vector, and DT is gen-

erated by using only the selected feature components. This

method is called RS method which is parallel learning

algorithm; in other words, the generation of each DT is

independent. Therefore, Ho [25] considers that RS is

suitable for parallel implementation for fast learning that is

desirable in some practical applications; moreover, there is

no danger of being trapped in local optima. The pseu-

docode of RS is shown in Fig. 4 [8].

2.5 RS–boosting

RS–boosting is a kind of IEML method, which is based on

two popular ensemble strategies, i.e., boosting and RS. The

base classifiers of RS–boosting are trained by RS method,

after that, these base classifiers are used to reweight the

instances. Meanwhile, RS–boosting introduces RS strategy

into each boosting iteration and combines two EML

methods’ advantages. In this paper, we use C4.5 as the base

Fig. 1 The C4.5 algorithm of decision tree [19]

Fig. 2 The bagging algorithm [23]

Fig. 3 The AdaBoost.M1 algorithm [24]
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learning algorithm of RS–boosting. Wang and Ma [8]

prove that RS–boosting gain more accuracy prediction

results than boosting and RS individually by rigorous

theoretical analysis and experimental analysis. The pseudo

code for the RS–boosting algorithm is given in Fig. 5 [8].

2.6 Multi-boosting

Multi-boosting is an extension to the highly successful

AdaBoost technique for forming decision committees,

which can be viewed as combing AdaBoost with wagging.

Webb [16] considers that multi-boosting is advantageous to

get more accuracy than AdaBoost and wagging individually.

In this paper, we use C4.5 as the base learning algorithm of

multi-boosting. Significantly, the wagging method actually

is a paradigm of bagging method. Bauer and Kohavi [23]

consider that wagging seeks to repeatedly perturb the train-

ing set as in bagging, but instead of sampling from it, wag-

ging adds Gaussian noise to each weight with mean zero and

a given standard deviation. Moreover, wagging is good at

trading off bias and variance. The pseudocode for the multi-

boosting algorithm is given in Fig. 6 [16].

3 Empirical study

Since the practices of SCF started only a couple of years

ago and there are still many perplexing issues haunting

the decision makers of SCF, only a few China’s SMEs

and CEs cooperate in this financing pattern. It is

impossible to gather adequate research data of SCF from

the literature. Meanwhile, it is also difficult to collect

primary data from SMEs, CEs, financial institutions, or

logistics companies by interview and survey. In order to

predict the credit risk of China’s SMEs in SCF, the

financial and non-financial data of selected listed SMEs

and CEs are selected from database. Significantly, there

is real trading relationship among these SMEs and CEs.

In this paper, we assume that if these SMEs are short of

capital and starve for financing, then they cooperate with

CEs and financial institutions to apply the SCF.

3.1 Data preparation

Our data are basically collected and mined from the

China Stock Market and Accounting Research (CSMAR)

solution database (http://www.gtarsc.com). The data

include the quarterly financial and nonfinancial data of

48 listed SMEs from Small and Medium Enterprise

Board of Shenzhen Stock Exchange, six listed CEs from

Shanghai Stock Exchange and three listed CEs from

Shenzhen Stock Exchange during the period of 31 March

2012–31 December 2013. After deleting data points of

unavailable entries, we retain 377 valid quarterly data

points that can be are used for constructing SMEs credit

Input: Data set D = {(x1, y1), (x2, y2), ..., (xm, ym)} , Base classifier algorithm L ,
Number of random subspace rate k , Number of learning rounds T
1. For t = 1, 2, ..., T
2. Random generate a subspace sample from D, Dt = RS(D, k)
3. Train a base classifier ht from the subspace sample, ht = L(Dt)
4. end
Output: H(X) = argmax

y∈Y

T

t=1 1(y = ht(x));

1(α) = 1 if α is ture
1(α) = 0 otherwise

Fig. 4 The Random subspace

algorithm [8]

Fig. 5 The RS–boosting algorithm [8]

Fig. 6 The multi-boosting algorithm [16]
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risk prediction model. The nine CEs have abundant

financial resources and a high degree of credibility. The

48 listed SMEs include 12 star special treatment (*ST)

listed companies and 36 non-star special treatment (non-

*ST) listed companies. The *ST listed SMEs are defined

as the listed companies in Small and Medium Enterprise

Board of Shenzhen Stock Exchange, that suffer operat-

ing losses for two consecutive years and face with

delisting warning. In this study, each quarterly data

sample of *ST SMEs release a ‘negative signal’ in the

two years before they are labeled *ST; on the contrary,

each quarterly data sample of non-*ST SMEs release a

‘positive signal’ in the past consecutive two years.

Accordingly, we categorize 48 SMEs into two groups,

the extremely high credit risk group and the relatively

low credit risk group according to whether the SME is a

*ST listed company.

In this study, 18 financial and non-financial variables

are chosen as the criteria to measure the SMEs credit risk

in SCF, according to the suggestion of Xiong et al. [26].

These 18 variables serve as the independent variables of

six classifier models in this paper, which cover applicant

factor, counter party factor, items’ characteristics factor

and operation condition factor (see Table 1). The depen-

dent variable represents whether each quarterly data

sample of SME release the high credit risk signal: value 0

means a ‘negative signal’ which signifies that the SME’s

compliance probability is low and credit risk is high,

while value 1 means a ‘positive signal’ signal which

signifies that the SME’s compliance probability is high

and credit risk is low.

3.2 Evaluation criteria

The experiments’ evaluation criteria are adopted from the

established standard measures in the fields of predicting

SMEs credit risk of SCF. These measures include average

accuracy, type I error, type II error, ‘precision’ rate, ‘recall’

rate, ‘F-Measure’ rate and receiver operating characteristic

(ROC) curve.

The average accuracy includes ‘correctly classified

instances’ and ‘incorrectly classified instances’. The former

means that the absolute number and percentage of correctly

classified instances, and the latter measures means that the

absolute number and percentage of incorrectly classified

instances. The average accuracy is defined as

Average accuracy ¼ TPþ TN

TPþ FPþ FNþ TN
; ð1Þ

where FN, TP, FP, and TN denote the ‘false negative’,

‘true positive’, ‘false positive’, and ‘true negative’

respectively; ‘negative’ means risk and ‘positive’ means

non-risk.

Type I error and Type II error are also known as ‘false

negative rate’ and ‘false positive rate’. These two kinds of

evaluation criteria are widely used for measuring the binary

classification results, such as measuring the performance of

corporate credit risk prediction methods [8, 27]. Wang and

Ma [8] consider that classifier acquires a good prediction

result because of reducing type II error. Type I error and

Type II error are, respectively, defined as

Type I error ¼ FN

TPþ FN
; ð2Þ

Type II error ¼ FP

TNþ FP
: ð3Þ

Meanwhile, we apply other important evaluation cri-

teria, i.e., ‘F-Measure’ rate as suggested by Power [27].

The ‘F-Measure’ rate is defined as Eq. (4). ‘F-Measure’

rate is also called ‘F1’ rate which is the arithmetic mean

of ‘precision’ rate and ‘recall’ rate [27]. The ‘precision’

rate and ‘recall’ rate are defined as Eqs. (5) and (6). The

‘precision’ rate (also called positive predictive value)

denotes the proportion of ‘Predicted Positive’ cases that

are correctly ‘Real Positives’, while the ‘recall’ rate

(also known as sensitivity) is the proportion of ‘Real

Positive’ cases that are correctly ‘Predicted Posi-

tive’ [27]. The higher the ‘precision’ rate is, the lower

Table 1 Financial and non-financial variables for predicting SMEs

credit risk in SCF

Factors Code Variables

Applicant factors R1 Current ratio

R2 Quick ratio

R3 Cash ratio

R4 Working capital turnover

R5 Return on equity

R6 Profit margin on sales

R7 Rate of return on total assets

R8 Total assets growth rate

Counter party

factors

R9 Credit rating of CEs

R10 Quick ratio

R11 Turnover of total capital

R12 Profit margin on sales

Items’

characteristics

factors

R13 Price rigidity, liquidation and vulnerable

degree of trade goods

R14 Account receivable collection period

R15 Accounts receivable turnover ratio

Operation

condition factors

R16 Industry trends

R17 Transaction time and transaction

frequency

R18 Credit rating of SMEs
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the ‘false positive rate’ of classifier is. A high ‘recall’

rate corresponds to a high ‘true positive rate’ of classi-

fier. Equation (4) shows that a high value of ‘F1’ rate can

ensure a high value of ‘precision’ rate and ‘recall’ rate.

Instead, the higher value of ‘F1’ means that the classifier

has a better prediction performance. Mathematically, the

‘F-measure’, the ‘precision’ rate, and the ‘recall’ rate

are, respectively, defined as

F1 ¼
2

1
r
þ 1

p

; ð4Þ

p ¼ TP

TPþ FP
; ð5Þ

r ¼ TP

TPþ FN
; ð6Þ

where p and r mean ‘precision’ rate and ‘recall’ rate

respectively.

Hosmer et al. [28] argue that a better and more com-

plete description of classification accuracy is the area

under receiver operating characteristic (ROC) curve. This

curve, originating from signal detection theory, shows

how the receiver detects the existence of signal in the

presence of noise [28]. It plots the probability of detecting

true signal (sensitivity) and false signal (1-specificity) for

an entire range of possible cutpoints [28]. Hosmer

et al. [28] give the general guidelines as follows: when

ROC ¼ 0:5, this suggests no discrimination; when

0:5\ROC\ 0:7, this suggests poor discrimination;

when 0:7\ROC\ 0:8, this suggests acceptable discrim-

ination; when 0:8\ROC\ 0:9, this suggests excellent

discrimination; when ROC � 0:9, this suggests out-

standing discrimination. As above definitions, the more

value of area under ROC curve is adjacent to 1 the more

classifier method is outstanding.

3.3 Experimental procedure

The experiments are performed on a PC with a 3.19 GHz

Intel Core i3 CPU and 1.92 GB RAM, using Windows XP

operating system. Data mining toolkit Waikato Environ-

ment for Knowledge Analysis (WEKA) version 3.6.12 is

sued for experiment. WEKA is a popular and free available

suite of machine learning and data mining software which

is written with Java and developed at the University of

Waikato, New Zealand.

We firstly compare average accuracies of IEML meth-

ods (i.e., multi-boosting and RS–boosting) with other three

EML methods (i.e., bagging, boosting and RS) and an IML

method (i.e., DT), for predicting SMEs’ credit risk in SCF.

Secondly, we compare type I and II errors of IEML

methods with that of other three EML methods and an IML

method. Finally, we compare area under ROC curves of

IEML methods (i.e., multi-boosting and RS–boosting) with

that of their base EML methods (i.e., bagging, boosting and

RS) and IML (i.e., DT) method, respectively. For imple-

mentation of bagging, boosting, RS and DT, we choose

WEKA bagging module, i.e., WEKA ADBoostM1 module,

WEKA random subspace module and WEKA J48,

respectively. For implementation of RS–boosting, we use

WEKA Package, i.e., WEKA.JAR and implement in

Eclipse according to Wang and Ma [8]. For implementa-

tion of multi-boosting, we use WEKA MultiBoostAB.

Meanwhile, we employ DT as base classifier of multi-

boosting and RS–boosting according to Maclin and

Opitze [20], Fu et al. [21] and Wang and Ma [8].

In order to minimize the influence of the variability of

the training set, ten times tenfold cross-validation is per-

formed. In other words, the dataset is randomly divided

into ten groups with similar sizes and distributions. The

nine groups’ subsets are used as training set while the

remaining subset is used as the test set, which is repeated

for ten times such that every subset is used as the test set

once. The average of the ten groups’ test results is taken as

the final prediction accuracy rate of the model.

4 Empirical results

In this section, we firstly evaluate two IEML methods on

377 data sets using both NN (i.e., Multilayer Perceptron)

and DT (i.e., C4.5) as the base classifier for choosing the

appropriate one. Then, we show that IEML methods

compete quite outstanding against EML methods and IML

method by analyzing prediction evaluation criteria (i.e.,

average accuracy, type I error, II error, ‘precision’ rate,

‘recall’ rate, ‘F-Measure’ rate and ROC curve), which are

excellent methods for predicting SMEs credit risk in SCF.

Meanwhile, we compare the prediction evaluation criteria

of multi-boosting with RS–boosting in order to find the

better IEML method in predicting SMEs’ credit risk.

4.1 The base classifier

As Maclin and Opitz [20] suggested, we give the expla-

nation of using DT (i.e., C4.5) as the base classifier of

Table 2 Average accuracy results of two base classifiers

Methods RS–Boosting Multi-Boosting

Decision tree 85.41 %a (14.59 %)b 84.08 %a (15.92 %)b

Neural networks 82.76 %a (17.24 %)b 80.11 %a (19.89 %)b

a Correctly classified instances
b Incorrectly classified instances
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IEML methods instead of using NN (i.e., Multilayer Per-

ceptron) by comparing their average accuracies. Table 2

shows that both RS–boosting and multi-boosting get the

better average accuracy when the DT is used as the base

classifier. Therefore, DT is used as the base classifier of

IEML methods in this study.

4.2 Prediction evaluation

Table 3 shows that RS–boosting has the highest average

accuracy of 85.41 %. Closely following RS–boosting is

another IEML method, i.e., multi-boosting which reaches

average accuracy of 84.08 %. It is noteworthy that boost-

ing obtains the lowest average accuracy among four

methods, i.e., DT with 79.58 %, bagging with 77.19 %, RS

with 77.45 %, and boosting with 74.80 %. It is interesting

that the average accuracy result of boosting not only is the

worst one among three EML methods, but also is worse

than the IML (i.e., DT). In other words, the prediction

accuracy of EML method is not always better than IML.

Table 3 Average accuracy results of six methods

Methods Correctly classified

instances (%)

Incorrectly classified

instances (%)

DT 79.58 20.42

Bagging 77.19 22.81

Boosting 74.80 25.20

RS 77.45 22.55

RS–boosting 85.41 14.59

Multi-boosting 84.08 15.92
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Fig. 7 Comparing the SMEs credit risk prediction accuracies of six

methods. a The average accuracy of two integrated ensemble machine

learning methods are both higher than that of other four methods,

b the type I and II errors of two integrated ensemble machine learning

methods are both lower than that of other four methods; c the

‘precision’ rate and ‘recall’ rate of two integrated ensemble machine

learning methods are simultaneous higher than that of other four

methods; d the ‘F-Measure’ rate of two integrated ensemble machine

learning methods are simultaneous higher than that of other four

methods (color figure online)
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The poor performance of boosting results from over-fitting

the training dataset since later training dataset may be over-

emphasizing instances that are noise [20]. In order to

visually compare the average accuracy results of six

methods in details of correctly classified instances and

incorrectly classified instances, we illustrate them in

Fig. 7a.

From another point of view, the IEML methods of RS–

boosting and multi-boosting acquire better results mainly

depending on reducing type I and II errors. We present that

RS–boosting gets the lowest type I and II errors of 19.40

and 14.10 % in Table 4. Closely following RS–boosting is

multi-boosting with type I and II errors of 19.80 and

15.90 %. Thus, it also proves that RS–boosting is little

better than multi-boosting. Significantly, according to

West [13], Yap et al. [29], Kürüm et al. [30] and Bekhet

and Eletter [31], we consider that the improvement in

‘negative signal’ prediction accuracy is more important

than that of the ‘positive signal’ prediction accuracy for

financial institution specially at the present stage of China’s

credit market. The type II error is the false positive rate,

and instead, the method falsely classifies the ‘negative

signal’ into ‘positive signal’. Thus, we consider that

reducing type II error is more important than reducing type

I error. For that matter, we again prove that RS–boosting is

the best prediction method among six methods. Moreover,

we illustrate the type I and II errors of six methods in

Fig. 7b.

In addition, we also research the prediction performance

of classifiers base on ‘precision’ rate, ‘recall’ rate and ‘F-

Measure’ rate which are suggested by Powers [27] and

Alexander and Daniel [32]. Table 5 shows that RS–

boosting gets the higher ‘precision’ rate, ‘recall’ rate and

‘F-Measure’ rate of 85.30, 85.40 and 85.30 %. Closely

following RS–Boosting is Multi-Boosting with ‘precision’

rate, ‘recall’ rate and ‘F-Measure’ rate of 84.00, 84.10 and

84.00 %. Thus, it also proves that RS–boosting is little

better than multi-boosting. Moreover, we illustrate the

‘precision’ rate, ‘recall’ rate and ‘F-Measure’ rate of six

methods in Fig. 7c, d.

Subsequently, Table 6. shows that RS–boosting and

multi-boosting methods demonstrate outstanding perfor-

mance of discrimination. We further prove that IEML

methods can enhance the performance of SMEs credit risk

prediction. Meanwhile, the values of area under ROC curve

show that RS–boosting is slighter outstanding than multi-

boosting. In order to visually compare the areas under ROC

curve of IEMLmethods with EMLmethods and DTmethod,

we illustrate the ROC curves of DT, bagging, boosting and

multi-boosting in Fig. 8a and illustrate the ROC curves of

DT, RS, boosting and RS–boosting in Fig. 8b.

5 Conclusion

In recent years, SCF becomes one of the primary ways for

SMEs to obtain loans with looser constraints, for CEs to

improve cash flow and for financial institutions to reduce

possible risks. Meanwhile, prediction models of SMEs

credit risk in supply chain finance (SCF) are particularly

important for financial institutions to assess SMEs credit

risk, improve supply chain cash flow, reduce possible risks

of overall supply chain and make correct credit loan

decisions. As for SMEs credit risk prediction in SCF, a

slight improvement in accuracy might be translated into

significant future saving. In this paper, we focus on

increasing the accuracy of SMEs credit risk prediction due

to a fraction of improvement in accuracy may further

Table 4 Type I and II errors of six methods

Methods Type I error (%) Type II error (%)

DT 23.60 20.40

Bagging 29.80 22.80

Boosting 35.90 25.20

RS 32.10 22.50

RS–boosting 19.40 14.10

Multi-boosting 19.80 15.90

Table 5 ‘Precision’ rate, ‘recall’ rate and ‘F-Measure’ rate of six

methods

Methods ‘Precision’

rate (%)

‘Recall’

rate (%)

‘F-Measure’

rate (%)

DT 79.80 79.60 79.70

Bagging 76.80 77.20 76.90

Boosting 74.10 74.80 73.80

RS 77.00 77.50 76.70

RS–boosting 85.30 85.40 85.30

Multi-boosting 84.00 84.10 84.00

Table 6 Discrimination accuracies of six methods

Methods Area under

ROC curve

Discrimination

accuracy

DT 0.860 Excellent

Bagging 0.846 Excellent

Boosting 0.813 Excellent

RS 0.858 Excellent

RS–boosting 0.910 Outstanding

Multi-boosting 0.907 Outstanding
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guarantee normal operation of SMEs, CEs and financial

institution in SCF.

A lot of prediction models of corporate credit risk are

constructed based on the traditional statistical methods or

IML methods such as logistic regression analysis and DT.

Traditional statistical methods have some advantages

such as efficient and robust. Simultaneously, researchers

generally consider that IML methods have strong credit

risk prediction capability and do not require the knowl-

edge of the underlying relationships between input and

output variables. However, EML method is a kind of

powerful machine learning paradigm which has better

advantages than IML method to predict corporate credit

risk. Meanwhile, different EML methods have respective

characteristics, which lead researchers to propose IEML

methods. It should be noted that we apply two types of

IEML methods, i.e., RS–boosting and multi-boosting, to

predict SMEs credit risk in SCF. RS–boosting method is

integrated by boosting and RS, and multi-boosting

method is integrated by boosting and wagging.

Experiments are based on quarterly financial and non-

financial data of 48 listed SMEs and nine listed CEs in

China securities market during the period of 2012–2013

show that two IEML methods obtain better performance

than other four methods, i.e., DT, bagging, boosting and

RS. Moreover, we consider that RS–boosting is better than

multi-boosting, which exhibits outstanding ability of SMEs

credit risk prediction in SCF.
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