
ORIGINAL ARTICLE

M-estimator-based online sequential extreme learning machine
for predicting chaotic time series with outliers

Wei Guo1,4 • Tao Xu1,2,3 • Keming Tang4

Received: 9 November 2015 / Accepted: 30 March 2016 / Published online: 13 April 2016

� The Natural Computing Applications Forum 2016

Abstract An M-estimator-based online sequential

extreme learning machine (M-OSELM) is proposed to

predict chaotic time series with outliers. The M-OSELM

develops from the online sequential extreme learning

machine (OSELM) algorithm and retains the same excel-

lent sequential learning ability as OSELM, but replaces the

conventional least-squares cost function with a robust

M-estimator-based cost function to enhance the robustness

of the model to outliers. By minimizing the M-estimator-

based cost function, the possible outliers are prevented

from entering the model’s output weights updating scheme.

Meanwhile, in the sequential learning process of

M-OSELM, a sequential parameter estimation approach

based on error sliding window is introduced to estimate the

threshold value of the M-estimator function for online

outlier detection. Thanks to the built-in median operation

and sliding window strategy, this approach is efficient to

provide a stable estimator continuously without high

computational costs, and then the potential outliers can be

effectively detected. Simulation results show that the

proposed M-OSELM has an excellent immunity to outliers

and can always achieve better performance than its coun-

terparts for prediction of chaotic time series when the

training dataset contains outliers, ensuring at the same time

all benefits of an online sequential approach.

Keywords Chaotic time series prediction � Extreme

learning machine � Online sequential learning �
M-estimator � Outliers

1 Introduction

Chaotic time series prediction has been an important and

challenging issue over the past several decades. Prediction

of chaotic time series is a useful method to evaluate the

characteristics of dynamical systems and forecast the trend

of complex systems. Particularly in recent years, with the

development of computational intelligence technologies,

many intelligent prediction models have been proposed and

successfully applied in the real-world time series prediction

problems, which include rainfall prediction [1, 2], wind

power prediction [3], stock prediction [4, 5], traffic flow

prediction [6], streamflow prediction [7] and many others.

In real-world applications, the time series data usually

arrives successively over time, such as the stream data in

the applications of intrusion detection, industrial process

monitoring, medical condition monitoring, fault diagnosis,

and so on [8]. Traditional batch learning algorithm assumes

that all the training data are available completely and learns

them all at once, which is apparently not applicable for

modeling sequential time series data. In contrary to batch

learning algorithm, online sequential learning algorithm

can update constantly with respect to the sequentially

arriving data and does not require retraining whenever a
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new data are received, which supplies an effective way to

handle sequential time series data. Moreover, in practice

the observed time series often contain outliers. Outliers are

isolated observations which appear to deviate significantly

from the majority of observations. They may arise due to

human errors, instrument degradations, mechanical faults,

process disturbances or natural deviations in populations

[8, 9]. Outliers in time series may negatively affect model

specification, which tend to result in inaccurate prediction

models and poor forecasts [10]. Considering the above two

points synthetically, a robust online sequential learning

algorithm that resists outliers is always preferred in dealing

with real-world time series.

To achieve robust models for predicting chaotic time

series with outliers, several works have been done. Fu

et al. [11] develop a combination model merging the

annealing robust fuzzy neural networks and support vector

regression to train and predict chaotic time series with

outliers, in which an annealing robust learning algorithm

is effectively used to overcome outliers. Jeng et al. [12]

propose hybrid support vector machines for regression and

Gaussian processes for regression to deal with training set

with noise and outliers for the chaotic time series systems.

The presented support vector machine regression approach

can filter out some large noise and outliers in the training

set and reduce the affects of them. Li et al. [13] present a

robust echo state network to predict the chaotic time

series contaminated with outliers. The basic idea of this

model is to train echo state network in a Bayesian

framework, while replacing the commonly used Gaussian

likelihood function with a Laplace one, which is less

sensitive to outliers and then can enhance the robustness

of the proposed model. In addition, the M-estimator

technique is a popular method to solve the problem of

robust parameter estimation, which has also been used to

combat outliers for chaotic time series prediction [14, 15].

In [14], a support vector echo-state machine is proposed

to deal with real-life nonlinear time series and the built-in

robust M-estimator loss function such as the Huber loss

function makes the proposed model less sensitive to out-

liers. In [15], the median scale estimator and Welsch

M-estimator are employed to eliminate the influences of

the noise and the proposed approach is successfully used

for noisy chaotic time series prediction. According to the

simulation results of these papers, all the above-mentioned

prediction models show good immunity to outliers by

incorporating different robust approaches, and achieve

satisfactory performance for predicting contaminated time

series. However, the learning processes of all the models

are exclusively of batch learning type, a really practical

chaotic time series prediction model with both robustness

and sequential learning ability is still vacant, to the

authors’ knowledge.

Recently, an emerging online sequential learning algo-

rithm for single hidden layer feedforward networks

(SLFNs) named online sequential extreme learning

machine (OSELM) is proposed by Liang et al. [16].

OSELM originates from the batch extreme learning

machine (ELM) [17] algorithm which has been demon-

strated to be extremely fast with generalization performance

better than other batch learning methods. As a sequential

implementation of ELM, OSELM can learn the training

data one-by-one or chunk-by-chunk with fixed or varying

length, and the output weights of which are constantly

updated by adopting a recursive least-squares (LS) algo-

rithm. Apart from selecting the number of hidden nodes, no

other control parameters have to be manually chosen.

Compared with other popular sequential learning algo-

rithms, OSELM can provide better generalization perfor-

mance at a much faster learning speed. Depending upon

these advantages, OSELM has been widely applied in the

field of prediction problems, such as online ship roll motion

prediction [18], consumer sentiments prediction [19], time

series prediction [20–22], etc. Despite an excellent

sequential learning algorithm, OSELM also suffers from a

well-known drawback of lacking robustness to outliers like

other LS-based algorithms due to the intrinsic vulnerability

of the LS to outliers [23], and the performance of which will

deteriorate significantly when the observations are cor-

rupted by outliers. Regularization method is an effective

way to reduce the adverse effects caused by the perturbation

or the multicollinearity, then the regularized ELM (R-ELM)

that merges ELM and regularization technique such as ridge

regression is proposed to deal with contaminated data [24–

26]. Compared with ELM, R-ELM can provide better sta-

bility and generalization performance especially when the

training set contains noise and outliers. Similarly, in order

to improve the generalization ability of the OSELM for

noisy data, a regularized OSELM (R-OSELM) based on the

bi-objective optimization method is proposed in [27]. The

R-OSELM tries to seek the minimization of both the

empirical residual and the norm of output weights with

Tikhonov regularization, and it tends to yield good gener-

alization models for noisy data. Though both the R-ELM

and the R-OSELM have certain immunity to noise and

outliers by improving the stability of ELM solution with

regularization approach, they are not targeted solutions to

solve the outliers problems, and their outliers resistance

abilities are far from satisfactory.

In this paper, a novel M-estimator-based online

sequential extreme learning machine (M-OSELM) algo-

rithm is proposed to deal with training dataset with outliers

for the chaotic time series systems. Our contributions are

the following. (1) The proposed M-OSELM inherits the

basic idea of OSELM learning in a sequential pattern, but

replaces the conventional LS cost function with a robust
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M-estimator-based cost function to eliminate the adverse

effects of the possible outliers on the output weights

updating process. (2) In the sequential learning procedure,

an error sliding window-based parameter estimation

approach is introduced to estimate the threshold value of the

M-estimator function sequentially, and then the potential

outliers can be effectively detected online. (3) The outliers

resistance capability and ease of use of the M-OSELM are

illustrated with both synthetic data and benchmark chaotic

time series. (4) Compared with existing robust models

which are of batch learning type, the prominent innovation

of the proposed M-OSELM is that it is implemented in an

online sequential pattern, which is more applicable in

practical time series prediction applications.

The rest of the paper is organized as follows. The related

works including ELM, R-ELM, OSELM and R-OSELM

are revisited in Sect. 2. Section 3 presents the details of the

proposed M-OSELM. In Sect. 4, the performance of the

proposed M-OSELM is demonstrated by five illustrative

examples. Finally, the conclusions and future work are

given in Sect. 5.

2 Related works

In this section, we provide a brief review of the ELM,

R-ELM, OSELM and R-OSELM.

2.1 ELM

ELM [17] is originally developed from the study of SLFNs.

For N arbitrary distinct samples xj; tj
� �

2 Rd � Rm, SLFNs

with n hidden nodes are mathematically modeled as

fnðxÞ ¼
Xn

i¼1

bigi xj
� �

¼
Xn

i¼1

biG ai; bi; xj
� �

;

j ¼ 1; 2; � � � ;N;
ð1Þ

where ai is the weight vector connecting the ith hidden

node and the input nodes, bi is the threshold of the ith

hidden node, and bi is the weight vector connecting the ith

hidden node and the output nodes, gi xj
� �

¼ G ai; bi; xj
� �

denotes the output function of the ith hidden node with

respect to input xj.

That SLFNs can approximate these N samples with zero

error means that there exist (ai, bi) and bi such that

Xn

i¼1

biG ai; bi; xj
� �

¼ tj; j ¼ 1; 2; � � � ;N: ð2Þ

The above N equations can be written compactly as:

Hb ¼ T ð3Þ

where

H ¼

h1

..

.

hN

2

664

3

775 ¼
Gða1; b1; x1Þ . . . Gðan; bn; x1Þ

..

.
� � � ..

.

Gða1; b1; xNÞ . . . Gðan; bn; xNÞ

2

64

3

75

N�n

;

ð4Þ

b ¼

bT1

..

.

bTn

2

664

3

775

n�m

and T ¼

tT1

..

.

tTN

2

664

3

775

N�m

: ð5Þ

H is called the hidden layer output matrix of the network;

the jth row of H is the output vector of the hidden layer

with respect to input xj and the ith column of H is the ith

hidden node’s output vector with respect to inputs x1,

x2,…, xN.

Huang et al. [28] have proved mathematically that

SLFNs with random hidden nodes have the universal

approximation capability. As concluded in [28] by Theo-

rem II.1, given any bounded nonconstant piecewise con-

tinuous activation function g: R ? R for additive nodes or

any integrable piecewise continuous activation function g:

R ? R (and $Rg(x) dx = 0) for RBF nodes, the network

sequence {fn} with randomly generated hidden nodes can

converge to any continuous target function by only prop-

erly adjusting the output weights. Moreover, this Theo-

rem can be further extended from additive or RBF hidden

nodes cases to ‘generalized’ SLFNs [29–31]. With the

universal approximation theorem, the hidden nodes of

SLFNs can be randomly generated independent of the

training data and remain fixed, then the hidden layer output

matrix H for a given training data is a constant matrix.

Thus, training an SLFN is simply equivalent to finding a

LS solution b̂ of the linear system Hb ¼ T:

Hb̂� T
�� �� ¼ min

b
Hb� Tk k ð6Þ

where �k k is a norm in Euclidean space. In most cases,

the number of hidden nodes is much less than the number

of distinct training samples, n � N, H is a nonsquare

matrix and there may not exist an exact solution such that

Hb = T, the smallest norm least squares solution of the

above linear system is

b̂ ¼ HyT ð7Þ

where Hy is the Moore–Penrose generalized inverse of

matrix H. If HTH is nonsingular, then Eq. (7) can be

written as

b̂ ¼ HyT ¼ HTH
� ��1

HTT. ð8Þ
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2.2 R-ELM

ELM has attracted many attentions for its extremely fast

training speed and good generalization performance. But it

is still based on empirical risk minimization principle [see

Eq. (6)] and tends to generate over-fitting models. Conse-

quently, the trained ELM would behave very differently if

test data change but slightly away from the training data,

and it will become more serious when the training set

contains corrupted data such as outliers.

According to the statistical learning theory, a model

with good generalization ability should consider not only

the empirical risk but also the structural risk and pursue a

best tradeoff between the two risks. Based on this idea, a

regularized ELM [24, 25] is proposed to seek b that min-

imizes the following cost function:

JR bð Þ ¼ Hb� Tk k2þk bk k2; ð9Þ

where Hb� Tk k2
is the sum of squared training errors

which can be regarded as empirical risk, bk k2
is the

square of norm of the network output weights vector

which represents structural risk, and k is a positive real

value called the regularization parameter to balance the

two risks.

The cost function is minimized by differentiating (9)

with respect to b and setting the results to zero, this yields

the following regularization normal equation:

HTHþkI
� �

b ¼ HTT; ð10Þ

where I is an identity matrix with the same dimensions as

HTH. The estimator of b from Eq. (10) is given by

b̂ ¼ HTHþ kI
� ��1

HTT: ð11Þ

Compared with ELM, the R-ELM replaces the LS

solution [Eq. (8)] with the generalized ridge regression

estimator [Eq. (11)], which can provide better stability and

generalization ability for noisy data. Moreover, the added

regularization item also makes the correlation matrix HTH

nonsingular and then the matrix inversion method can be

applied directly. A more complete analysis of the R-ELM

can be found in [26], where the authors extend such study

to generalized SLFNs with different feature mappings as

well as kernels.

2.3 OSELM and R-OSELM

As a sequential version of the batch ELM algorithm, the

OSELM adopts a recursive way to solve the LS solution,

and which may also encounter the ill-posed problems due

to the unavoidable presence of noise or outliers. Similar to

R-ELM, an improvement of OSELM called regularized

OSELM [27] is proposed to improve the stability of

OSELM while maintaining the same sequential learning

ability as OSELM.

The R-OSELM algorithm uses the same cost function

[Eq. (9)] as the R-ELM and aims to seek the optimal reg-

ularization solution in a sequential learning fashion. The

learning process of R-OSELM consists of an initialization

phase and a following sequential learning phase as the

same as OSELM, just adding a regularization item to sta-

bilize the initial output weights. The one-by-one

R-OSELM is summarized below.

In initialization phase, given an initial training set

Xk�1 ¼ fðxj; tjÞjj ¼ 1; . . .; k � 1g, according to Eq. (11),

the initial output weights are given by

bk�1 ¼ Pk�1H
T
k�1Tk�1 ð12Þ

where Pk�1¼ HT
k�1Hk�1þkI

� ��1
, Hk�1¼ hT1 hT2 ��� hTk�1

� �T

and Tk�1¼ t1 t2 ��� tk�1½ �T .

In the sequential learning phase, the recursive least-

squares algorithm is used to constantly update the output

weights. Suppose now that we receive another sample

ðxk; tkÞ, the corresponding partial hidden layer output matrix

is calculated as hk ¼ Gða1; b1; xkÞ � � �½ Gðan; bn; xkÞ�, then

the output weights update equations are determined by

Pk ¼ Pk�1 �
Pk�1h

T
k hkPk�1

1 þ hkPk�1h
T
k

;

bk ¼ bk�1 þ Pkh
T
k tk � hkbk�1ð Þ: ð13Þ

As seen from Eq. (13), the output weights are updated

recursively only based on the newly arrived data, which is

discarded immediately as soon as it has been learnt. The

above one-by-one R-OSELM algorithm can be easily

extended to chunk-by-chunk type. In addition, if the reg-

ularization parameter k in the initial solution [Eq. (12)]

equals zero, then R-OSELM becomes the original

OSELM.

3 Proposed M-OSELM

In this section, we first present a novel M-estimator-based

learning model, next a recursive solution that solves the

M-estimator model is derived and concomitantly a

sequential parameter estimation approach is introduced to

estimate the threshold parameter of the M-estimator func-

tion for online outlier detection, finally a robust online

sequential learning algorithm named M-OSELM is

proposed.

3.1 M-estimator-based learning model

As described in Sect. 2, the learning rules of the ELM and

OSELM are based on the LS criterion, which minimizes
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the quadratic function of the residual errors. However, the

LS criterion is very sensitive to outliers and tends to gen-

erate over-fitting models in the presence of outliers. As

improvers, the R-ELM and R-OSELM try to seek

stable solutions by minimizing both the LS item and the

regularization item [Eq. (9)]. Though the obtained regu-

larized solutions are more stable and less sensitive to

contaminated data than the original LS solution, they are

still far from efficient to eliminate the effects of the out-

liers. In fact, for a training set with K samples, the cost

function in Eq. (9) can be rewritten as

JR bð Þ ¼ Hb� Tk k2þk bk k2 ¼
Xk

i¼1

ðeiÞ2 þ k bk k2; ð14Þ

where ei ¼ ti � hib represents the residual error between

the desired output and the actual network output. Intu-

itively, a contaminated training sample such as an outlier

will result in a very large estimation error ei and the

squaring operator adopted in LS may magnify it further,

then the cost function is biased, and consequently the

finally obtained estimator of the output weights will be

inaccurate. Based on the above analysis, a possible solu-

tion for overcoming outliers would employ a robust cri-

terion instead of the LS method. The M-estimator

technique is one of the most popular methods to deal with

the noise problems. It uses some gentle cost functions

which increase slower than that of LS estimators when the

residual error departs from zero, or even keep constant to

suppress the response when the residual error goes beyond

a threshold. Therefore, the M-estimator-based error func-

tion is more robust to outliers than the LS-based error

function [15]. Though the M-estimator technique has been

used to combat outliers for chaotic time series prediction

[14, 15], the learning processes of the prediction models

are exclusively of batch learning type, as stated in the

introduction.

To provide robust filtering for outliers in a sequential

learning fashion, a novel M-estimator-based cost function,

instead of Eq. (14), is proposed to train the R-OSELM:

Jq bkð Þ,
Xk

i¼1

q eið Þþ 1

2
k bkk k2 ¼

Xk

i¼1

q ti�hibkð Þþ 1

2
k bkk k2

ð15Þ

where q(�) is an M-estimator function. The purpose of

using an M-estimator function q(�), instead of the squaring

function in Eq. (14), is to limit or even eliminate the

adverse effects of the outliers on the cost function. Several

commonly used M-estimators such as Huber, Tukey,

Cauchy, Welsch, and Geman-McClure can be applied as

q(�), and they all have similar behaviors [32]. In our study,

the following modified Huber function is chosen owing to

its good performance and simplicity [33].

q eð Þ ¼

e2

2
; ej j � a

a2

2
; ej j[ a

8
>><

>>:
ð16Þ

where a is the threshold parameter, �j j denotes the abso-

lute value operator. It can be seen that the function q(�) is

quadratic and it is equivalent with the universal LS func-

tion when the absolute value of residual error e is less than

or equal to a. On the other hand, for errors whose absolute

value greater than a, q(�) is equal to a constant, which can

be helpful to suppress the large perturbation stemming

from the outliers.

3.2 Recursive solution of the M-estimator-based

model

In this section, we devote to deriving a recursive solution

of the above M-estimator-based learning model under a

sequential situation. The optimal output weights for mini-

mizing Eq. (15) can be obtained by setting the first-order

partial derivative of Jq bkð Þ with respect to bk to zero. This

yields

Rkbk ¼ Sk ð17Þ

where

Rk ¼ kIþ
Xk

i¼1

u eið ÞhTi hi ¼ Rk�1 þ u ekð ÞhTk hk; ð18Þ

Sk ¼
Xk

i¼1

u eið ÞhTi ti ¼ Sk�1 þ u ekð ÞhTk tk; ð19Þ

in which u(e) , w(e)/e and w(e) , q q(e)/q e.

Apply the Woodbury formula [34] to Eq. (18) and the

Woodbury matrix identity follows

R�1
k ¼ Rk�1 þ u ekð ÞhTk hk

� ��1

¼ R�1
k�1 �

u ekð ÞR�1
k�1h

T
k hkR

�1
k�1

1 þ u ekð ÞhkR�1
k�1h

T
k

: ð20Þ

For convenience of computation, let Pk ¼ R�1
k , then

Pk ¼ Pk�1 �
u ekð ÞPk�1h

T
k hkPk�1

1 þ u ekð ÞhkPk�1h
T
k

¼ Pk�1 � gkhkPk�1 ð21Þ

where gðkÞ is the gain vector defined as

gk ¼
u ekð ÞPk�1h

T
k

1 þ u ekð ÞhkPk�1h
T
k

: ð22Þ

Transforming Eq. (22) into

gk þ u ekð ÞgkhkPk�1h
T
k ¼ u ekð ÞPk�1h

T
k ð23Þ

and subtracting the second term on the left side yields

Neural Comput & Applic (2017) 28:4093–4110 4097
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gk ¼ u ekð Þ Pk�1 � gkhkPk�1ð ÞhTk
¼ u ekð ÞPkh

T
k :

ð24Þ

Substituting Eqs. (19) and (21) into Eq. (17), the update

formula for bk is derived as follows:

bk ¼ R�1
k Sk ¼ PkSk ¼ PkðSk�1 þ u ekð ÞhTk tkÞ

¼ PkSk�1 þ u ekð ÞPkh
T
k tk

¼ ðPk�1 � gkhkPk�1ÞSk�1 þ gktk

¼ Pk�1Sk�1 � gkhkPk�1Sk�1 þ gktk

¼ Pk�1Sk�1 þ gkðtk � hkPk�1Sk�1Þ
¼ bk�1 þ gkðtk � hkbk�1Þ
¼ bk�1 þ u ekð ÞPkh

T
k ek : ð25Þ

where ek ¼ tk � hkbk�1 is called the priori error, and ek ¼
tk � hkbk is called the posteriori error. From Eq. (25), the

computing of bk relies on the posteriori error ek, while

which is unobtainable without knowing bk. Hence, there is

a mutual dependence between bk and ek. Indeed, the priori

error ek can be viewed as a tentative value of ek before the

updating of bk, and it can be used as a good approximation

to replace the posteriori error ek, then by incorporating

Eqs. (21) and (25) the equations for updating bk can be

finally written as

Pk ¼ Pk�1 �
u ekð ÞPk�1h

T
k hkPk�1

1 þ u ekð ÞhkPk�1h
T
k

bk ¼ bk�1 þ u ekð ÞPkh
T
k ek

ð26Þ

where ek ¼ tk � hkbk�1.

Equation (26) gives the recursive formula for updating

bk.

Remark 1 From Eq. (26), we can see that the updating

procedure of bk is implemented in a sequential pattern. At

any time, only the newly arrived data are seen and learned,

and which can be discarded without needing to store as

soon as the learning procedure for it has been completed.

Remark 2 Since the same modified Huber function

[Eq. (16)] is used as the M-estimator function as Chan and

Zou [33], the similar efficacy can be attained here.

According to the definition of Eq. (16), if ekj j � a, which

means no outlier is detected, then u(ek) = 1, Eq. (26)

becomes identical to Eq. (13) in the R-OSELM algorithm,

and the current data will be learned as a useful sample.

However, when ekj j[ a, the input vector hk and (or) target

output tk are suspected to be contaminated with outliers,

then u(ek) = 0, from Eq. (26), the Pk and bk will remain

the same as Pk�1 and bk�1, respectively. In other words,

when the estimated priori error exceeds the threshold a, the

output weights will not update to prevent it from being

influenced by the possibly corrupted sample in the presence

of outliers. These properties make the finally obtained

solution very robust against outliers or even entirely

unaffected by outliers as long as the threshold a is chosen

properly so as to distinguish whether the current sample is

clean or corrupted by outliers.

Remark 3 Though the prior error ek is adopted as an

estimator of the posteriori error ek to calculate the output

weights, it should be noted that the optimization procedure

for minimizing the cost function is actually based on ek
rather than ek.

3.3 Sequential parameter estimation for online

outlier detection

As mentioned above, in the sequential learning process, the

estimation error is compared with the threshold parameter

to decide whether an observation should be processed or

just discarded as an outlier. That is to say, an online outlier

detection procedure is needed. To this end, a correct choice

for the threshold parameter a is of great importance, and

which can significantly affect the performance of the

M-estimator-based learning model. It can be seen that a

large value of a does not behave well to against the adverse

effects of the outliers. Oppositely, a small value of a is

more likely to have good suppression of the outliers, but

value of a too small would also result in the wrong filtering

to those clean samples. To accurately detect the potential

outliers online, a sequential parameter estimation approach

is proposed to estimate the threshold parameter a
continuously.

Similar to references [33, 35], the estimation error

without outliers is assumed, for simplicity, to be normally

distributed with mean zero and variance r̂2
k , which is

denoted as ek �N 0; r̂2
k

� �
. However, instead of using the

obscure complementary error function adopted in [33, 35],

we deduce the relationship between a and r̂k in a direct

way. According to the above assumption, it follows that

e
0

k ¼ ek=r̂k subjects to the standard normal distribution,

ek0 * N(0, 1). Then, the probability of |ek| greater than a

given threshold a is ha ¼Pr ekj j[af g¼Pr e
0
k

�� ��[a=r̂k
� 	

.

According to the properties of the standard normal distri-

bution, we have Pr e
0
k\a=r̂k

� 	
¼

R a=r̂k
�1 e�x2=2dx=

ffiffiffiffiffiffi
2p

p
¼

1�ha=2, and it follows that a=r̂k ¼U�1 1�ha=2ð Þ, where

U-1(�) is the fractile of standard normal distribution cor-

responding to a certain probability. Different values of ha
will yield different confidence in detecting the outliers. If

ha is chosen to be 0.01, we can detect and reject the outliers

with 99 % confidence, and the corresponding threshold

parameter a is determined as

a ¼ U�1 0:995ð Þr̂k 	 2:576r̂k ð27Þ
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where r̂k is the estimated standard deviation of the esti-

mation error without outliers. A commonly used robust

estimation of the standard deviation is given as

r̂k ¼ 1:483 MADðekÞ ð28Þ

where MAD(�) is the median of all absolute deviations from

the median [36]. Despite a robust estimator, however, its

computational complexity is rather high for the consider-

able amount of median operations required. Besides, ref-

erences [33, 35] propose a recursive estimator for r̂2
k , but

which is inapplicable for our computing environment. In

this paper, another robust but much cheaper estimator based

on robust regression is adopted to estimate r̂k continuously:

r̂k ¼ 1:483 1 þ 5= Lw � 1ð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
med We kð Þð Þ

p
ð29Þ

where med(�) denotes the sample median operation,

We kð Þ ¼ e2
k ; e

2
k�1 ; � � � ; e2

k�Lwþ1

n o
is a sliding window of

the posteriori error at time k, Lw is the length of error

window and 1.483(1 ? 5/(Lw - 1)) is a finite sample

correction factor. More details about robust regression can

be found in [36].

Remark 4 The median is one of the most commonly used

robust statistics which are largely unaffected by the presence

of outliers. Owing to the median operation, Eq. (29) gives

rise to a stable estimation of r̂k under outliers environment.

Remark 5 Instead of using all the residual errors, we use

an error sliding window with fixed length to estimate the r̂k
and a sequentially. In another words, when a new error is

obtained and added to the error window, the oldest error

will be discarded to keep the error window online updating,

subsequently the r̂k and a will also be online updated. The

sliding window strategy not only makes the estimation

more consistent with the current situation but also prevents

the infinite increase of computational burdens, which is

much appreciated for sequential learning.

3.4 Summary of the M-OSELM algorithm

Combining the above analysis, a novel robust online

sequential extreme learning machine based on M-estimator

is proposed, we call it M-OSELM for short. Similar to the

generalized OSELM, our M-OSELM algorithm consists of

an initial batch learning phase and a following sequential

learning phase, which is summarized as follows:

(1) Initialization phase Given a initial training subset

Xk�1 ¼ fðxj; tjÞjj ¼ 1; . . .; k � 1g, activation function

G a; b; xð Þ, hidden nodes number n, regularization

parameter k, and error sliding window length Lw,

(a) Randomly assign hidden nodes parameters ai; bið Þ;
i ¼ 1; 2; � � � ; n:

(b) Calculate the initial hidden layer output matrix Hk�1

Hk�1 ¼

Gða1; b1; x1Þ . . . Gðan; bn; x1Þ
..
.

� � � ..
.

Gða1; b1; xk�1Þ � � � Gðan; bn; xk�1Þ

2

664

3

775

ðk�1Þ�n

:

ð30Þ

(c) Calculate the initial output weights

bk�1 ¼ Pk�1H
T
k�1Tk�1 ð31Þ

where Pk�1 ¼ HT
k�1Hk�1þkI

� ��1
,Tk�1 ¼ t1 t2 � � �½

tk�1�T .

(d) Calculate the initial estimation error vector

ek�1¼ Tk�1 �Hk�1bk�1 ð32Þ

where ek�1 ¼ e1 e2 � � � ek�1½ �T :
(e) Estimate the initial threshold value a

Lw ¼ min Lw; k � 1ð Þ

We k � 1ð Þ ¼ e2
k�1; e

2
k�2; . . .; e

2
k�Lw

n o

r̂k�1 ¼ 1:483 1 þ 5= Lw � 1ð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
med We k � 1ð Þð Þ

p

a ¼ 2:576r̂k�1:

ð33Þ

(2) Sequential learning phase For each arriving obser-

vation ðxk; tkÞ,
(a) Calculate the hidden layer output matrix hk

hk ¼ Gða1; b1; xkÞ � � � Gðan; bn; xkÞ½ �: ð34Þ

(b) Calculate the prior error ek

ek¼tk � hkbk�1: ð35Þ

(c) Calculate the 0–1 weight factor u(ek)

u ekð Þ ¼ 1 if ekj j � a
0 otherwise

�
: ð36Þ

(d) Calculate the output weights bk

Pk ¼ Pk�1 �
u ekð ÞPk�1h

T
k hkPk�1

1 þ u ekð ÞhkPk�1h
T
k

bk ¼ bk�1 þ u ekð ÞPkh
T
k ek:

ð37Þ

(e) Calculate the posteriori error ek and update the

threshold value a when |ek| B a

ek ¼ tk � hkbk

We kð Þ ¼ e2
k ; e

2
k�1; . . .; e

2
k�Lwþ1

n o

r̂k ¼ 1:483 1 þ 5= Lw � 1ð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
med We kð Þð Þ

p

a ¼ 2:576r̂k:

ð38Þ

(f) Set k = k ? 1. Go to Step (2).
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4 Simulation experiments and performance
evaluation

In this section, the performance of the proposed M-OSELM

is evaluated on one artificial dataset ‘SinC’ and four

benchmark chaotic time series systems, Mackey–Glass,

Rossler, Logistic and Henon. The experimental results of the

proposed algorithm are also compared with that of the

original ELM, R-ELM, OSELM and R-OSELM. All the five

algorithms use the same sigmoidal additive activation

function G a; b; xð Þ ¼ 1= 1 þ expð�ða � xþbÞÞð Þ where the

input weights a and the biases b are randomly selected from

the range [-1, 1]. All the simulations are carried out in

MATLAB R2010b environment running on an ordinary PC

with 3.4 GHZ CPU and 4 GB RAM. For each problem, the

reported experimental results are the average values of 30

independent experimental runs and the performance is

measured by the root mean squared error (RMSE) defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðyi � ŷiÞ2

vuut ð39Þ

where yi, ŷi are the desired value and actual prediction

value, respectively. N is the number of the testing

examples.

4.1 Function approximation of ‘SinC’

In the first experiment, all the five algorithms (ELM, R-

ELM, OSELM, R-OSELM and M-OSELM) are carried out

to approximate the ‘SinC’ function which is popularly used

to illustrate neural network in the literature

y(x) ¼ sin x=x ; x 6¼ 0;
1; x ¼ 0:

�
ð40Þ

A training set (xi, yi) and testing set (xi, yi) with 5000

samples, respectively, are generated where xi’ S are uni-

formly randomly distributed on the interval (-10, 10).

Random noise distributed in [-0.2, 0.2] are added to all the

training samples while testing data remain noise-free. In

addition, to examine the robustness of the proposed

M-OSELM algorithm, some outliers are added to the

training set to replace the corresponding target output yi at

i = 200, 300,…, 5000.

In this simulation, 20 hidden nodes are assigned for the

five algorithms directly according to the previous litera-

tures [17, 24]. Similar to [24], we estimate the generalized

accuracy of R-ELM and R-OSELM using different regu-

larization parameter k: k = [10-10, 10-9, …, 104, 105].

Average results of 30 trials of simulations with each k are

obtained and then the best performance is reported in this

paper. Similarly, the error window length L of M-OSELM

is determined in the same way just setting L = [10, 20, …,

90, 100]. Average results of 30 trials of simulations with

each L are obtained and then the best performance is

reported. Besides, the number of initial training data for

OSELM, R-OSELM and M-OSELM are set as 100. To

evaluate and compare the robustness of the five algorithms,

a contrast test is conducted to learn the ‘SinC’ with or

without outliers for each algorithm, and the testing RMSE

and learning time are obtained, respectively. As demon-

strated in [37], unlike the ELM algorithm, the OSELM

algorithm does not have a structural tolerance property, it is

very sensitive and unstable at current experimental situa-

tion, and the average testing RMSE of 30 trials is very

large and always goes beyond the normal range, so the

experimental results of OSELM are omitted in this case,

and the results of the other four algorithms are listed in

Table 1. It can be seen that when the learners are trained by

training data without outliers, the testing performances of

the four algorithms are competitive with each other and the

testing RMSE of ELM is slightly higher than that of the

other three algorithms. However, when the learners are

trained by training data contaminated with outliers, the

performances of the ELM, R-ELM and R-OSELM degrade

significantly, while the performance of the M-OSELM

remains the same as that without outliers, that is to say, the

outliers do not cause any influence when the M-OSELM

algorithm is used. As far as the training time is concerned,

we can see from Table 1 that the two batch learning

algorithms (ELM and R-ELM) achieve a much faster

learning speed than the sequential ones (R-OSELM and

M-OSELM), which is consistent with the discoveries of

paper [16]. Though there are additional calculations for

online outlier detection in the learning process of

M-OSELM, the training time of which is just slightly

higher than that of the R-OSELM. In a word, com-

pared with R-OSELM, the M-OSELM achieves a great

Table 1 Performance

comparisons for learning ‘SinC’

with or without outliers

Algorithms Testing RMSE Training time (s)

Without outliers With outliers Without outliers With outliers

ELM 0.00797 0.03195 0.01510 0.01458

R-ELM 0.00772 0.02972 0.01042 0.01094

R-OSELM 0.00763 0.02984 0.49115 0.49167

M-OSELM 0.00761 0.00766 0.55833 0.56771
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improvement on robustness with little increase in learning

time.

In order to intuitively illustrate the impact of outliers

and how the proposed M-OSELM algorithm deals with the

outliers effectively, the typical output curves of the

R-OSELM and the M-OSELM for approximating ‘SinC’

with or without outliers are demonstrated in Figs. 1 and 2.

As shown in Figs. 1 and 2, the R-OSELM is seriously

affected and its actual outputs deviate far from the desired

outputs when outliers are added; while for M-OSELM, the

actual curves of the network output almost fit the desired

curves in both case. It further confirms that the proposed

M-OSELM is very robust and almost not affected by

outliers.

4.2 Chaotic time series prediction

4.2.1 Dataset description

The Mackey–Glass time series has been used as a bench-

mark problem in chaotic time series prediction due to its

chaotic nature. The time series is generated by the fol-

lowing nonlinear differential equation:

dxðtÞ
dt

¼ axðt � sÞ
1 þ xcðt � sÞ � bxðtÞ: ð41Þ

This time series is chaotic for s[ 16.8. The parameters

selected for generating the time series are a = 0.2,

b = 0.1, c = 10, s = 17 according to the literatures
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Fig. 1 Function approximation results of R-OSELM. a Training set without outliers. b Training set with outliers
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Fig. 2 Function approximation results of M-OSELM. a Training set without outliers. b Training set with outliers
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[13, 38–40]. A chaotic time series samples set with length

of 1900 is generated by the fourth-order Runge–Kutta

integration of Eq. (41) with initial value x(0) = 1.2. To

reduce the transient effect, we omit the initial 200 values

and only keep the last 1700 values for experiment, in which

the first 1000 samples are used for training, and the

remaining 700 samples are used for prediction [13]. In

order to evaluate the robustness of the proposed method,

eight training samples are replaced by eight randomly

generated outliers while the testing data remain outliers-

free. The embedding dimension and time delay for phase

space reconstruction of the original chaotic time series are

set as 4 and 6, respectively, as Li et al. [13].

Rossler attractor is one of the most famous chaotic

attractor. The sequence of the Rossler chaotic time series is

derived from the following differential systems

dxðtÞ
dt

¼ �zðtÞ � yðtÞ

dyðtÞ
dt

¼ xðtÞ þ dyðtÞ

dzðtÞ
dt

¼ eþ zðtÞðxðtÞ � f Þ ð42Þ

where d, e, f are the control parameters and the typical

values for these parameters are d = 0.15, e = 0.2 and

f = 10. In this case, the system is chaotic. The x-coordinate

of the Rossler time series is considered for experiment and

a time series with a length of 2200 is generated by the

fourth-order Runge–Kutta integration of Eq. (42) with step

size h = 0.01 and initial state {x(0), y(0), z(0)} = {0.05,

0.05, 0.05}. To reduce the transient effect, we omit the

initial 200 values and only keep the last 2000 values for

experiment, in which the first 1500 samples are used for

training, and the remaining 500 samples are used for pre-

diction. For robustness testing, thirteen outliers are added

into the training set while the testing data remain outliers-

free. The embedding dimension and time delay for phase

space reconstruction are chosen as 1 and 5, respectively.

Similar to the Mackey–Glass chaotic time series, the

above-selected experimental parameters for Rossler chao-

tic time series are mainly according to Li et al. [13].

The Logistic chaotic map and Henon chaotic map are

two other classic chaotic time series, which are described

with Eqs. (43) and (44), respectively:

xðt þ 1Þ ¼ 4xðtÞð1 � xðtÞÞ; ð43Þ

xðt þ 1Þ ¼ 1 � 1:4x2ðtÞ þ yðtÞ;
yðt þ 1Þ ¼ 0:3xðtÞ:

ð44Þ

In our simulations, the Logistic chaotic time series with

a length of 2200 is generated by Eq. (43) with initial value

x(0) = 0.1, the Henon chaotic time series with a length of

2200 is generated by Eq. (44) with initial state {x(0),

y(0)} = {0.1, 0.1} and the x-coordinate is considered for

experiment. For both Logistic and Henon time series, the

initial 200 values are omitted to reduce the transient effect,

and the last 2000 values are kept for experiment, in which

the first 1500 samples are used for training, and the

remaining 500 samples are used for prediction. For

robustness testing, 13 outliers are added into the training

set while the testing data remain outliers-free. The

embedding dimension and time delay for phase space

reconstruction are chosen as 4 and 1, respectively, for both

the two time series. The experimental parameters for

Logistic and Henon chaotic time series are mainly

according to Zhang and Wang [41].

4.2.2 Experimental results

The prediction performances of ELM, R-ELM, OSELM,

R-OSELM and M-OSELM are compared on the four

above-mentioned chaotic time series contaminated with

outliers. For each problem, the hidden nodes number n of

ELM and OSELM are selected based on the validation

method. We gradually increase n by an interval of 10 and

the nearly optimal number of hidden node generating the

best performance is shown in this paper. As proposed by

Deng et al. [24], we estimate the generalized accuracy of

R-ELM and R-OSELM using different combination of

regularization parameter k and the hidden nodes number n:

k = [10-10, 10-9, …, 104, 105] and n is gradually

increased by an interval of 10. Average results of 30 trials

of simulations with each combination of (n, k) are obtained

and then the best performance is reported in this paper.

Similar to R-ELM and R-OSELM, the error window length

L and the hidden nodes number n of M-OSELM are

determined in the same way just setting L = [10, 20, …,

90, 100]. Besides, the number of initial training data for

OSELM, R-OSELM and M-OSELM are set as 200 and a

small value of regularization parameter k = 10-8 is

assigned to stabilize the initial solution for M-OSELM.

Table 2 presents the selected parameter values of the

five algorithms for Mackey–Glass, Rossler, Logistic and

Henon chaotic time series. In Table 2, n denotes the

number of hidden nodes of ELM, R-ELM, OSELM,

R-OSELM and M-OSELM; k denotes the regularization

parameter of R-ELM and R-OSELM; L denotes the length

of error window of M-OSELM.

Table 3 shows the prediction performances of the five

methods on the four chaotic time series with outliers. In

Table 3, the mean and standard deviations (Dev) of pre-

diction RMSE over 30 independent trials are given. It can

be seen that in each simulation the M-OSELM can always

achieve the best prediction results and the ELM (or

OSELM) gives the worst ones. Though the R-ELM (R-

OSELM) obtains better prediction results than the original
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ELM (OSELM) by improving the stability of solutions,

their performances are still far from well compared with

that of the M-OSELM algorithm.

To verify the robustness of the proposed M-OSELM to

outliers, another group of contrast experiment is conducted

to investigate the prediction performances of the

M-OSELM for the four chaotic time series without outliers,

and the prediction results are compared with that obtained

under outliers environment. The comparison results are

listed in Table 4. As shown in Table 4, the prediction

results of the M-OSELM in the presence of outliers are

almost identical with that without outliers, which confirms

that the proposed M-OSELM has an excellent resistance

ability against outliers.

In order to intuitively illustrate the impact of outliers on

the learning process and the effectiveness of the proposed

M-OSELM algorithm to deal with the outliers, we take

Mackey–Glass as a representative example and present the

typical training result of the M-OSELM on this contami-

nated time series. For comparison, the training result of the

R-OSELM is also given, as shown in Fig. 3. We can see

from Fig. 3 that the actually obtained output of the

R-OSELM does not fit well with the desired output due to

the influence of the outliers, while the M-OSELM gives a

very accurate fitting result under the same outliers condi-

tion. It indicates that the M-OSELM is a more robust

learning algorithm with better immunity to outliers. The

trained models are then applied to the testing set for pre-

diction, and the typical prediction results of the R-OSELM

and the M-OSELM are demonstrated in Figs. 4 and 5,

respectively. Figures 4a and 5a compare the desired output

with the actual prediction output of the two algorithms.

Similar to the training results, the actual prediction output

of the R-OSELM does not fit well with the desired output,

while for M-OSELM the two outputs are almost entirely

consistent with each other. To go along with this, the

corresponding prediction errors between the actual values

and desired values of the two algorithms are given in

Figs. 4b and 5b, respectively. The results show that the

prediction error of the M-OSELM is much smaller than

that of the R-OSELM. To sum up, by taking the M-esti-

mator-based cost function, the proposed M-OSELM algo-

rithm can effectively get rid of the influence of the outliers

in the learning process and tends to produce an unbiased

prediction model, and then an accurate prediction result

can be expected. The similar experimental results can be

found on the other three chaotic time series.

All the above simulations are performed for one-step-

ahead prediction of the chaotic time series with outliers,

and the experimental results show that the proposed

M-OSELM is very desirable for dealing with the outliers.

Additionally, the performance of the M-OSELM has also

been tested in the case of multi-step-ahead prediction.

Similar to [42], the multi-step-ahead prediction is realized

Table 2 Parameter values of

ELM, R-ELM, OSELM,

R-OSELM, M-OSELM for

chaotic time series with outliers

Time series ELM R-ELM OSELM R-OSELM M-OSELM

n (n, k) n (n, k) (n, L)

Mackey–Glass 50 (200, 10-5) 170 (200, 10-5) (200, 10)

Rossler 130 (170, 10-5) 180 (140, 10-5) (20, 10)

Logistic 60 (160, 10-5) 130 (170, 10-5) (190, 10)

Henon 60 (180, 10-2) 50 (170, 10-2) (180, 10)

Table 3 Comparisons of prediction performances on chaotic time series with outliers

Time series ELM R-ELM OSELM R-OSELM M-OSELM

RMSE Dev RMSE Dev RMSE Dev RMSE Dev RMSE Dev

Mackey–Glass 0.01283 7.35 E-04 0.01052 2.85 E-04 0.01329 8.85 E-04 0.01048 3.46 E-04 2.46 E-03 7.56 E-05

Rossler 0.02839 5.54 E-04 0.01467 2.04 E-04 0.02173 2.91 E-04 0.01469 2.25 E-04 2.65 E-03 2.60 E-06

Logistic 0.07094 3.26 E-03 0.06791 3.95 E-04 0.10561 3.20 E-02 0.06776 5.72 E-04 7.08 E-05 2.82 E-05

Henon 0.11104 8.58 E-03 0.08957 3.09 E-03 0.11428 1.33 E-02 0.08976 3.01 E-03 7.69 E-05 2.49 E-05

Table 4 Prediction results of M-OSELM on chaotic time series with

or without outliers

Time series Outliers RMSE Dev (n, L)

Mackey–Glass With 2.46 E-03 7.56 E-05 (200, 10)

Without 2.43 E-03 5.92 E-05 (200, 10)

Rossler With 2.65 E-03 2.60 E-06 (20, 10)

Without 2.65 E-03 2.04 E-06 (20, 10)

Logistic With 7.08 E-05 2.82 E-05 (190, 10)

Without 6.72 E-05 2.53 E-05 (200, 10)

Henon With 7.69 E-05 2.49 E-05 (180, 10)

Without 7.95 E-05 2.16 E-05 (180, 10)
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with an iterated strategy by applying the previously trained

one-step-ahead prediction model repeatedly. In more

detail, for a multi-step-ahead prediction we first perform

the first step prediction with the M-OSELM model. Sub-

sequently, the value just predicted is used as part of the

input variables for predicting the next step by using the

same M-OSELM model. We continue in this way until the

entire prediction step is reached. We have carried out the

multi-step-ahead prediction on the above four chaotic time

series contaminated with outliers and the Mackey–Glass is

taken as a representative example to illustrate the predic-

tion results. For comparison, the typical prediction results

of the M-OSELM as well as the R-OSELM for performing

multi-step-ahead prediction on the Mackey–Glass chaotic

time series are given in Fig. 6. From Fig. 6, we can see first

that the prediction performances of the R-OSELM and the

M-OSELM both degrade gradually with the increment of

the prediction step. This is because in the multistep iterated

prediction the error present in intermediate forecasts will

accumulate continually and it makes the subsequent pre-

diction more and more inaccurate. In addition, comparing

the prediction results of the R-OSELM and the M-OSELM,

it finds that the R-OSELM obtains acceptable result only

within short prediction steps, and the predicted values

deviate far from the real values when the prediction step

exceeds 60, while the M-OSELM provides a more accurate

prediction result and its actual output matches the desired

output well even when the prediction step exceeds 200.

The essential reason for the different behaviors of the two

algorithms in multi-step-ahead prediction still lies in their
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Fig. 3 Training results of Mackey–Glass chaotic time series with outliers. a Given by R-OSELM. b Given by M-OSELM
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disparate capabilities for resisting outliers. Due to the

influence of the outliers, the trained R-OSELM model used

for one-step-ahead prediction is biased, then the accumu-

lation error will increase rapidly in the process of multistep

iterated prediction, accordingly the prediction performance

deteriorates quickly with the increment of the prediction

step. In contrast, the M-OSELM has very good immunity

to outliers and it tends to produce an unbiased one-step-

ahead prediction model, then the accumulation error will

increase more slowly in the process of multistep iterated

prediction, so a longer predictable step with good predic-

tion accuracy can be achieved. For the other three chaotic

time series, though the predictable steps are not the same,

the similar experimental conclusions can be obtained.

4.2.3 Comparisons between R-OSELM and M-OSELM

In our simulations, five ELM-based algorithms including

the original ELM, R-ELM, OSELM, R-OSELM and the

proposed M-OSELM are investigated to evaluate their

robustness for modeling a chaotic time series contaminated

with outliers. The original ELM and R-ELM are of the

batch type, while the OSELM, R-OSELM and M-OSELM

are implemented in a sequential pattern. Since this paper

mainly focuses on the sequential learning algorithm, and

the R-OSELM and the M-OSELM can always provide

better results than the original OSELM, then a more

comprehensive comparison between R-OSELM and

M-OSELM is provided at the end of this part. In this
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Fig. 5 Prediction results given by M-OSELM on Mackey–Glass chaotic time series with outliers. a Desired values and actual values.

b Prediction errors between the desired values and the actual values
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section, all the simulations are carried out on the Mackey–

Glass, Rossler, logistic and Henon chaotic time series with

outliers for one-step-ahead prediction.

Since the number of hidden nodes is a common

parameter for all the ELM-based learning algorithms, we

first compare the prediction performances of R-OSELM

and M-OSELM with different values of the hidden nodes

number on the four chaotic time series. In this simulation,

the best values of regularization parameter and the error

window length are chosen for R-OSELM and M-OSELM,

respectively, and the prediction results are shown in Fig. 7.

It is clear to see from Fig. 7 that the proposed M-OSELM

achieves much lower prediction RMSE than the R-OSELM

on all the four chaotic time series. Moreover, with the

increment of hidden nodes, the prediction errors of the

R-OSELM and M-OSELM decrease gradually and then

remain stable, and both the two algorithms can provide

stable generalization performances on a wide range of

number of hidden nodes.

Besides the number of hidden nodes, there is another

parameter for R-OSELM and M-OSELM, respectively,

that is the regularization parameter for R-OSELM and the

length of error window for M-OSELM. In this simulation,

we will evaluate the influences of the two parameters on

the performances of the corresponding algorithms. For a

convictive demonstration, each simulation is repeated

under four typical values of hidden nodes number n:

n = 50, 100, 150, 200, respectively. Figure 8 gives the

relationship between the generalization performance of the

R-OSELM and its regularization parameter. Figures 9 and

10 show the prediction RMSE and training time of the

M-OSELM with different values of the error window
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Fig. 7 Prediction performances of R-OSELM and M-OSELM with

different values of the hidden nodes number. a Mackey–Glass. (The

regularization parameter for R-OSELM is chosen as 10-5 and

the error window length for M-OSELM is chosen as 10.) b Rossler.

(The regularization parameter for R-OSELM is chosen as 10-5 and

the error window length for M-OSELM is chosen as 10.) c Logistic.

(The regularization parameter for R-OSELM is chosen as 10-5 and

the error window length for M-OSELM is chosen as 10.) d Henon.

(The regularization parameter for R-OSELM is chosen as 10-2 and

the error window length for M-OSELM is chosen as 10.)
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length, respectively. As shown in Fig. 8, the regularization

parameter is an important factor in the R-OSELM and may

affect the performance of the prediction model over a large

range of values, especially for Mackey–Glass and Rossler

chaotic time series, the prediction RMSE will become

much worse if the regularization parameter is improperly

chosen. In comparison, we can see from Fig. 9 that the

prediction results of M-OSELM are much stable with dif-

ferent values of the error window length. More impor-

tantly, from the experimental results, the optimal

regularization parameters of R-OSELM are various for

different time series (10-5 for Mackey–Glass, Rossler and

logistic, 10-2 for Henon), while the optimal value of error

window length of M-OSELM is consistently achieved at 10

in all cases. In other words, the best performance of

M-OSELM is much stable than that of the R-OSELM, and

which can further imply that the parameter selection of

M-OSELM will be much easier than that of the R-OSELM

algorithm for unknown applications. Similarly, it can be

seen from Fig. 10 that the training time of M-OSELM

increases little with the increment of the length of error

window, and it is mainly determined by the number of

hidden nodes. Combining Figs. 9 and 10, we can say that

the value of error window length influences very little on

both the generalization ability and the training time of the

M-OSELM. That is to say, the performance of the

M-OSELM is insensitive to the error window length, which

can be chosen in a loose way (the values between [10, 50]

always satisfy according to our experimental experiences),

and this makes the proposed M-OSELM an easy-to-use

method in practical applications.

5 Conclusions and future work

In this paper, a robust online sequential learning algo-

rithm named M-OSELM is proposed to train and predict

the chaotic time series with outliers. By minimizing the
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d Henon. (n is the number of hidden nodes.)
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robust M-estimator-based cost function instead of the

conventional LS function, the possible outliers are pre-

vented from entering the model’s output weights updating

scheme. Meanwhile, the M-OSELM adopts an error

sliding window-based parameter estimation approach to

estimate the threshold value of the M-estimator function,

thanks to the built-in median operation and sliding win-

dow strategy, this approach is efficient to sequentially

provide a stable estimator of the threshold value, and

which can be successfully used to distinguish and detect

the potential outliers online. The simulation results also

demonstrate that the M-OSELM is very robust and almost

not affected by outliers. Compared with other robust

models working under batch learning situation, the

prominent innovation of this paper is implementing a

novel robust learning algorithm in an online sequential

pattern. In conclusion, the proposed M-OSELM has a

strong robustness to outliers while maintaining good

sequential learning ability, which is especially applicable

when the training data arrives sequentially and contains

outliers, such as the real-world time series prediction

applications.

Although the proposed method has shown satisfactory

results, it still can most probably be improved. Similar to

the generalized OSELM, our M-OSELM algorithm con-

sists of an initial batch learning phase and a following

sequential learning phase, and it assumes that all the initial

obtained training data are outliers-free. This assumption,

however, does not always hold up in practical applications.

To solve this problem, the M-estimator technology may

also be well incorporated into the batch ELM algorithm to

provide a robust solution for the initial batch learning

process, and similar works can be found in [14, 15]. As

future work, we will consider this problem further and try

to provide a more complete solution for the prediction of

chaotic time series with outliers.
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Fig. 9 Prediction performances of M-OSELM with different values of the error window length. a Mackey–Glass. b Rossler. c Logistic.

d Henon. (n is the number of hidden nodes.)
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