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Abstract In this paper, the finite-time stability for a class
of shunting inhibitory cellular neural networks with neutral
proportional delays is discussed. By employing differential
inequality techniques, several sufficient conditions are
obtained to ensure the finite-time stability for the consid-
ered neural networks. Meanwhile, the generalized expo-
nential synchronization is also established. An example
along with its numerical simulation is presented to
demonstrate the validity of the proposed results.
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1 Introduction

In the past decades, stability analysis of various classes of
neural network models such as Hopfield neural networks,
Cohen—Grossberg neural networks, cellular neural net-
works, and shunting inhibitory cellular neural networks
(SICNNs) has been extensively investigated since the

This work was supported by the Natural Scientific Research Fund of
Hunan Provincial of China (Grant Nos. 2016JJ6103, 2016JJ6104),
and the Construction Program of the Key Discipline in Hunan
University of Arts and Science—Applied Mathematics.

<4 Yuehua Yu
yuyuehual67 @aliyun.com

College of Mathematics and Computer Science, Hunan
University of Arts and Science, Changde 415000, Hunan,
People’s Republic of China

stable neural networks have been successfully applied to
some practical engineering problems such as signal pro-
cessing, pattern classification, associative memory design
and control and optimization [1-9]. In particular, because
of the complicated dynamic properties of the neural cells in
the real world, the existing neural network models in many
cases cannot characterize the properties of a neural reaction
process precisely. Thus, it is natural and important that
systems will contain some information about the derivative
of the past state to further describe and model the dynamics
for such complex neural reactions. Furthermore, the sta-
bility of SICNNs with neutral time-varying delays and
continuously distributed delays has been the object of
intensive analysis by numerous authors in recent years (see
[10-13] and the references therein). Usually, time delays
may lead to oscillation, divergence or instability which
may be harmful to the system. Furthermore, the dynamic
systems with proportional delays have many interesting
applications in engineering and sciences such as biology,
economy, control and electrodynamics [14-20]. Conse-
quently, the stability of cellular neural networks (CNNs)
with proportional delays has been extensively and inten-
sively studied in [21, 22]. Most recently, there is a lively
interest to analysis of finite-time stability (FTS) behavior
for time-delay systems (see, e.g., [23—-27] and the refer-
ences therein). It is worth to mention here that FTS and
Lyapunov asymptotic stability (LAS) are different con-
cepts by mean a system may be FTS but not LAS and vice
versa [1], and FTS is an useful concept to study in many
practical systems in the vivid world [28-33]. However, to
the best of our knowledge, no such work has been done on
the SICNNs with neutral proportional delays. This moti-
vates us to further study FTS of the following class of
non-autonomous SICNNs with neutral proportional
delays:
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> CHOf (oua(quat) i (1)

xi(1) = —ay()x; (1) —
Cu€N, (i)

= X BY(n)g(xylqun)xy(t) +Ly(t), 1>0,
Cu€Ny (i)
x;;(0) —xg,x (0) :xl-lj,ijGJ:: {11,...,1n,21,...,.2n,...,ml,....mn},
(1.1)

where C;; denotes the cell at the (i, j) position of the lattice,
the r-neighborhood N, (i,j) of Cj is

N.(i,)) = {Cu : max(|k —i|, |l — j|) <r,1<k<m,1<I<n},

N,(i,j) is similarly specified, x; is the activity of the cell
Cij, Lij(1) is the external input to Cj, a;(r) represents the
passive decay rate of the cell activity, Cf-;l (¢) and Bg’ (t) are
the connection or coupling strength of postsynaptic activity
of the cell transmitted to the cell Cj, and the activity
function f(xi) is a continuous function representing the
output or firing rate of the cell Cy, gy, € J, are propor-

tional delay factors and satisfy 0<g;<1, and x° =
0,20 )t = (. xl )T € R™ are the initial

value of x;() and xj;(¢) at time o = 0, respectively.

For convenience, we denote by R™(R = R') the set of
all mn-dimensional real vectors (real numbers). For any
x={x;} = (x11, x12,.. .,xmn)T € R™, we let IxI denote
the absolute-value vector given by |x| = {|x;|}, and define
Throughout this paper, it will be
assumed that ay,L;, Cy, By : [to, +00) — R are boun-
ded and continuous functlons, where ij € J.

We also make the following assumptions which will be
used later.

(Ao) for ij € J, there exist a bounded continuous func-
tion aj; : [fo, +00) — (0, +00) and a positive constant Kj;

such that

[[x]| = max;jes [x;]-

. j: a;;(u)du < Kije— jx aj;(u)du
(A}) there exist nonnegative constants ¢, ¢, M/ and M8

such that

() =fO) < i =], If(u)] <M, |g(u) —
lg ( )|§Mg7 for all u, veR.

gl < pflu—vl,

(Az) for each ij € J, there exist positive constants 1, 17,
n;; and nj such that

—nj; =sups —aj(1) + Kj; Z t)’Mf

120 CueN, (i)

>

Cr€N, (i)

t)’Mg + Ly (]| § <o,
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for all t,s € [ty, +00) and £ — s> 0.

> |etom + Z

n; —sup{la,-,-(t)l +
t>0

(t)‘Mf + |L,-,-(z)} <1,

CuEN, (i) CueNy(
(1.3)
iy =supd —aj() + Ky | > |CHn| (M + )
120 Cu€N, (i)
+ Y (B” (Mg+,ﬁ) <0, (1.4)
CkIEN(lJ)
and
iy =supd Jag(0)] + > |cHn| (M + )
120 Cu€N, (i)
+ > B }Mgﬂcg) <1. (1.5)

CueN,(iy)

2 Main results

Definition 2.1 For a given time 7 >0 and positive
numbers r; <r,, a solution x*(¢) of (1.1) is said to be finite-
time stable with respect to (ry,r,, T) if for any solution
x(1) of (1.1), max{||x(0) — x*(0)[|, [[«'(0) — x* "(0)||} <m
implies that

=X O, K@) —x" 'O} <r2
for all € [0,T]. System (1.1) is said to be finite-time

stable with respect to (ry,r2,T) if any solution x*(¢) of
(1.1) is FTS with respect to (71,2, T).

max{[1x(1)

Lemma 2.1 Let (Ag) (A;) and (Ay) hold. Suppose that
x(t) = {x;(t)} is a solution of system (1.1) with initial
values

x;(0) = K x,:(0) = X!

1
and ma { 0 ‘ .1-‘}<—, ij € J,
X4 ], |x i i

vy i il X
(2.1)
where M > max{1, maxec; K} is a constant. Then
max{ 1)), [30[} <1, for al 120, je .
(2.2)

Proof From (2.1), we have
1
max{|[x(0)||, [Ix'(0)]|} < TS 1.

If the statement in (2.2) is false, there must exist ij € J and
0" > 0 such that
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max{|x,-j(0*)|, x;j(@*) } —1, (2.3) From (1.3), (2.1), (2.3) and (2.5), we get
and x;i(H*) §|“t/ ‘x,] !"" - Z Ck] 0°)f (ki (g0 ) ) x5 (07)
CueN, (i)
max{ |xu(1)|, |x,(1)|} <1 for allz€ [0, 07), ki € J.
(2.4) - Ck,;(m By (07)8 (xy(qu0"))x(0°) + Ly (0%)
Note that <Jay(0%)] + Z ‘c“ oM+ 3 (B“ )Mu L (07|
’ CueN, (i) Cr€EN, (i)
X(5) + ay(5)%(5) o
== Y CHs)f (xua(qus))xi(s)
CEN, (i) which contradicts (2.6). This proves Lemma 2.1. l
- Z Bﬁl(S)g(xiz(qsz))xzj(S) + Ly(s), Theorem 2.1 Assume that the conditions in Lemma 2.1
CueNy (i) hold. Let x*(t) = {x;;(t)} be a solution of (1.1) with the
€0, 7], t €0, 07]. (2.5)  initial condition (2.1). Then, for given 0<r <r, and

Multiplying both sides of (2.5) by ef a0 and integrating
it on [0, 7], we get

xij(t) _ X,’I‘(O)e_ﬁa‘j(u)d”

+/Ze—f:a;j(u)du .
0

— D BY(5)g(x(qus))xs(s) + Ly(s) | ds, 1€[0, 0°).

CkIGNq<[J)

Z Cf;l(s)f(xkl(CIuS))xij(s)

CkIGN,(i,j)

Thus, with the help of (A¢) (4;), (1.2) and (2.4), we have

0*
xij(o)ef Jn aj(u)du

0" *
+ / efj;() aj(u)du |
JO

_ Z B{:fil(s)g(x;d(qkls))x,-j(s) + L,-j(s):l ds

CreN, (i)

e (67)] =

> ) (oualgus) )xi(s)

CuEN, (i)

K; ,f“*  (1)d v u)d
<ﬁ”e n"‘/u“—i-/ e "K, Z ‘C ‘Mf
J0 CrEN,(iy)

3 ‘B{;’(s)‘Mg +|Ly(s)| | ds
CueN, (i)
Kj — [ awan, 7 [ awa |
— a, u)du . (l,- u)du *
< i i +/0 e Jo G [aii(s) — ’7:‘/] ds
<K - [ ajuan / A
M 0

Ki' - “xa i
)7
1

which, together with (2.3), implies that

max{|x,-j(9*)|, X(0%) }: X(0%)

Ydu
(u)du IJ(S)dS

IN

=1. (2.6)

T > 0, x*(¢) is finite-time stable with respect to (ry,r, T) if

ry > Mrl.
Proof 1In view of Lemma 2.1, we obtain
max{(x;;.(t) X )‘}<1

for all +>0, ijeJ.

)

(2.7)
Let x(¢) = {x;(r)} be any solution of (1.1). We denote
2(t) = x5(1) = x5(1), 25(0) = x;(0) — x5(0), 2;(0) = x};(0) — x;(0),
@ = a0} 2 = {GO) b Il = max{[l], 1]}
(2.8)
where t >0, ij € J. It follows from (1.1) that
5(1) = — a;(1)z;(1)

z
— Z C [ S (xu(qut) )x;(t) —f(xz,(qk,t))x;}(t)]

CEN, (i)
= > B0 [e(laun) () — g (xiilaun )6 (0],
Ck[ENq(i.j)
t>0,jelJ.
(2.9)
For any ¢ > 0, we obtain
max{Jay O, [ <max{ ] [ E+e) o
<M(||zl|o+e), i EJ.
In the following, we will show
max{ |z5(0)], [25(0)] } <Mzl +2) o

for allt€ (0, 7], T>0 and ij € J.
Otherwise, there must exist ij € J and 0 € (0, T) such that

O]} =Mkl +e), (2.12)

max{|zij(0)},

and
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max{|zu (1), |2, ()]} <M(llzll +e)

(2.13)
for allr €0, 0), ki e J.

In view of (2.9), we obtain
2(s) + ai(s)zi(s)
- ).

CuEN, (i)

= > B9 s (viulaus) i) — g (i (aws) ) s)]

CueN, (i)

(5) [ ) () = f (i) 5 9)|

s€l0, 1, €10, 6].
(2.14)

Multiplying both sides of (2.5) by ef a1 and integrating
it on [0, 7], we get

a/(u i / f“f

x {— > Cls) [ Cralaus) xas) = F (xialaus) i 9)|

CueN, (i)
— g(xilaus) ) (9)| }ds,

zj(1) = z(0

= Y B [slulaus)) (o)

CueN,(ij)
relo, 0.

Thus, with the help of (4y), (A
have

1), (1.4), (2.7) and (2.13), we

0 qa
123(0)] = |25(0)e ™ Jo s

()e* f‘”ag(u)du { B

- > B {g(x;,mqus))x,;f(s)g(xzxqus))x;(s)}}ds

Cu€N, (i)

> ) [Floualaus)xils) 1 (iaus) )]

Cu€N, (i)

<Jes(0) ]~ Jouter

0
/ ‘ﬁ (u)du ’
CueEN, (

i)

Cf‘/(s)‘ (‘f(xkl(qﬂs))

00

xii(s) 7xlfj(s)‘

‘xfj(s)‘)}ds

b (5) =35

+ | (xua(gias)) —f (x5 (quas)) || ¢

Z ‘Bg-’(s)’ <|8(X21(‘1kls)) |
CuEN, (i)

e (v aas)) — ¢ (vi(as) )

0 .
<o+ 6)Kye ™o i

4 0
+/O e—fr a[/(u)duKij|:

>

CrEN, (i)

S |)| (4129 + i s

CuEN, (i)

BEI(S)’(M‘”ZU(SN +ME|ZZ/(qle)D} ds
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vl N
< (o + ) Ky o i

0
+/ efx/a;,(u)dukly[
0

>

CueN (i)

Ky Uu’ u)du o — ’)a”u i
R R oy
K\ _ (7”
~ el o)1 (1-52) e o]

<M(|lz]l o +2),

Z ‘Cg‘/](s)‘(Mf-&-,uf)

CueN, (i)

i (s)’(Mg+ug):| dsM(|lz]. +2)

which, together with (2.12), implies that
max{|z3(0)1, [24(0)| } =

From (1.5), (2.7) and (2.14), we get

40 =Ml +0)- (215)

2(0)] <1ag(0)l125(0)| + { > || (1 Gutauo)lxi0) - x;(0)|

&
| aauat)) = (i (aua0)) [ 5(0)|
S (85O (I (ataws) [xs(0) — x500)|
oy
+ g(viu(au0) — g (xir(au0))| \x;w)\)}
< {|a,-j(0)| + ;( .)‘Cfil(())‘(Mf +1)

+ > ‘Bﬁ’(e)‘(M’“rug)}M(IZIOC+8)

CA/EN‘,(i.j)
<M(|lz]l« + ¢)s
which contradicts (2.15). Hence, (2.11) holds. Letting
& — 0T, we have from (2.10) that
maxy |z;(t)], |z ’}<Mmax X 0
{\ ()], [25(0) {I1x(0) —x"(0)I[} (2.16)

[« (0) — x*(0)||},2 € [0, T,ij € J.

Let max{{[|x(0) — x*(0)|, [|x'(0)
and Mr; <r, we have

max{”x(t) -

<Mmax{\|x(

—x(0)||} <ry, by (2.16)

t>H}

Oll, [[x'(0)

O)H} SM?‘I <r,
Vi e [0, T].

This shows that x*(¢) is finite-time stable with respect to

(r1,72,T). The proof is completed. O

We can show the conditions in Theorem 2.1 ensure the
following generalized exponential synchronization of sys-
tem (1.1).
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Theorem 2.2 Under the assumptions of Theorem 2.1,
system (1.1) is generalized exponential synchronization at
infinity, i. e.,
such that for any two solutions x(t),
lowing inequality holds

there exist two positive constants f and o,

x(t) of (1.1), the fol-

_ max { [[x(0) — (0|}
() = 5(0) .. < 8 T
for all >0,
where [lx(t) = x* ()| = max{||x(r) —x*(1)]],
1 (1) = x* ()1}

Proof For any two solutions x(¢),x(f) of (1.1), we set
x*(¢) be a solution of (1.1) with the conditions (2.1) and

max{[1(0) = x* O)]], [ (0) — x"(0)] } >0,
max{nx(m —x ), [(0) - x" )|} > 0.

Define continuous functions I';;(w) and IT;(w) by setting

t>0

[jj(w) =sup{ o — aj(1) + Kj )C ’(Mf + #fe‘”'%)
CEN: (i)

3 [mo \W)H

C“EN ij)

and

IT;(w) = supq fay (1) +
>0

‘Cll;l(t)’ (Mf + 'ufewlnﬁ)

Ck1EN,»(i,j)

v 3 | (e )
CueN, (i)
where o € [0, mine, ig%a;}(t)], ij € J. Then, from (1.4)
>
and (1.5), we have
[(0) <0, T;(0) <1, ij e,

we can choose a constant ¢ € (0, min inf a;(#)) such that

ijeJ t>0
FU(G)<O, HU(G)<1 l]GJ

This, together with the facts that

141 1
g, ln< + > <In—
1+ gut qi

implies that

<
1+t~

for all t>0, kl € J,

il ’ oln <_| l‘;’l /)
c,:,.(t)‘ M e\
1>0 CuEN, (i)

i o < aln(li—;":ﬂ)
+ Y B,.j(t)) ME + e
CreN, (i)

<swpd o a0+ 3 (G| (00 +iterh)
CueEN, (i)

t>0
KMgﬂge"'"”L“)} }

S101
G .
sup{—1 t—aij(t)—Q—K,;f[ E

>

Cr€Ny (i)
= F,‘j(ﬂ') < 07

ijel.
(2.17)

We still use the notation defined in (2.8). For any
&> 0, consider the functions Vj(r),ij € J, defined as
follows

Vit) = M (Jlzll +e)e 7™

Therefore,

. 1>0.

Vij(qkﬂ) = M(”ZHOO + S)e*‘”n(qu)

L+t
) 7ﬂln(l+t)ealn(l+qk1’)

= M(|lz]|
< Vi(t)e M for all t>0, ij, kleJ,
(2.18)
and
max{|z5(0)], [25(0)[} < (el + ) <M(lell +¢) = Vi(0), €.
(2.19)
We next claim that
max{|z,j(t)|, z;(t )‘} < V(1) for all > 0,ij € J. (2.20)

Otherwise, there must exist ij € J and 0, € (0, 4+00) such
that

,)efaln(lJrHl)

max{ |z (011, [2(00)|} = Vis(01) = (el +
(2.21)

and

|} <Vi(r) for allz€[0, 0,), ki J.

(2.22)

According to (2.2), (2.17), (2.18), (2.19) and (2.22)
yield

max {|zu(1)], |2, (r)

@ Springer
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0
125(01)] < |z (0) e o' @

o[ o] 3 ool i
+ | fOa(qus)) — £ (5 (qus)) ” (s D

t

CueN, (i)

x(s) = 53]

‘({g Xiy(qus) ”x,] s) — X (s)‘

‘g xkl qkls)) *g(xkl(qkls)) ‘x (s )‘)} ds

0,

o
<zl + e)Kge o 5

0, 0
[ e ﬁ“d“{E:C%WWWM+MMwM

CueN, (i)

du

S

Cu€N, (i)

0, 0 0,
7| T &)Kijje Jo T + e Jo T i
Kj f a’(u)du f a, (u)dqu

{ = o ()

CueN, (iy)

B?(S)’(Mg|zij(3‘)| + Mg|21/<z(qk15)|)} ds

Cu€Ng (i)

In #)
+ Z B?(s)’(Mg-&—,ugeg <""“‘ >:|M(|z|oo+s)e‘”"“”>ds

(HZ H ) —aln(140,) { By —/ tl (u) d“

0 +s
+ / l e fsUl (@) —15 )Ckl } (M/. + M/egln (‘i”"‘)>
0 CueN; (i)
+ ) ’B“ ‘(Mé + e (‘*/u))]ds}
i)

CueN,(

0y

K. _ SN o
—oln(1+0) J Kij — [ (a0 —55)du
M(|2] + ¢)e { we "

- UI a (u) du * o
/0 A ai(s) — s ds
K\ _ 0y g
:Mmm%+@aﬂmwwp_(1_ﬁ)eﬂ(mwumﬂ
Ml + e,

which, together with (2.21), implies that

max{[25(00)], [5(00)[} = I500)] = Ml

(2.23)

) —oln(l+91)-

max{max{||x(0) —x*(0)|, ||x'(0)

B =2M

From (2.2), (2.22) and IL;(0) <1, we get

4WJS%wm@@>+{EZ\W@wUmmwmhum

Cu€N, (i)

f;0ﬂ+vamwmfﬂ%W@DWWMD

> |80 (le(utaus) | riton) - x500)|

CuEN (i)
%ww}

c@’(el)‘(Mf e )

- g(xi;(%@]))’

+ ‘g(xﬁd(%@))

<{|a;,-(01)+ >

Cu€EN, (i)

> Bwaw@ﬁ+mf%ﬂ}Muux+we““””

CrEN, (i)

<M(|lz] . + e)e=o "0,

which contradicts (2.23). Hence, (2.20) holds. Letting
¢ — 07, we have from (2.20) that
50}

I(e) = (1) = max {max{ 1)
max{[}(0) — x*(O)]} [¥ (0) — " (0)|}

jeJ
(1+1)°
for all #>0.

<M

Moreover, similar arguments to those above show that

max{|[x(0) —x*(0)]],||¥'(0) —x*'(0) |}
(1+1)°

[%(t) —x*(1)]| . <M
for all #>0.

Thus,
[[x() = X(0)[| o < llx(2) — 2" ()l + [1X(1) = 2" (1) ]|

max{|[|x(0) — x(0)]], [|x'(0) — ¥'(0)||}
<h (1+1)°
for all >0,

where

—x (O[]}, max{l%(0) —x*(O)[},[[¥(0) —x"(O)[[}}

max{[[x(0)

— ()]}, [lx'(0)

—X(0)[I}

@ Springer
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This proves Theorem 2.2. O Xiq(t)
1.5 X0 H
x21(t)
*a5(t)
1k - <o
3 Example and remark " 31?)
o %0
x;1(t) i
Example 3.1 Consider the following SICNNs with neutral 0.5 1 0
proportional delays: N
0l PR
dx; A AUUUUUUNN A
o= - = > G {gsin (xk, (5 t) >xij(t)
CuEN, (i) -05 i
kl 1 / 1
= > BiOggeos(a(57) ) + Ly(o),
CueN, (iy) -1 i
(3.1)
-1.5

where > 0,x;(0) = x, x;(0) = x} € R, i,j = 1,2,

[ap; a12:| B {0.1 4+ 0.2sin 10007 0.1 4 0.3 sin 1000t]
laxy axn ~ 10.2+0.35in1000¢ 0.2 4 0.4sin 1000z |’
(3.2)
[Ci C12:| B |:BH B12:| _ |:0.01|COSI| 0.02|COSI:|
1 Cy1 Cxp "~ |By Bn| 0.02|cos#| 0.01|cost|]’
(3.3)
(L L 0.01sinz 0.01sint
Rl : . (3.4)
Ly Lo 0.01sint 0.01 sin¢
Clearly,
ar a12:|:|:0.1 OJ],KUSeW:M,Mf:,uf:Mg
La5,  ax 02 0.2
=t =0.1,
3 ’c,’.;l(t)’ > ’Bj;l(t)’ <0.06, |L;(1)| <001,
CkIENl(iJ) CklENl([.j)
i?j = 1727

which imply that system (3.1) satisfies (Ay), (A;) and (A7).
Letustake ry = 1.5, =10 > rleﬁ and M = e, By the
consequence of Theorem 2.1, it follows that the solution
x*(1) = {x;(1)} of system (3.1) with {|x;}(0)|}<{e’ﬁ}
and {|x;; "(0)[} < {e=mw} is FTS with respect to (ri,7,T)
for any T > 0. This fact is verified by the numerical simu-
lation in Fig. 1, and there are two groups of different initial
values which are x1(0) =1.1,x12(0) = —1.3,x,(0) =
1.2,xp (0) =15, x{,(0) =1.1,x,(0) = —1.3,x5,(0) =
1.2,x,(0) =15, and x},(0) =0.2,x},(0) = —0.1,x3,
(0) = 0.4, x5,(0) = 0.6,x},(0) = 0.2, x},(0) = —0.1, x4 (0)
= O.4,x§/2(0) = 0.6. Moreover, from (3.2) and (3.3), we
can choose ¢ = 0.01 such that (2.17) holds. Then, Theo-
rem 2.2 implies that (3.1) is generalized exponential syn-
chronization at infinity, and for any two solutions x(z), x*(¢)
of (3.1), the following inequality holds

0 20 40 60 80 100 120 140 160 180 200

0
02 %, 0[]
X,
0.15 %,
X, )
0.1 —x, 10|
X,
0.05 — ]

—0_2 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200

Fig. 1 Numerical solutions to system (3.1) and its derivative with two
groups of different initial values

max {[|x(0) —x*(0)], [|x'(0) —x(0) |}

1x(8) =" (D)l <P

for all +>0.

(1 + t)(l()l

The numerical simulation in Fig. 2 strongly supports the
conclusion, and there are two different initial values which are

WOt =(1.1,-1.3,1.4,12),3x t = (1.5,1.3,-1.1,—-1.2)
i

)

and

{x;‘j 0} = (12,-1.1,1.5,1.4), {x;‘j 1} =(12,1.1,-1.3, - 1.4).
Remark 3.1 Since the finite-time stability of the non-au-
tonomous SICNNs with neutral proportional delays has not
been done before, all results in the references [10-13, 21—
36] cannot be applicable to prove the finite-time stability
and the generalized exponential synchronization of (3.1).
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Fig. 2 Synchronization errors x;(f) — x(¢) and its derivative for
solutions of system (3.1) with two groups of different initial values

Moreover, in this present paper, we employ a novel proof
to establish some criteria to guarantee the finite-time sta-
bility and the generalized exponential synchronization for
neural networks systems with neutral proportional delays.
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