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Abstract Silicon content prediction is quite significant

for supervising the state of blast furnace and is usually

selected as the indicator to represent the thermal state. In

practical industry, the fluctuation exists in the operation of

blast furnace all the time. What’s worse, it is inaccurate to

build the predictive model with many outliers. To solve

these problems, this paper has developed a model to predict

the silicon content using support vector regression (SVR)

combined with clustering algorithms, including hard

C-means (HCM) clustering and fuzzy C-means (FCM)

clustering. Through data processing, the data points are

clustered based on the similarity, and then different SVR

models are established. In order to make full use of FCM, a

new method using multiple SVRs and FCM based on

membership degree (MFCM-SVRs) is proposed where the

membership degree is applied to eliminate the outliers.

Simulation results verify that the multiple SVRs based on

HCM (HCM-SVRs) and MFCM-SVRs possess superiority

in terms of accuracy and speed, which makes the method

serve better for practical production.

Keywords Silicon content prediction � Fuzzy C-means

clustering � Support vector regression � Blast furnace

1 Introduction

Iron and steel industry occupies an important position in

national economy, with the production and quality being

one of the most crucial signs of a national economic

development. Figure 1 displays the ironmaking process

from iron ore to steel. Solid charge, such as coke, iron and

solvent are fed from the top of blast furnace. When the

coke arrives in the tuyere raceway, it will be burned by the

oxygen combined with other auxiliary fuels in the hot air,

and then blast furnace gas will be produced. The gas rises

from bottom to top, with temperature decreasing and

oxygen content increasing. At last, the gas comes out from

the top of blast furnace and will be purified in the gas

cleaning system. In the process of gas rising, the iron ore is

falling from top to bottom. As a result, the iron ore will be

heated and reduced by the gas. Contrary with gas trans-

formation, the iron ore changes with temperature increas-

ing and oxygen decreasing. Based on the characteristics of

temperature, chemical component and physical form of

furnace burden, blast furnace can be divided into five

regions, which are lump zone, cohesive zone, dripping

zone, raceway and hearth region [1]. Since the state of

reaction cannot be described in detail and the content of

internal components cannot be calculated accurately either,

black-box models have attracted more scientists’ attention

and achieved further process [2, 3].

It becomes necessary to construct mathematical models

to reflect the operational state, as there are hundreds of

physical changes and chemical reactions happening in gas–

liquid–solid phase under high pressure and high tempera-

ture when a blast furnace runs. The thermal state is one of

the most critical state factors as it reflects much informa-

tion about the running state of blast furnace [4, 5]. Since

the thermal state cannot be obtained directly, the silicon
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content is usually selected as the indicator to supervise the

state of blast furnace. It has been demonstrated that the

main silicon behavior at the blast furnace process is

reduction reaction [6]. Firstly, a part of silicon goes to hot

metal at liquid phase during SiO2 reduction by coke carbon

or the carbon dissolved in hot metal, which is displayed as

follows

SiO2
l þ 2½C� ¼ ½Si� þ 2COg ð1Þ

While most of the silicon transforms into gaseous SiO, and

the corresponding SiO2 is from coke ash and slag.

SiO2
l þ ½C� ¼ SiOg þ COg ð2Þ

Then SiO rises up with blast furnace gas and will be dis-

solved by slag and hot metal from the cohesive zone. The

dissolved SiO will react with coke in metal.

SiOg þ ½C� ¼ ½Si� þ COg ð3Þ

According to researches based on silicon behavior at blast

furnace, the silicon content is associated with the cohesive

zone position, the hearth temperature and many other blast

furnace variables [6]. The correlation makes the silicon

content a research focus that numbers of mathematical

models have been developed, including neural networks [7,

8], partial least squares [9], Bayesian networks [10] and

support vector machines [11, 12]. Some of these data-dri-

ven models have been applied into practice, which can

provide guidance on modulating input parameters in

advance to control the silicon content in a proper range.

Support vector machine (SVM), developed by Vapnic

[13], is a kind of kernel-based black-box modeling method.

The basic idea of SVM is mapping inputs into a high-

dimensional feature space where two classes can be sepa-

rated to the utmost extent by an optimal hyperplane. With

the structural risk minimization, SVM possesses obverse

superiority on generalization ability [14]. As a result, SVM

has been widely applied on nonlinear systems forecasting

[15], data mining [16] and document classification [17].

When SVM is applied to tackle the problems of function

approximation and regression estimation, SVR is proposed.

SVR is capable of approximating nonlinear function and

effectively avoids over fitting. Thus, growing efforts have

been made to apply SVR to various domains [18–20].

Based on the industrial data, the fluctuation exists in the

operation of the ironmaking progress just as Fig. 2 shows.

Both of gas permeability and silicon content vary in a large

range, which can also be demonstrated by other variables.

This variation would cause difficulty in modeling process

inevitably. What’s worse, the existence of noises and out-

liers can result in inaccuracy, which would decrease

modeling effectiveness [21]. In view of this fact, the data

should be processed at first.

Clustering analysis, based on the idea that things are

together by their attribute, is a multivariate statistical

analysis method. As a means of unsupervised classification,

clustering analysis has been widely applied in pattern

recognition [22], data mining [23] and computer vision

[24], etc. The clustering algorithm partitions a data set into

several clusters, by which the data points in one cluster are

similar to each other, while the data points in different

clusters have some different properties. Hard C-means

clustering (HCM) partitions the data set by defining a hard

boundary. If the boundaries between subpartition are

vague, which means that each data points belong to dif-

ferent clusters with different membership degrees, then

fuzzy C-means clustering (FCM) is developed. Duan et al.

[25] introduced the weighted SVM-based fuzzy C-means

clustering algorithm, where the best training sample set is

obtained by FCM clustering. Multiobjective fuzzy clus-

tering combined with SVM was proposed by Mukhopad-

hyay et al. [26]. In this approach, some high-confidence

points are selected to train SVM classifier. Unfortunately,

multiple support vector machines were not constructed in

these two papers. Yang et al. [27] have proposed a kernel

fuzzy C-means clustering-based fuzzy support vector

machine algorithm, where the data are clustered in a high-

dimensional feature space and the farthest pair of clusters is

selected to degrade the effects the outliers or noises have

on the decision function. In practice, as the data collected

Fig. 1 Blast furnace structure diagram
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have homogenous characteristics to some extent, clustering

in the original space becomes quite meaningful.

In this paper, some models based on SVR combined

with clustering algorithms are presented. Firstly, HCM-

SVRs model is constructed where a hard boundary is

defined with which the data are partitioned into different

clusters exactly, and then SVR is introduced to predict the

silicon content. Different from HCM, FCM clustering can

obtain the fuzzy partition with membership degrees, by

which MFCM-SVRs are proposed. In this method, the

outliers are eliminated twice based on FCM clustering and

membership degrees. Multiple SVRs are constructed on

each cluster to predict the next silicon content.

The remaining parts of this paper are arranged as fol-

lows. Section 2 gives a brief introduction on SVR. The

silicon content prediction using support vector regression

and clustering algorithms is introduced in Sect. 3. Sec-

tion 4 displays the predictive procedures and results anal-

ysis. Finally, Sect. 5 concludes this paper.

2 Support vector regression

Support vector regression (SVR), a regression method [28],

is based on SVM which improved the capability of gen-

eralization by searching the structural risk minimization.

Different from SVM, SVR attempts to predict the distri-

bution of information and is applied for regression esti-

mation. As a result, SVR is used to acquire the silicon

content precisely in this paper.

For a set of training data

T ¼ fðxi; yiÞ; xi 2 Rn; yi 2 R; i ¼ 1; 2; . . .; lg, where xi is

the input vector, yi is the corresponding output, and l is the

number of training samples. SVR maps a low-dimensional

input space to a high-dimensional feature space, and the

nonlinear mapping can be expressed as

f ðxÞ ¼ xTwðxÞ þ b ð4Þ

where the weight vector x and threshold value b can be

obtained by solving an optimization problem.

min
x;b;n;n�

1

2
xTxþ C

Xl

i¼1

ni þ C
Xl

i¼1

n�i

s.t.

xTwðxiÞ þ b� yi � eþ ni
yi � ðxTwðxiÞ þ bÞ� eþ n�i
ni; n

�
i � 0; i ¼ 1; 2; . . .; l

8
><

>:

ð5Þ

where e is the insensitive loss function that determined the

admissible uncertainty of the data points, C is the penal-

ization parameter, and ni, n
�
i are slack variables that denote

the training error.

Lagrange function and kernel function are introduced to

transform Eq. (4) into quadratic optimization problem.

max
Pl

i¼1

ða�i � aiÞyi � e
Pl

i¼1

ða�i þ aiÞ �
1

2

Xl

i;j¼1

ða�i � aiÞða�j � ajÞkðxi; xjÞ

s.t. 0� ai; a
�
i �C ði ¼ 1; 2; . . .; lÞ

Pl

i¼1

ða�i � aiÞ ¼ 0

ð6Þ

The decision regression function can be written as

f ðx; ai; a�i Þ ¼
Xl

i¼1

ðai � a�i Þkðxi; xÞ þ b ð7Þ

where kðxi; xjÞ ¼ wðxiÞ � wðxjÞ is kernel function. In this

paper, the RBF function is adopted.

kðxi; xjÞ ¼ exp �kxi � xjk2

2r2

 !
ð8Þ

where r is the adjustable parameter of the kernel function.
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Fig. 2 The fluctuations exist in the operation of the ironmaking progress
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However, when the SVR model is used to predict the

silicon content, the fluctuation of the operation of blast

furnace cannot be ignored. The data vary in a large range

which would result in wrong support vectors selecting.

This is an adverse factor for model precision. What’s

worse, if the training data are large, it would cost consid-

erable amount of time to search the optimal parameters by

grid search method. As a result, it is indispensable to

process the input data into different classes to improve the

prediction accuracy and the speed of modeling.

3 Silicon content prediction using support vector
regression and clustering algorithms

This section presents the clustering analysis and a new

silicon content prediction method using SVR and FCM

clustering technique.

Clustering algorithm is used to partition the data into

several clusters, so that the similar data can be divided into

the same class [29]. And then, the data with similar prop-

erties are used for modeling. This method has two advan-

tages. One is that the data set is divided into smaller ones

which can improve the speed when modeling, especially

searching the best parameters for SVR. The other advan-

tage is that the accuracy can be increased because similar

data are produced from similar blast furnace operational

conditions, and they are more reasonable to be clustered in

one set to build a model. Simulations also verify the

increasing of accuracy in Sect. 4. The FCM algorithm is

defined as minimizing the objective function

Jm ¼
Pn

i¼1

Pc

j¼1

umij k xi � cj k2

s.t.
Pc

j¼1

uij ¼ 1; 0� uij � 1

ð9Þ

where uij is the degree of membership of xi to cluster j, m is

a weighting parameter greater than 1, X ¼
fx1; x2; . . .; xn; g � Rd is the d-dimensional data set, cj
represents the jth center of the cluster, n and c are the

numbers of samples and clusters, respectively.

Then the question can be translated into an iterative

optimization of the objective function through the updates

of membership uij and cluster center cj

uij ¼
1

Pc
k¼1

kxi�cjk
kxi�ckk

h i 2
m�1

ð10Þ

cj ¼
Pn

i¼1 u
m
ij xiPn

i¼1 u
m
ij

ð11Þ

The iteration will be stopped when j ukij � uk�1
ij j \e,

where e is a parameter that defines the termination condi-

tion, and k is the iteration step.

While unlike FCM clustering, HCM defines the objec-

tive function as

Jm ¼
Xn

i¼1

Xc

j¼1

k xi � cj k2 ð12Þ

And then the membership and cluster center change

accordingly.

uij ¼
1; If k xi � cj k¼ min

1� r� c
fxi � crg

0; Others

(
ð13Þ

cj ¼
Pn

i¼1 uijxiPn
i¼1 uij

ð14Þ

From above, the main idea of silicon content prediction

can be concluded as follows: (1) Use the HCM clustering

and FCM clustering algorithms to cluster the input data.

When using FCM, the data are clustered based on the

largest membership degree. (2) Set the threshold of the

membership degree after FCM clustering. If the member-

ship degree of an input set is lower than the threshold, the

input data will be eliminated as the distance to each center

is long. These input data cannot be partitioned into the

cluster with the largest membership, as it does not appear

to be much different in membership values. (3) Construct

the silicon content prediction model using SVR algorithm

for each cluster.

This method can reduce the number of training samples

and improve the accuracy and accelerate the speed. The

details for this method are illustrated as follows. (1) Nor-

malize the input variables. As different input variables

have different orders of magnitude, these data cannot be

used directly. So all the input variables should be nor-

malized to the range 0–1 by Eq. (15).

xiðkÞ ¼
xiðkÞ �minðxiðkÞÞ

maxðxiðkÞÞ �minðxiðkÞÞ
ð15Þ

where xiðkÞ is the normalized value of the ith input. (2)

Select more influential input variables and determine the

time delay of every selected input. The methods will be

illustrated in Sect. 4.1. Combined with the guidance of

expert knowledge, the final input variables can be singled

out. (3) Cluster the input data using HCM clustering

algorithm considering the unstable operation of blast fur-

nace and the number of experimental data. Unlike hard

clustering method, FCM processes an advantage that each

sample can belong to various clusters with different
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membership degree. Taking advantage of this superiority,

the input data will be processed for a second time. In this

paper, select the largest membership of each sample to

different clusters, and then the data can be separated into

classes based on the largest membership. What’s more, we

propose to set a threshold when clustering the training set.

If the largest membership of each sample is smaller than

the threshold, the data will be eliminated. (4) Determine

the parameters e, C, and c. The grid search method is

introduced to search the optimal ðC; cÞ, respectively.

Tenfold cross-validation is applied to partition the training

set into ten subsamples, and then the cross-validation

process is repeated ten times with each of the ten sub-

samples used once as the testing data. The optimal ðC; cÞ is
produced, while the MSE of the train set is the lowest

which is defined as

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l

Xl

i¼1
ðbyi � yiÞ2

r
ð16Þ

(5) Construct the silicon content prediction model using

SVR algorithm for each cluster.

4 Experimental results and analysis

The data are collected from No. 2 blast furnace of

Liuzhou Steel in China, whose volume is 2650m3. In

total, 500 group data are available to validate the method,

and 400 data points are for the training set and 100 data

points for test set. MATLAB 2010 is used to write source

code. All experiments are carried out under the MATLAB

2010 environment with 2 GB memory. The CPU is Intel

Pentium 32 G2030 with 3 GHz dominant frequency. In

this paper, clustering method is introduced to classify the

data based on the similarity. Considering the number of

samples, the data will be divided into four clusters. The

simulation results of HCM-SVRs and MFCM-SVRs will

be compared with results of SVR and SVRs, which will

verify the superiority of HCM-SVRs and MFCM-SVRs

models.

4.1 Input variables selecting

In the report forms of blast furnace main parameters, 23

candidate variables are displayed with 1-h time interval.

The last silicon content values are also selected as input

vectors. However, not all the candidate variables have a

significant influence on the fluctuation of silicon content.

What’s worse, too many inputs would add model com-

plexity and reduce prediction accuracy. So input variables

selecting becomes quite indispensable. Gray correlation

method is introduced to determine the influence degree that

the input variables have on silicon content.

The gray correlation degree is a quantitative value cal-

culating the correlation between factors. The higher the

gray correlation degree is, the more relevant the variables

are. The gray correlation method can be summarized as

follows:

Step 1: Get the reference sequence X0 ¼
ðx0ð1Þ; x0ð2Þ; . . .; x0ðnÞÞ and contrast series

Xi ¼ ðxið1Þ; xið2Þ; . . .; xiðnÞÞ; i ¼ 1; 2; . . .;m, where X0 is

the silicon content series and Xi are the candidate input

variables.

Step 2: The gray relational coefficient can be calculated

as

niðkÞ ¼
Dmin þ qDmax

jy0ðkÞ � yiðkÞj þ qDmax

ð17Þ

where the so-called management coefficient niðkÞ is the

relative difference value between the reference and con-

tract sequences. q 2 ½0; 1Þ is the distinguishing coefficient

with function of improving the difference among the gray

relational coefficients. In this paper, q is set as 0.5, and

Dmin and Dmax are defined as follows

Dmin ¼ min
i
ðmin

k
jy0ðkÞ � yiðkÞjÞ ð18Þ

Dmax ¼ max
i
ðmax

k
jy0ðkÞ � yiðkÞjÞ ð19Þ

Step 3: After obtaining the gray relational coefficients,

the mean of the coefficients has been always adopted as the

gray correlation degree.

cðx0; xiÞ ¼
1

n

Xn

k¼1

niðkÞ ð20Þ

where cðx0; xiÞ represents the gray correlation degree of the

ith comparison series Xi to the reference series X0.

Step 4: Table 1 displays the input variables and corre-

sponding gray correlation degrees. Considering the number

of inputs with expert guidance, the variables whose gray

correlation degree is larger than 0.870 are selected as the

final inputs.

For these input variables selected by gray correlation

method, there exists time delay in the influence the inputs

make on silicon content. Considering the accuracy and real

production requirements, the time delay should not be

ignored. Here, correlation analysis is introduced to obtain

the more important inputs with different time delays. The

correlation coefficient is defined as

Ri ¼
Pn

j¼1ðxij � xiÞðyj � yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1ðxij � xiÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1ðyj � yÞ2
q ð21Þ
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where Ri is the ith correlation coefficient of input variables,

xi, y represent the mean values of input and output vari-

ables, respectively. The time series are set as (0, 1, 2, 3 h).

Table 2 shows the correlation coefficients of input vari-

ables with different time delays. After repeated experi-

ments with different thresholds, the inputs with underline

under the corresponding values in Table 2 are the final

inputs, where q�1 represents the time an hour before.

4.2 Simulation results and analysis

Here four experiments are conducted based on these nor-

malized input variables, one is to predict silicon content

only by SVR, and then for further comparison with HCM-

SVRs and MFCM-SVRs, the training data are separated

into 3 classes based on the time sequence. To keep the

consistency of numbers of each class with HCM clustering

in Table 3, the training data from 1 to 86, 86 samples in

total are partitioned into class 1; the training data from 87

to 274, 188 samples in total are partitioned into class 2; the

training data from 275 to 397, 123 samples in total are

partitioned into class 3. The test data are partitioned using

the same method as training data, and then multiple SVRs

are constructed. The third one is using HCM-SVRs, and the

last one is MFCM-SVRs.

Based on the number of available sample, the input data

are classified into four clusters using HCM clustering. The

numbers of training and test data of each cluster are dis-

played in Table 3.

It can be seen from Table 3 that there are only 3 groups

of samples of training set and no test data in cluster 4. After

checking the data in cluster 4, though the silicon content

values are in normal range, the cold wind flow, feed wind

ratio, furnace top pressure, gas permeability and wind

speed and so on are obversely much lower than normal

values. Based on the input data and clustering result, these

samples in cluster 4 can be treated as outliers.

Taking advantage of membership degree in FCM clus-

tering, the input data will be separated into classes based on

the largest membership. The clustering result is the same

Table 1 The gray correlation degrees of candidate variables

Input variable Gray correlation

Cold wind flow 0.8861

Feed wind ratio 0.8860

Hot blast pressure 0.8641

Furnace top pressure 0.8814

Pressure difference 0.8666

Top pressure blast volume ratio 0.8804

Gas permeability 0.8842

Drag coefficient 0.8827

Hot blast temperature 0.8737

Oxygen enrichment flow 0.8199

Oxygen enrichment percentage 0.8195

Pulverized coal injection 0.8702

Blast humidity 0.8864

Theoretical burning temperature 0.8832

Standard wind speed 0.8862

Actual wind speed 0.8772

Blast momentum 0.8689

Bosh gas volume 0.8848

Bosh gas index 0.8853

Top temperature (northeast) 0.8852

Top temperature (southwest) 0.8860

Top temperature (northwest) 0.8896

Top temperature (southeast) 0.8811

Silicon content Si½n�1� 0.9160

Table 2 The correlation coefficients with different time delays

Input variable q�3 q�2 q�1 q0

Cold wind flow 0.1150 0.0813 0.0107 0.0576

Feed wind ratio 0.1162 0.0824 0.0130 0.0552

Furnace top pressure 0.1072 0.0961 0.0569 0.0401

Top pressure blast volume ratio 0.0293 0.0252 0.0240 0.0731

Gas permeability 0.1356 0.1265 0.0626 0.0282

Drag coefficient 0.1151 0.1365 0.1366 0.0382

Hot blast temperature 0.2574 0.3250 0.4049 0.4489

Pulverized coal injection 0.1737 0.1972 0.1961 0.2281

Blast humidity 0.1007 0.1050 0.1134 0.1237

Theoretical burning temperature 0.2599 0.2774 0.2845 0.2276

Standard wind speed 0.1155 0.0810 0.0110 0.0570

Actual wind speed 0.2436 0.2611 0.2485 0.2205

Blast momentum 0.3257 0.3556 0.3452 0.2830

Bosh gas volume 0.1496 0.1196 0.0511 0.0205

Bosh gas index 0.1514 0.1247 0.0528 0.0176

Top temperature (northeast) 0.2874 0.2913 0.3136 0.2623

Top temperature (southwest) 0.2833 0.2881 0.3151 0.2932

Top temperature (northwest) 0.3575 0.3587 0.3745 0.3345

Top temperature (southeast) 0.3385 0.3549 0.3650 0.3349

Silicon content 0.4250 0.4723 0.5252 0.6157

Table 3 The numbers of training and test data of each cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 In total

Training set 86 188 123 3 400

Test set 24 42 34 0 100
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with HCM clustering which is displayed in Table 3. In this

paper, the threshold of FCM clustering is set as 0.4. If the

largest membership of each sample is smaller than 0.4, the

data will be eliminated as outliers. It demonstrates that the

sample cannot be put into the cluster with the largest

membership smaller than 0.4. If the largest membership is

too small, it means that the samples’s memberships to the

whole clusters do not differentiate much. In other words,

the property of membership is not obvious. The numbers of

samples after elimination are exhibited in Table 4.

The parameter e in SVR model is supposed as 0.01 in

the whole experiments, and then the grid search method

is introduced to search the optimal ðC; cÞ in the grid

set f2�10; 2�9:5; . . .; 29:5; 210g 	 f2�10; 2�9:5; . . .; 29:5; 210g;
respectively. Tenfold cross-validation is applied to parti-

tion the training set into ten subsamples, and then the

cross-validation process is repeated ten times with each of

the ten subsamples used once as the testing data. The

optimal ðC; cÞ is produced, while the MSE of the train set

is the lowest. Figure 3 displays the grid searching result

for the optimal ðC; cÞ of SVR model. The simulation

result demonstrates that the optimal ðC; cÞ is (0.5,1) for

one SVR model. Table 5 displays the grid searching

results of each method.

Table 5 demonstrates that after classification based on

time sequence, the searching time for the optimal ðC; cÞ
decreases quite a lot. What’t more, when clustering algo-

rithm is used to cluster the data, the time consumption of

grid searching has been reduced even further, which is

quite significant for industry production. To compare the

effectiveness of HCM-SVRs and MFCM-SVRs exactly,

the optimal ðC; cÞ are set the same which is searched just

based on HCM-SVRs. Indeed, the time consumption of the

two models is more or less the same.

Train SVRs on the processed data as well as the

unprocessed data with the optimal parameters, respec-

tively, and the predictive results are displayed as follows

(Figs. 4, 5, 6, 7).

The MAPEs (mean absolute percentage errors) and

MSEs of the test set based on each method are displayed in

Table 6, where absolute percentage errors (APEs) are dis-

played as follows.

APEi ¼
jbyi � yij

yi
	 100% ð22Þ

Table 6 exhibits the comparison of SVR predictive

errors based on SVR, SVRs, HCM-SVRs and MFCM-

SVRs. It is obvious that the HCM-SVRs model and the

MFCM-SVRs model achieve higher accuracy in test set

than the SVRs model. The improvement is meaningful, and

the classification model according to the fluctuation of blast

furnace is practical. In conclusion, the HCM-SVRs and

MFCM-SVRs models can forecast the trend of silicon

content quite well.

Table 4 The numbers of samples after elimination

Cluster 1 Cluster 2 Cluster 3 In total

Training set 82 186 118 386

Test set 24 42 34 100
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Fig. 3 The grid searching result for the optimal ðC; cÞ of SVR model

Table 5 The grid searching results of each experiment

Model Class ðC; cÞ Time/s

SVR – (0.5000,

1.0000)

666.5036

SVRs Class 1 (0.1250,

0.7071)

28.6450

Class 2 (1.0000,

0.5000)

136.1708

Class 3 (0.7071,

0.0442)

53.4116

In total – 218.2274

HCM-SVRs /MFCM-

SVRs

Cluster 1 (0.6250,

0.2500)

5.0873

Cluster 2 (0.2500,

0.2500)

15.5661

Cluster 3 (0.1250,

0.2500)

7.4034

In total – 28.0568
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Fig. 4 Predictive results of training set and test set based on SVR
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Fig. 5 Predictive results of training set and test set based on SVRs
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Fig. 6 Predictive results of training set and test set based on HCM-SVRs
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4.3 Industrial analysis

In the previous discussion based on Table 6, the cluster 1

gets the lowest accuracy. The silicon values of training set

of cluster 1 are displayed in Fig. 8

Figure 8 demonstrates that the higher silicon content

values are almost classified into the same cluster, which

proves that the data from one cluster have similar furnace

status. The fuzzy partition of the data points in the original

input space is quite meaningful in practical industry. Due

to the limit of data points, the data set is just clustered into

four classes in this experiment. However, the data are

excessively plentiful in industry. As a result, through pro-

cessing the big data, different data sets reflecting different

furnace status would be clustered, which is pretty sugges-

tive for the furnace operators. These clustered data can

reflect different blast furnace operational conditions. The

operators can make useful summaries and suitable deci-

sions based on different conditions to adjust the operational

state.

In this paper, we proposed to cluster the training set and

test set as a whole, and then after clustering, the data are to

train and test the model separately. Compared with clus-

tering the training data, this method possesses an advantage

that all data in the training set similar to test data can be

used to train the prediction model. However, if the training

data are clustered and the centers are determined, and the

test data are partitioned based on the minimum distance to

each center, some training points similar to test data may

not make contributions to improve the prediction accuracy.

To verify this superiority, another simulation is conducted.

In this simulation, the training data are clustered by MFCM

clustering and the test samples are partitioned based on the

minimum distance to each center and then different SVRs

are conducted. The results are displayed in Fig. 9. The

MAPE and MSE are 0.1641 and 0.0925, respectively,

which are larger than the results of HCM-SVRs and

MFCM-SVRs.

The method MFCM-SVRs with continuous clustering is

quite meaningful in the beginning of modeling in practice.

Before conducting SVR models, the data are clustered
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Fig. 7 Predictive results of training set and test set based on MFCM-SVRs

Table 6 The MAPEs and MSEs of each method

Model Class MAPEs MSEs

SVR – 0.1634 0.0977

SVRs Class 1 0.2882 0.1218

Class 2 0.1837 0.1133

Class 3 0.1420 0.0998

Mean 0.2046 0.1120

HCM-SVRs Cluster 1 0.1989 0.1005

Cluster 2 0.1268 0.0761

Cluster 3 0.1357 0.0927

Mean 0.1538 0.0903

MFCM-SVRs Cluster 1 0.1891 0.0970

Cluster 2 0.1261 0.0749

Cluster 3 0.1354 0.0945

Mean 0.1449 0.0893
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Fig. 8 The silicon values of training set of cluster 1
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again including new data to predict. The simulation results

based on industrial data demonstrate the effectiveness

when applying the method in industry.

For real-time silicon content prediction, a discriminant

analysis method is essential to identify which cluster the

new data belong to. The discriminant method can be based

on the minimum distance just as discussed above. And then

the silicon content can be predicted by the corresponding

SVR model with the current input parameters. With

accurate prediction of silicon content, blast furnace oper-

ators can judge the trend of blast furnace temperature. If

there is deviation between the predicted temperature and

the ideal temperature, or the predicted data are out of the

controlled range, the operators can change the inputs which

have influence on silicon content in advance. In this way,

furnace cooling or other problems can be prevented

effectively, and then the quality of smelting will be

improved. In general, the silicon content prediction using

support vector regression combined with fuzzy C-means

clustering is quite encouraging for stable operation of blast

furnace.

5 Conclusion

This paper has developed HCM-SVRs and MFCM-SVRs

to predict the silicon content. These two models cluster the

data using clustering algorithms, and the outliers are

eliminated in the process of clustering. Through clustering,

the data are separated into smaller groups, which makes the

time decreased to one tenth of the total time. By defining a

threshold of membership in FCM clustering, MFCM-SVRs

are proposed for data purification. Through this method,

the outliers are eliminated once again, which offers more

accurate forecasting results. The HCM-SVRs show better

results than SVR with 0.0096 lower of MAPE and 0.0074

of MSE. What’s more, MFCM-SVRs are the best in these

methods with 0.0185 lower of MAPE and 0.0084 lower of

MSE than SVR. These two models, including gray corre-

lation method, are introduced to predict the next silicon

content, and the experimental results show the effective-

ness both in accuracy and in speed. This modeling method

makes it more efficient to use industrial data and closer to

industrial practice, which will provide decision support for

supervising and controlling blast furnace temperature.

Future efforts will be made to analyze blast furnace

ironmaking process and modify modeling approach to

improve accuracy.
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