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Abstract The purpose of this paper was to develop a

likelihood-based assignment method based on interval

type-2 fuzzy sets and apply it to decision-making problems

involving multiple criteria evaluation and the ranking/se-

lection of alternatives. The linear assignment method is a

well-known outranking method in the field of multiple

criteria decision analysis. The theory of interval type-2

fuzzy sets is useful for addressing the uncertainty and

imprecision associated with a subjective environment. In

this paper, the key feature of the proposed method is the

incorporation of the extended concept of likelihoods of

fuzzy preference relations between interval type-2 trape-

zoidal fuzzy numbers into the main structure of the linear

assignment methodology. An effective ranking procedure

using the optimal membership degree determination

method is proposed to determine criterion-wise preference

rankings of the alternatives. The proposed method estab-

lishes the novel concepts of an (adjusted) rank frequency

matrix and an (adjusted) rank contribution matrix to com-

bine the relative performances of the alternatives in terms

of each criterion. Based on a signed distance comparison

approach, this paper constructs a likelihood-based assign-

ment model to obtain an aggregate ranking of the alter-

natives that is in the closest agreement with the criterion-

wise preferences of the alternatives. The feasibility and

applicability of the proposed method are illustrated with

two practical multiple criteria decision-making

applications concerning the selection of landfill sites and

the selection of treatment options. Finally, a comparative

analysis with other relevant methods is conducted to vali-

date the effectiveness and advantages of the current

methods in decision aiding.

Keywords Likelihood � Interval type-2 fuzzy set �
Multiple criteria decision analysis � Rank frequency

matrix � Rank contribution matrix

1 Introduction

The concept of type-2 fuzzy sets (T2 FSs), initially intro-

duced by Zadeh [67], is an extension of a type-1 fuzzy set

(T1 FS) in which the membership function falls into a

fuzzy set in the interval [0, 1] [45, 70]. Type-2 fuzzy logic

has a great ability to handle higher degrees of uncertainty

[50]. However, the computational complexity of T2 FSs is

very high, which makes it very difficult to employ them in

practical applications [16, 29, 70, 73]. Therefore, consid-

erable concern has arisen over interval type-2 fuzzy sets

(IT2 FSs) as a special case of T2 FSs in practical fields [1,

34, 70]. The computations associated with IT2 FSs are

manageable because their membership values take the form

of crisp intervals [17]. Additionally, IT2 FSs can model the

effects of uncertainties [53, 58] and handle imprecision and

imperfect information in real-world applications [13, 14,

55, 72]; thus, they are gaining increasing popularity. At

present, the interval type-2 fuzzy logic theory is in a mature

state and has many areas of application [31].

Decision information is often determined according to

decision-makers’ opinions or assessments in multiple cri-

teria decision-making situations [65]. Uncertainty is com-

mon in many real-life decision-making problems [46, 47]
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because decision-makers are not always certain about their

given decision or preference information, and they often

have some degree of uncertainty [48]. Accordingly, IT2

FSs have been successfully applied to tackle the issue of

multiple criteria decision analysis (MCDA) in recent years

[8, 16–18, 26, 30, 33, 39, 55, 59, 61, 69]. In particular,

considerable studies have been conducted on fuzzy deci-

sion-making methods with interval type-2 trapezoidal

fuzzy numbers (IT2 TrFNs) [3, 13–17, 20, 60, 62, 71, 72].

Furthermore, IT2 TrFNs can efficiently express linguistic

evaluations or assessments by objectively transforming

them into numerical variables [13, 72].

It is common for the evaluations of alternatives and the

relative preference of criterion importance to be guided by

decision-makers’ subjective judgments in real-world situ-

ations. To address linguistic or numerical uncertainties

associated with a subjective environment, the evaluative

ratings of alternatives and the importance weights of cri-

teria used in MCDA can be appropriately expressed as IT2

TrFNs. Most existing MCDA methodologies within the IT2

TrFN environment are characterized as scoring or com-

promising methods; there has thus far been relatively little

research on outranking methods [16]. The present study is

an attempt to supplement existing MCDA models and

methods based on IT2 TrFNs. Because the extended ver-

sions of outranking methods have not been thoroughly

investigated in the context of IT2 TrFNs [16], this paper is

primarily concerned with the development of a new

outranking model using IT2 TrFNs based on the main

structure of the linear assignment methodology.

The linear assignment method, introduced by Bernardo

and Blin [6], is a well-known outranking model for solving

multiple criteria decision-making problems. Based on a set

of criterion-wise rankings and a set of criterion weights, the

linear assignment method combines the criterion-wise

rankings into an overall ranking that reaches a best com-

promise among all criterion-wise rankings in a coherent

and non-heuristic framework [11]. The linear assignment

methodology has been enriched by several valuable

developments, such as a fuzzy linear assignment approach

[49]; a combined model using the analytic hierarchy pro-

cess (AHP), the technique for order preference by simi-

larity to an ideal solution (TOPSIS), and the linear

assignment method [2]; a linear assignment method for

ranking materials of engineering components [38]; a fuzzy

linear assignment method for an initial order [4]; an

interactive fuzzy linear assignment method [5]; a fuzzy

group linear assignment method for ranking electronic

business process management best practices based on the

perspectives of a balanced scorecard [68]; a linear assign-

ment model for group decision making with uncertain

preference information [66]; a nonlinear assignment-based

model with interval-valued intuitionistic fuzzy sets under

incomplete and/or inconsistent preference information

[11]; a wide range of sensitivity analyses for the linear

assignment method [56]; a modified assignment method

considering differences among criteria values or various

stochastic elements [7]; and an interval type-2 fuzzy linear

assignment method based on signed distances [13].

An increasing number of theoretical developments and

applications have been conducted to improve the linear

assignment methodology in the decision-making field.

However, relatively few studies have investigated the lin-

ear assignment methodology within the interval type-2

fuzzy environment. At present, only Chen [13] used

interval type-2 fuzzy numbers to capture imprecise or

uncertain decision information in the fields that require the

MCDA and developed the interval type-2 fuzzy linear

assignment model based on the comparisons using signed

distances. Moreover, Chen illustrated and discussed the

proposed method by applying it to a case in which a landfill

site is selected. Chen has demonstrated the usefulness and

effectiveness of extending the linear assignment method to

the interval type-2 fuzzy context. On the whole, within the

literature on the linear assignment methodology, compar-

atively little research has focused on the development of

the assignment models based on IT2 TrFNs in the interval

type-2 fuzzy context. Therefore, this paper attempts to

promote a novel and useful assignment method to handle

MCDA problems based on IT2 TrFNs for the sake of

capturing more imprecise or uncertain decision information

for practical applications.

The purpose of this paper is to develop a likelihood-

based assignment method for addressing MCDA problems

within the decision environment of IT2 TrFNs. The pro-

posed method features prominently in incorporating the

extended concept of likelihoods of fuzzy preference

relations between IT2 TrFNs into the core structure of the

linear assignment methods. As a whole, the proposed

method makes four main contributions to the linear

assignment methodology. First, the extended concepts of

lower likelihoods, upper likelihoods, and mean likeli-

hoods regarding fuzzy preference relations between IT2

TrFNs are incorporated into the linear assignment struc-

ture. It follows that processing sophisticated IT2 TrFN

data becomes simple and easy via the comparison

approach using the likelihoods between IT2 TrFN evalu-

ative ratings. Second, based on the optimal membership

degree determination method, an effective ranking pro-

cedure is developed to determine criterion-wise prefer-

ence rankings of the alternatives. Third, an innovative

method using the concepts of an (adjusted) rank fre-

quency matrix and an (adjusted) rank contribution matrix

is proposed to establish a new structure of the likelihood-

based assignment method. Fourth, a signed distances

approach is utilized to construct a simple linear
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assignment model to acquire an overall preference rank-

ing of the alternatives. The proposed method is new and

unique compared with the linear assignment methodology

that has previously been developed. Furthermore, to fully

utilize information contained in the evaluative ratings and

fuzzy preference relations between IT2 TrFNs, this paper

determines the (adjusted) rank contribution matrix based

on the IT2 TrFN importance weights and the optimal

degrees of membership for making the information con-

tent complementary.

As mentioned previously, the interval type-2 fuzzy lin-

ear assignment model developed by Chen [13] is currently

the most relevant linear assignment methodology for

addressing MCDA problems within the IT2 TrFN envi-

ronment. Chen [13] examined the feasibility and applica-

bility of her proposed methods with a practical MCDA

problem of landfill site selection. To maintain method-

ological relevance with Chen [13], this paper chooses the

same problem of landfill site selection to not only illustrate

the proposed method but also to allow for comparative

discussion. Alternately, the linear assignment methodology

belongs to outranking models in the decision-making field.

Thus, this paper also conducts comparative analyses with

other well-known outranking methods, including the

method of elimination and choice expressing reality

(ELECTRE) and the qualitative flexible multiple criteria

method (QUALIFLEX), to examine the applicability and

advantages of the proposed method.

Specifically, to demonstrate the feasibility and effective-

ness of the proposed likelihood-based assignmentmethod, we

present an illustrative application to the selection problem of

landfill sites and compare with the interval type-2 fuzzy linear

assignment method based on signed distances [13]. Further-

more, the proposed method is applied to a medical decision-

making problem that addresses the selection of treatment

options. Comparative analyses are also provided to examine

the validity and advantages of the proposedmethod relative to

the existing outranking methods within the interval type-2

fuzzy environment, including the extended QUALIFLEX

method using a signed distance-based approach [20] and the

extendedELECTREmethod [20]. Finally, this paper conducts

a comparative discussionwith thewidely used simple additive

weighting (SAW) method to further examine the distinct

advantage of the proposed method.

This paper is organized as follows: Sect. 2 reviews the

concept of IT2 FSs and IT2 TrFNs; Sect. 3 describes an

MCDA problem within an environment of IT2 TrFNs and

presents the concept of likelihoods of fuzzy preference

relations between IT2 TrFNs; Sect. 4 develops a likeli-

hood-based assignment method for MCDA involving the

multiple criteria evaluation/selection of alternatives;

Sect. 5 demonstrates the feasibility and the applicability of

the proposed methodology using two practical MCDA

applications concerning the selection of landfill sites and

the selection of treatment options and conducts compar-

isons with other relevant methods, and Sect. 6 presents the

conclusions.

2 Preliminaries

This section reviews selected relevant definitions of IT2

FSs [51, 52, 54, 57] and IT2 TrFNs [9, 13–17, 62] that are

used throughout the paper.

Definition 1 [51, 54, 57] Let X be a crisp set. A mapping

A: X ? [0, 1][0, 1] is called a T2 FS defined on the universe

of discourse X, and it is denoted by:

A ¼ x;AðxÞð Þ x 2 X;AðxÞ ¼ u; YxðuÞð Þ u 2 Jx � ½0; 1�;jfjf
YxðuÞ 2 ½0; 1�gg; ð1Þ

where x indicates a primary variable, and AðxÞ denotes the
fuzzy membership value of x in A. Note that AðxÞ is also

called a secondary membership function or a secondary set.

Additionally, YxðuÞ denotes the secondary membership

(grade), where u indicates the primary membership (grade)

of x. Jx � ½0; 1� denotes the domain of YxðuÞ and represents

the primary membership values of x 2 X.

Definition 2 [51, 54] Let A be a T2 FS on X. When

YxðuÞ ¼ 1 for all u 2 Jx, A is known as an IT2 FS on X and

can be represented by:

A ¼ x;AðxÞð Þ x 2 X;AðxÞ ¼ u; 1ð Þ A�ðxÞ� u�AþðxÞ;jfjf
A�ðxÞ;AþðxÞ½ � � ½0; 1�gg; ð2Þ

where AðxÞ is referred to as an interval membership value.

Definition 3 [51, 52, 54] Let A be an IT2 FS on X. The

IT2 FS A can be fully characterized by its footprint of

uncertainty (FOU), which is defined as the union of all

primary memberships as follows:

FOUðAÞ ¼ [
x2X

A�ðxÞ;AþðxÞ½ �: ð3Þ

Moreover, FOU(A) is a bounded region that represents the

uncertainty associated with the membership grades of A.

Definition 4 [36, 51, 73, 74] Let a lower membership

function (LMF) and an upper membership function (UMF)

denote two type-1 membership functions that are bounds

for the FOU(A) of an IT2 FS A on X. Let two T1 FSs, A�:
X ? [0, 1] and A?: X ? [0, 1], be the lower and upper

fuzzy sets, respectively, with respect to A. The LMF A�ðxÞ
and the UMF AþðxÞ are associated with the lower bound

FOU�ðAÞ and the upper bound FOUþðAÞ, respectively, of
FOU(A), and they are defined as follows:

A� ¼ FOU�ðAÞ ¼ x;A�ðxÞð Þ x 2 Xjf g; ð4Þ
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Aþ ¼ FOUþðAÞ ¼ x;AþðxÞð Þ x 2 Xjf g; ð5Þ

where 0�A�ðxÞ�AþðxÞ� 1 for all x 2 X.

Definition 5 [9, 13–17, 62] Let A�ð¼ ða�1 ; a�2 ; a�3 ; a�4 ;
h�A ÞÞ and Aþð¼ ðaþ1 ; aþ2 ; aþ3 ; aþ4 ; hþA ÞÞ be the lower and

upper trapezoidal fuzzy numbers, respectively, with respect

to an IT2 FS A on X, where a�1 � a�2 � a�3 � a�4 ,

aþ1 � aþ2 � aþ3 � aþ4 , 0� h�A � hþA � 1, aþ1 � a�1 , a�4 � aþ4 ,

and A� � Aþ (if and only if 8x 2 X, A�ðxÞ�AþðxÞ). The
LMF A�ðxÞ and the UMF AþðxÞ are lower and upper

bounds, respectively, for the FOU(A) of A; they are defined

as follows:

A�ðxÞ ¼

h�A x� a�1
� �

a�2 � a�1
if a�1 � x� a�2 ;

h�A if a�2 � x� a�3 ;

h�A a�4 � x
� �

a�4 � a�3
if a�3 � x� a�4 ;

0 otherwise;

8
>>>>>>>>><

>>>>>>>>>:

ð6Þ

AþðxÞ ¼

hþA x� aþ1
� �

aþ2 � aþ1
if aþ1 � x� aþ2 ;

hþA if aþ2 � x� aþ3 ;

hþA aþ4 � x
� �

aþ4 � aþ3
if aþ3 � x� aþ4 ;

0 otherwise:

8
>>>>>>>>><

>>>>>>>>>:

ð7Þ

Then, A is an IT2 TrFN on X (see Fig. 1) and can be

represented by:

A ¼ ½A�;Aþ�
¼ ða�1 ; a�2 ; a�3 ; a�4 ; h�A Þ; ðaþ1 ; aþ2 ; aþ3 ; aþ4 ; hþA Þ
� �

: ð8Þ

3 Decision context based on IT2 TrFNs

This section first formulates an MCDA problem within a

decision environment based on IT2 TrFNs and then pre-

sents the concept of likelihoods of fuzzy preference rela-

tions between IT2 TrFNs.

3.1 Decision environment of IT2 TrFNs

This subsection formulates an MCDA problem using IT2

TrFNs. Define Z ¼ z1; z2; . . .; zmf g as a set of decision

alternatives, where m is the number of alternatives. Define

C ¼ c1; c2; . . .; cnf g as a criterion set that contains the

criteria by which the alternative performances are mea-

sured, where n is the number of criteria. Let xj denote the

value corresponding to the criterion cj, where xj 2 X (i.e.,

the universe of discourse) for j ¼ 1; 2; . . .; n. The set C can

be generally divided into two sets, CI and CII, where CI

denotes a collection of benefit criteria (i.e., larger values of

xj indicate a greater preference) and CII denotes a collection

of cost criteria (i.e., smaller values of xj indicate a greater

preference). Note that CI \ CII ¼ ; and CI [ CII ¼ C.

The IT2 TrFN data required in an MCDA problem can

be appropriately established by employing the linguistic

scales with the corresponding IT2 TrFNs. Decision-makers

often express their judgments using linguistic variables in

many practical situations. The decision-maker’s linguistic

responses can be appropriately represented by IT2 TrFNs

using a specific linguistic rating system, such as three-point

linguistic scales [22, 35, 37, 69], four-point linguistic

scales [22], five-point linguistic scales [22, 37, 55], seven-

point linguistic scales [23, 27, 33, 37, 61, 72], and nine-

point linguistic scales [9, 10, 12, 14, 15, 20, 21, 63]. Most

of the IT2 TrFNs corresponding to linguistic terms are

nonnegative [9, 10, 12, 14, 15, 20, 21, 23, 55, 61, 63, 72].

Therefore, this paper also constructs an MCDA problem

using nonnegative IT2 TrFNs.

Consider an MCDA problem wherein the ratings of

alternative evaluations and the importance weights of cri-

teria are expressed as nonnegative IT2 TrFNs. Let a non-

negative IT2 TrFN Aij denote the evaluative rating of the

alternative zi 2 Z in terms of the criterion cj 2 C. Let the

two nonnegative T1 FSs A�
ij : X ? [0, 1] and Aþ

ij : X ? [0,

1] denote the lower and upper trapezoidal fuzzy numbers,

respectively, with respect to Aij, where A
�
ij ¼ ða�1ij; a�2ij; a�3ij;

a�4ij; h
�
Aij
Þ and Aþ

ij ¼ ðaþ1ij; aþ2ij; aþ3ij; aþ4ij; hþAij
Þ. The IT2 TrFN

evaluative rating Aij is expressed as follows:

Aij ¼ ½A�
ij ;A

þ
ij � ¼ ða�1ij; a�2ij; a�3ij; a�4ij; h�Aij

Þ; ðaþ1ij; aþ2ij; aþ3ij; aþ4ij; hþAij
Þ

h i
;

ð9Þ

where 0� a�1ij � a�2ij � a�3ij � a�4ij, 0� aþ1ij � aþ2ij � aþ3ij � aþ4ij,

aþ1ij � a�1ij, a
�
4ij � aþ4ij, 0� h�Aij

� hþAij
� 1, and A�

ij � Aþ
ij .

In a similar manner, let a nonnegative IT2 TrFN Wj

denote the importance weight of the criterion cj 2 C. Let

W�
j ¼ðw�

1j;w
�
2j;w

�
3j;w

�
4j; h

�
Wj
Þ and Wþ

j ¼ ðwþ
1j;w

þ
2j;w

þ
3j;

wþ
4j; h

þ
Wj
Þ be the lower and upper trapezoidal fuzzy num-

bers, respectively, with respect toWj. Then,Wj is expressed

as follows:

UMF ( )A x+

1a
−

2a
−

3a
−

4a
−

1a
+

2a
+

3a
+

4a
+

Ah
−

Ah
+

X

1

( )A x

LMF ( )A x−

( )FOU A

Fig. 1 Geometrical interpretation of an IT2 TrFN A
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Wj ¼ ½W�
j ;W

þ
j �

¼ ðw�
1j;w

�
2j;w

�
3j;w

�
4j; h

�
Wj
Þ; ðwþ

1j;w
þ
2j;w

þ
3j;w

þ
4j; h

þ
Wj
Þ

h i
;

ð10Þ

where 0�w�
1j �w�

2j �w�
3j �w�

4j, 0�wþ
1j �wþ

2j �wþ
3j �wþ

4j,

wþ
1j �w�

1j, w
�
4j �wþ

4j, and 0� h�Wj
� hþWj

� 1, and W�
j � Wþ

j .

3.2 Likelihood of fuzzy preference relations

between IT2 TrFNs

By extending the fuzzy preference relations [22] and the

likelihoods between trapezoidal fuzzy numbers [23, 24,

40], Chen [19] and Wang et al. [62] proposed the extended

concept of likelihoods of fuzzy preference relations

between IT2 TrFNs. This paper adopts the likelihoods

presented by Chen [19] and Wang et al. [62] to develop an

approach to generating criterion-wise rankings of the

alternatives.

Lee and Chen [40] developed a fuzzy decision-making

method based on the likelihood-based comparison relations

on intervals introduced by Xu and Da [64]. Lee and Chen

[40] and Chen and Lee [24] presented the likelihood-based

comparison relations using T1 FSs and IT2 FSs. Chen and

Lee [24] further proposed the concepts of likelihood-based

comparison relations of fuzzy sets based on the a-cut
representation. Chen and Lee [22] provided a method for

handling fuzzy multiple criteria hierarchical group deci-

sion-making problems based on arithmetic operations and

fuzzy preference relations of IT2 FSs. Chen and Lee [23]

presented a ranking method of trapezoidal IT2 FSs using

the concept of likelihoods. They employed the fuzzy

preference relations based on IT2 FSs to establish the upper

and lower fuzzy preference matrices. Chen [19] and Wang

et al. [62] extended the likelihoods proposed by Chen and

Lee [22, 23] to present the modified concepts of lower and

upper likelihoods for determining the likelihood of a fuzzy

preference relation in the context of IT2 TrFNs.

In the decision context of IT2 TrFNs, let Aij

(¼ ½A�
ij ;A

þ
ij � ¼ ½ða�1ij; a�2ij; a

�
3ij; a

�
4ij;h

�
Aij
Þ; ðaþ1ij; aþ2ij; aþ3ij; aþ4ij;

hþAij
Þ�) and Ai0j (¼ ½A�

i0j;A
þ
i0j� ¼ ½ða�1i0j; a�2i0j; a�3i0j; a�4i0j; h�Ai0 j

Þ;
ðaþ1i0j;aþ2i0j; aþ3i0j; aþ4i0j; hþAi0 j

Þ�) denote the evaluative ratings of

the alternatives zi and zi0 , respectively, with respect to the

criterion cj 2 C. As mentioned before, Aij and Ai0j are

expressed as two nonnegative IT2 TrFNs defined on X. Let

a fuzzy preference relation Aij �Ai0j denote the evaluative

rating of the alternative zi not being smaller than that of the

alternative zi0 in regard to a specific criterion cj. Let

LðAij �Ai0jÞ denote the likelihood of the fuzzy preference

relation Aij �Ai0j for each pair of alternatives ðzi; zi0 Þ. Lee
and Chen [40] and Chen and Lee [22–24] determined the

likelihood of a fuzzy preference relation between two

lower fuzzy sets. Moreover, they calculated the likelihood

for two upper fuzzy sets. The corresponding fuzzy prefer-

ence matrices were separately constructed for lower and

upper fuzzy sets. More specifically, they determined the

lower and upper likelihoods via the relations A�
ij �A�

i0j and

Aþ
ij �Aþ

i0j, respectively. Next, they obtained the likelihood

LðAij �Ai0jÞ using the mean of the computed lower and

upper likelihoods. However, the obtained likelihoods

between two lower fuzzy sets (A�
ij and A�

i0j) and between

two upper fuzzy sets (Aþ
ij and Aþ

i0j) are not true values of the

lower and upper likelihoods, respectively, for a fuzzy

preference relation between IT2 TrFNs.

In general, the minimal possibility of the event Aij �Ai0j

occurs in the comparison of the lower fuzzy set A�
ij and the

upper fuzzy set Aþ
i0j, and the maximal possibility of the

event Aij �Ai0j occurs in the comparison of the upper fuzzy

set Aþ
ij and the lower fuzzy set A�

i0j. Accordingly, the lower

and upper likelihoods of LðAij �Ai0jÞ should be determined

via the relations A�
ij �Aþ

i0j and Aþ
ij �A�

i0j, respectively.

Therefore, based on the concept of likelihoods proposed by

Lee and Chen [40] and Chen and Lee [22–24], Chen [19]

and Wang et al. [62] developed a modified concept of

likelihoods of fuzzy preference relations between IT2

TrFNs. Assume that at least one of h�Aij
6¼ hþAi0 j

, a�4ij 6¼ a�1ij,

aþ4i0j 6¼ aþ1i0j, and a�gij 6¼ aþgi0j holds and that at least one of

hþAij
6¼ h�Ai0 j

, aþ4ij 6¼ aþ1ij, a�4i0j 6¼ a�1i0j, and aþgij 6¼ a�gi0j holds,

where g 2 f 1; 2; 3; 4g . This paper employs their modified

likelihoods to present an effective ranking procedure for

comparing IT2 TrFN evaluative ratings.

Definition 6 [19, 62] Let Aij and Ai0j be two IT2 TrFN

evaluative ratings of the alternatives zi and zi0 , respectively,

with respect to the criterion cj 2 C. The lower likelihood

L�ðAij �Ai0jÞ and the upper likelihood LþðAij �Ai0jÞ of a

fuzzy preference relation Aij �Ai0j are defined as follows:

L�ðAij �Ai0jÞ ¼ max 1�max

P4
g¼1 max aþgi0j � a�gij; 0

� �
þ aþ4i0j � a�1ij

� �
þ 2max hþAi0 j

� h�Aij
; 0

� �

P4
g¼1 aþgi0j � a�gij

���
���þ a�4ij � a�1ij

� �
þ aþ4i0j � aþ1i0j

� �
þ 2 hþAi0 j

� h�Aij

���
���
; 0

2

64

3

75; 0

8
><

>:

9
>=

>;
; ð11Þ
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The likelihood LðAij �Ai0jÞ of Aij �Ai0j is defined as

follows:

LðAij �Ai0jÞ ¼
L�ðAij �Ai0jÞ þ LþðAij �Ai0jÞ

2
: ð13Þ

Theorem 1 [19, 62] Let Aij and Ai0j be two IT2 TrFN eval-

uative ratings. The lower likelihood L�ðAij �Ai0jÞ and the

upper likelihoodLþðAij �Ai0jÞ satisfy the followingproperties:

(T1.1) 0� L�ðAij �Ai0jÞ� 1;

(T1.2) 0� LþðAij �Ai0jÞ� 1;

(T1.3) L�ðAij �Ai0jÞ þ LþðAi0j �AijÞ ¼ 1;

(T1.4) L�ðAij �Ai0jÞ ¼ 0 and LþðAi0j �AijÞ ¼ 1 if

aþ4ij � aþ1i0j and h�Aij
� hþAi0 j

;

(T1.5) LþðAij �Ai0jÞ ¼ 0 and L�ðAi0j �AijÞ ¼ 1 if

a�1i0j � aþ4ij � 2max hþAij
� h�Ai0 j

; 0
� �

:

See Chen [19] for detailed proofs.

Theorem 2 [19] Let Aij and Ai0j be two IT2 TrFN eval-

uative ratings. The likelihood LðAij �Ai0jÞ satisfies the

following properties:

(T2.1) 0� LðAij �Ai0jÞ� 1;

(T2.2) LðAij �Ai0jÞ þ LðAi0j �AijÞ ¼ 1;

(T2.3) LðAij �Ai0jÞ ¼ LðAi0j �AijÞ ¼ 1
2
if

LðAij �Ai0jÞ ¼ LðAi0j �AijÞ;
(T2.4) LðAij �AijÞ ¼ 1

2
;

(T2.5) Pm

i¼1

Pm

i0¼1

LðAij �Ai0jÞ ¼ m2

2
:

Proof See Chen [19] for detailed proofs of (T2.1)–(T2.4).

(T2.5) can be easily verified using (T2.2) and (T2.4). h

The likelihoods of pair-wise IT2 TrFN evaluative rat-

ings with respect to each criterion cj 2 C can be concisely

expressed in the following matrix format:

Lj ¼

LðA1j �A1jÞ LðA1j �A2jÞ � � � LðA1j �AmjÞ
LðA2j �A1jÞ LðA2j �A2jÞ � � � LðA2j �AmjÞ

..

. ..
. . .

. ..
.

LðAmj �A1jÞ LðAmj �A2jÞ � � � LðAmj �AmjÞ

2

6664

3

7775

ð14Þ

for j ¼ 1; 2; � � � ; n.

Theorem 3 Assume that Lj is the likelihood matrix whose

entries LðAij �Ai0jÞ are given by (13). Then, Lj is a fuzzy

complementary judgment matrix for j ¼ 1; 2; � � � ; n.

Proof According to (T2.1) and (T2.2), with respect to the

criterion cj 2 C, it is known that 0� LðAij �Ai0jÞ� 1 and

LðAij �Ai0jÞ þ LðAi0j �AijÞ ¼ 1 for i; i0 ¼ 1; 2; . . .;m. They

are the conditions that a fuzzy complementary judgment

matrix should satisfy [28, 32, 43]. Therefore, Lj is proven to

be a fuzzy complementary judgment matrix for

j ¼ 1; 2; . . .; n. h

Example 1 Consider three alternatives z1, z2, and z3 with

respect to a criterion x1. Suppose that the IT2 TrFN evaluative

ratings A11 = [(0.0075, 0.0075, 0.015, 0.0525; 0.8) (0.0, 0.0,

0.02, 0.07; 1.0)], A21 = [(0.2325, 0.255, 0.325, 0.3575; 0.8),

(0.17, 0.22, 0.36, 0.42; 1.0)], and A31 = [(0.4025, 0.4525,

0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]. The like-

lihoods of pair-wise evaluative ratings can be computed

according to (11)–(13) ofDefinition6. For example,weobtain

L�ðA11�A21Þ ¼L�ðA11�A31Þ ¼ 0 and L�ðA21�A31Þ ¼
0.0228 using (11), LþðA11�A21Þ¼ 0.1418, LþðA11�A31Þ¼
0.0269, and LþðA21�A31Þ¼ 0.2601 using (12), and

LðA11�A21Þ¼ 0.0709, LðA11�A31Þ¼ 0.0135, and

LðA21�A31Þ¼ 0.1415 using (13). Next, according to (14), we

construct the likelihood matrix as follows:

L1 ¼
0:5 0:0709 0:0135

0:9291 0:5 0:1415
0:9865 0:8585 0:5

2

4

3

5:

Obviously, L1 is a fuzzy complementary judgment matrix.

4 The likelihood-based assignment method

This section employs the extended concept of likelihoods

of fuzzy preference relations between IT2 TrFNs to

determine criterion-wise rankings of the alternatives. To

address MCDA problems containing imprecise and

uncertain type-2 fuzzy properties, this section develops a

novel likelihood-based assignment method to determine an

optimal preference ranking of the alternatives in accor-

dance with the obtained criterion-wise rankings and the

importance weights of criteria within the decision envi-

ronment of IT2 TrFNs.

LþðAij �Ai0jÞ

¼ max 1�max

P4
g¼1 max a�gi0j � aþgij; 0

� �
þ a�4i0j � aþ1ij

� �
þ 2max h�Ai0 j

� hþAij
; 0

� �

P4
g¼1 a�gi0j � aþgij

���
���þ aþ4ij � aþ1ij

� �
þ a�4i0j � a�1i0j

� �
þ 2 h�Ai0 j

� hþAij

���
���
; 0

2

64

3

75; 0

8
><

>:

9
>=

>;
:

ð12Þ
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4.1 Proposed method

Based on the likelihoods of fuzzy preference relations

between IT2 TrFNs, this subsection presents a ranking pro-

cedure using the optimal membership degree determination

method to determine a criterion-wise preference of the alter-

natives. Then, a likelihood-based assignment model is con-

structed using the concept of an adjusted rank contribution

matrix to determine the priority order of various alternatives.

Li et al. [44] and Li [41] used the likelihood of an

alternative not being inferior to another alternative to

construct a likelihood matrix for determining the optimal

degrees of membership. Li [42, 43] employed an inclusion

comparison probability to make comparisons between

alternatives and proposed the optimal membership degree

determination method. In a manner similar to that of Li

et al. [44] and Li [41–43], we employ the optimal mem-

bership degree determination method to compare any two

IT2 TrFN evaluative ratings. The m alternatives can then

be ranked in terms of each criterion cj 2 C according to the

comparison results of the optimal degrees of membership.

The concepts of relative difference indices and the rela-

tive difference matrix are proposed to determine the optimal

degree of membership. Consider any two IT2 TrFN evalu-

ative ratings Aij and Ai0j for i; i
0 ¼ 1; 2; . . .;m and i 6¼ i0. To

construct the likelihoodmatrix Lj, we first compute the lower

likelihood L�ðAij �Ai0jÞ, the upper likelihood LþðAij �Ai0jÞ,
and the likelihood LðAij �Ai0jÞ of a fuzzy preference relation
Aij �Ai0j for each criterion cj 2 C. Additionally, we know

that LðAij �AijÞ ¼ 0:5 for i ¼ 1; 2; . . .;m according to

(T2.4). Let c jii0 denote the relative difference index repre-

senting a linear transformation of the difference in respective

sums of the likelihoods LðAij �Ai00jÞ (i00 ¼ 1; 2; . . .;m) in the

i-th row of Lj and LðAi0j �Ai00jÞ (i00 ¼ 1; 2; . . .;m) in the i0-th

row of Lj. It is defined as follows:

c jii0 ¼
Pm

i00¼1 LðAij �Ai00jÞ �
Pm

i00¼1 LðAi0j �Ai00jÞ
2ðm� 1Þ þ 1

2
: ð15Þ

Example 2 Let us look at Example 1 again. There are

three alternatives in Example 1; thus, m = 3. According to

the definition in (15), the relative difference index c112, for
example, is computed as follows:

The relative difference index c jii0 of the pair-wise IT2

TrFN evaluative ratings Aij and Ai0j with respect to each

criterion cj 2 C can be concisely expressed in the follow-

ing matrix format:

� j ¼

c j11 c j12 � � � c j1m
c j21 c j22 � � � c j2m
..
. ..

. . .
. ..

.

c jm1 c jm2 � � � c jmm

2

6664

3

7775
ð16Þ

for j ¼ 1; 2; � � � ; n.

Theorem 4 Assume that � j is the relative difference

matrix whose entries c jii0 are given by (15). Then, � j is a

fuzzy complementary and consistent judgment matrix for

j ¼ 1; 2; . . .; n.

Proof According to (T2.1), (T2.2), and (T2.4), it is easily

observed that

Xm

i00¼1

LðAij �Ai00jÞ ¼
Xm

i00¼1;i00 6¼i

LðAij �Ai00jÞ þ
1

2
�ðm� 1Þ þ 1

2
and

Xm

i00¼1

LðAi0j �Ai00jÞ ¼
Xm

i00¼1;i00 6¼i0

LðAi0j �Ai00jÞ þ
1

2
�ðm� 1Þ þ 1

2

for i; i0 ¼ 1; 2; . . .;m. Next, it follows that

1

2
�
Xm

i00¼1

LðAij �Ai00jÞ� ðm� 1Þ þ 1

2
; ð17Þ

1

2
�
Xm

i00¼1

LðAi0j �Ai00jÞ� ðm� 1Þ þ 1

2
: ð18Þ

Combining (17) and (18), we obtain

�ðm� 1Þ�
Xm

i00¼1

LðAij �Ai00jÞ �
Xm

i00¼1

LðAi0j �Ai00jÞ�m� 1

for i; i0 ¼ 1; 2; � � � ;m. It implies that �1�Pm

i00¼1
LðAij �AijÞ�

Pm

i00¼1
LðAi0 j �Ai00 jÞ

m�1
� 1 because m� 1;

furthermore,

0�
Pm

i00¼1 LðAij �Ai00jÞ �
Pm

i00¼1 LðAi0j �Ai00jÞ
2ðm� 1Þ þ 1

2
� 1:

c112 ¼
P3

i00¼1 LðA11 �Ai001Þ �
P3

i00¼1 LðA21 �Ai001Þ
2ð3� 1Þ þ 1

2

¼ LðA11 �A11Þ þ LðA11 �A21Þ þ LðA11 �A31Þ � LðA21 �A11Þ þ LðA21 �A21Þ þ LðA21 �A31Þð Þ
4

þ 1

2

¼ 0:5þ 0:0709þ 0:0135� 0:9291þ 0:5þ 0:1415ð Þ
4

þ 1

2
¼ 0:2535:
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Therefore, it is proven that � j is fuzzy because

0� c jii0 � 1 ð19Þ

for i; i0 ¼ 1; 2; . . .;m. Next, it is easy to verify that � j is

complementary because

c jii0 þ c ji0i

¼
Pm

i00¼1 LðAij �Ai00jÞ �
Pm

i00¼1 LðAi0j �Ai00jÞ
2ðm� 1Þ þ 1

2

þ
Pm

i00¼1 LðAi0j �Ai00jÞ �
Pm

i00¼1 LðAij �Ai00jÞ
2ðm� 1Þ þ 1

2
¼ 1

ð20Þ

for i; i0 ¼ 1; 2; . . .;m. Furthermore, one can easily obtain

c jii00 �
1

2

	 

þ c ji00i0 �

1

2

	 


¼
Pm

i�¼1 LðAij �Ai000jÞ �
Pm

i�¼1 LðAi00j �Ai�jÞ
2ðm� 1Þ

þ
Pm

i�¼1 LðAi00j �Ai00jÞ �
Pm

i000¼1 LðAi0j �Ai�jÞ
2ðm� 1Þ

¼
Pm

i�¼1 LðAij �Ai�jÞ �
Pm

i000¼1 LðAi0j �Ai�jÞ
2ðm� 1Þ

¼ c jii0 �
1

2
ð21Þ

for i; i0 ¼ 1; 2; . . .;m. Thus, � j is additive transitive [28, 32,

43] because ðc jii00 � 0:5Þ þ ðc ji00i0 � 0:5Þ ¼ c jii0 � 0:5. Accord-

ing to (19)–(21),� j is proven tobea fuzzy complementary and

consistent judgment matrix for j ¼ 1; 2; . . .; n. h

Example 3 Continue Example 2. According to the defi-

nition in (16), the relative difference matrix � 1 is con-

structed as follows:

� 1 ¼
0:5 0:2535 0:0598

0:7465 0:5 0:3064
0:9402 0:6936 0:5

2

4

3

5:

Obviously, � 1 is a fuzzy complementary and consistent

judgment matrix.

Based on the relative difference index c jii0 in the relative

difference matrix � j, we can determine the optimal degree

of membership for each IT2 TrFN evaluative rating. First,

the sum of all relative difference indices of each row in the

matrix � j is computed as follows:

c ji ¼
Xm

i0¼1

c jii0 ð22Þ

for i ¼ 1; 2; . . .;m:

Let CðAijÞ denote the optimal degree of membership for

the IT2 TrFN evaluative rating Aij. CðAijÞ is defined by the

normalized value of c ji as follows:

CðAijÞ ¼
c jiPm

i000¼1 c
j
i000

ð23Þ

for i ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .; n:

Theorem 5 Let Aij be an IT2 TrFN evaluative rating of

the alternative zi with respect to the criterion cj 2 C. The

optimal degree of membership CðAijÞ of Aij is determined

by:

CðAijÞ ¼
1

mðm� 1Þ
Xm

i0¼1

LðAij �Ai0jÞ þ
m

2
� 1

 !

: ð24Þ

Proof As defined in (23), it is obvious that

CðAijÞ ¼
Pm

i00¼1 c
j
ii00Pm

i�¼1

Pm
i00¼1 c

j
i�i00

for i ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .; n using (22) and (15).

According to (T2.5), it is known that
Pm

i¼1

Pm
i0¼1

LðAij �Ai0jÞ ¼ m2
�
2. It follows that

CðAijÞ ¼
Pm

i00¼1 c
j
ii00Pm

1� i00\i��m c ji�i00 þ c ji00i�
� �

þ m
2

¼

Pm
i00¼1

Pm

i0¼1
LðAij�Ai0 jÞ�

Pm

i0¼1
LðAi00 j�Ai0 jÞ

2ðm�1Þ þ 1
2

� 


mðm�1Þ
2

þ m
2

¼m
Pm

i0¼1 LðAij�Ai0jÞ�
Pm

i00¼1

Pm
i0¼1 LðAi00j�Ai0jÞþmðm� 1Þ

m2ðm� 1Þ

¼
Pm

i0¼1 LðAij�Ai0jÞþ m
2
� 1

mðm� 1Þ :

Therefore, Theorem 5 is proven. h

Example 4 Continue Example 3. According to the defi-

nition in (24), the optimal degree of membership CðA21Þ of
A21, for example, is computed as follows:

CðA21Þ ¼
1

3ð3� 1Þ
X3

i0¼1

LðA21 �Ai01Þ þ
3

2
� 1

 !

¼ 1

6
0:9291þ 0:5þ 0:1415þ 0:5ð Þ ¼ 0:3451:

Of course, CðA21Þ can also be computed using (22) and

(23) as follows:
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Theorem 6 The optimal degree of membership CðAijÞ of
the alternative zi 2 Z with respect to the criterion cj 2 C

satisfies the following properties:

(T6.1) 1
2m

�CðAijÞ� 3
2m

;

(T6.2) Pm

i¼1

CðAijÞ ¼ 1 for cj 2 C:

Proof Because 0� LðAij �Ai0jÞ� 1, LðAij �AijÞ ¼ 0:5,

and LðAij �Ai0jÞ þ LðAi0j �AijÞ ¼ 1 via Theorem 2, one can

easily obtain that 0:5�
Pm

i0¼1 LðAij �Ai0jÞ� ðm� 1Þ þ0:5.

When
Pm

i0¼1 LðAij �Ai0jÞ is equal to the lower bound 0.5,

CðAijÞ becomes

CðAijÞ ¼
1

mðm� 1Þ
1

2
þ m

2
� 1

	 

¼ 1

2m
: ð25Þ

When
Pm

i0¼1 LðAij �Ai0jÞ is equal to the upper bound

ðm� 1Þ þ 0:5, CðAijÞ becomes

CðAijÞ ¼
1

mðm� 1Þ ðm� 1Þ þ 1

2
þ m

2
� 1

	 

¼ 3

2m
: ð26Þ

According to (25) and (26), 1=2m�CðAijÞ� 3=2m holds.

Therefore, (T6.1) is valid. Additionally, it is obvious thatPm
i¼1 CðAijÞ ¼ 1 because of the definition in (23).

Accordingly, (T6.2) is valid. h

Example 5 Continue Example 4. Applying (24), the

respective optimal degrees of membership of z1, z2, and z3
with respect to x1 are obtained as follows: CðA11Þ¼ 0.1807,

CðA21Þ¼ 0.3451, and CðA31Þ¼ 0.4742. Obviously, the

condition (T6.1) is satisfied because 1=ð2� 3Þ�
CðAi1Þ� 3=ð2� 3Þ for i = 1, 2, 3. The condition (T6.2) is

also satisfied because CðA11Þ þ CðA21Þ þ CðA31Þ ¼ 1.

The m alternatives can be ranked with respect to each

criterion based on the optimal degrees of membership.

Specifically, in regard to each criterion cj 2 CI (i.e., cj is a

benefit criterion), the ranking order of all m alternatives can

be subsequently generated according to the descending

order of the CðAijÞ values. Conversely, for each criterion

cj 2 CII (i.e., cj is a cost criterion), the ranking order of all

m alternatives is determined according to the ascending

order of the CðAijÞ values.
To combine the obtained criterion-wise rankings into an

overall preference ranking, we establish themain structure of

the proposed likelihood-based assignment model using the

concepts of an (adjusted) rank frequency matrix and an

(adjusted) rank contribution matrix. In general, the MCDA

problem involving multiple criteria evaluation and the

ranking/selection of alternatives can be considered as that of

assigning alternatives to a rank of order. Problems of this

nature are assignment problems [6]. More specifically, we

can give a rank frequency matrix whose entries measure the

frequency that each alternative is assigned a particular rank

among all criterion-wise preferences of the alternatives.

Employing the criterion-wise rankings of the m alterna-

tives by comparing the values of CðAijÞ, we define a rank

frequency matrix F0 that is similar to the concept of the

product-attribute matrix introduced by Bernardo and Blin

[6]. F0 is an m� m square nonnegative matrix whose

element f 0ik (i; k ¼ 1; 2; . . .;m) represents the number of

criterion-wise rankings where the alternative zi is ranked k-

th, as expressed in the following matrix:

1 1

20 2F

m

m

m mm

m-th

z
z

z

=

0 0 0
11 12
0 0 0

21 22

0 0 0
1 2

1st     2nd     

m m

f f f
f f f

f f f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. ð27Þ

Theorem 7 The entry f 0ik ( i; k ¼ 1; 2; . . .;m) in the rank

frequency matrix F0 satisfies the following properties:

(T7.1)
Pm

k¼1 f
0
ik ¼ n for i ¼ 1; 2; . . .;m;

(T7.2)
Pm

i¼1 f
0
ik ¼ n for k ¼ 1; 2; . . .;m:

Proof (T7.1) and (T7.2) are obvious. h

Example 6 Let the set of alternatives Z ¼ fz1; z2; z3; z4g
and the set of criteria C ¼ fc1; c2; c3g. Suppose that the

criterion-wise rankings of all alternatives zi (i = 1, 2, 3, 4)

based on each criterion cj (j = 1, 2, 3) are z3 	 z1 	

CðA21Þ ¼
c12P3

i000¼1 c
1
i000

¼
P3

i0¼1 c
1
2i0P3

i000¼1

P3
i0¼1 c

1
i000i0

¼ 0:7465þ 0:5þ 0:3064

ð0:5þ 0:2535þ 0:0598Þ þ ð0:7465þ 0:5þ 0:3064Þ þ ð0:9402þ 0:6936þ 0:5Þ ¼ 0:3451:
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z4 	 z2, z2 	 z3 	 z4 	 z1, and z4 	 z1 	 z2 	 z3.

According to (27), the rank frequency matrix F0 is con-

structed as follows:

1

20

3

4

F

z
z
z
z

=

1st  2nd  3rd  4th
0 2 0 1
1 0 1 1
1 1 0 1
1 0 2 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

Obviously, the condition (T7.1) is satisfied because
P4

k¼1 f
0
ik ¼ 3 for i = 1, 2, 3, 4. The condition (T7.2) is also

satisfied because
P4

i¼1 f
0
ik ¼ 3 for k = 1, 2, 3, 4.

Note that equal importance is assigned to each criterion

cj 2 C in the rank frequency matrix F0. Nevertheless,

incorporating individual subjective preferences over the

criteria into the MCDA process is crucial in generating a

solution that is acceptable to the decision-makers. There-

fore, we define a rank contribution matrix P0 that contains

all of the information needed for an individual’s decision

(i.e., the subjective weights a decision-maker place on each

criterion and the criterion-wise rankings of all alternatives

according to the optimal degrees of membership). Let

cj1 ; cj2 ; . . .; and cj
f0
ik

represent the corresponding criteria for

which the alternative zi is ranked k-th. Let the symbol 

represent the addition operation of IT2 TrFNs. The rank

contribution matrix P0 is determined by aggregating the

products of multiplying the IT2 TrFN importance weights

Wj1 ; Wj2 ; . . .; and Wj
f 0
ik

by the optimal degrees of member-

ship CðAij1Þ; CðAij2Þ; . . .; and CðAij
f0
ik

Þ, respectively, corre-

sponding to f 0ik; it is defined as follows:

1 1

20 2

m

m

m mm

m-th

z
z

z

Π =

0 0 0
11 12
0 0 0

21 22

0 0 0
1 2

1st     2nd   

m m

Π Π Π
Π Π Π

Π Π Π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, ð28Þ

where the meaning of each entry P0
ik of P

0 is a measure of

the concordance among all of the criteria in assigning the

alternative zi a rank k, and

P0
ik ¼ CðAij1Þ �Wj1

� �

 CðAij2Þ �Wj2

� �

 � � �


 CðAij
f 0
ik

Þ �Wj
f 0
ik

	 

ð29Þ

for i; k ¼ 1; 2; . . .;m. Applying Zadeh’s extension princi-

ple [67] to the IT2 TrFN environment, we calculate P0
ik in

the following manner:

Note that the operations of addition and multiplication

by a nonnegative ordinary number defined on nonnegative

IT2 TrFNs will obtain additional nonnegative IT2 TrFNs.

Clearly, the optimal degrees of membership CðAij1Þ,
CðAij2Þ; . . .; and CðAij

f 0
ik

Þ are nonnegative ordinary numbers.

Thus, the computation result of the P0
ik value is a non-

negative IT2 TrFN. For brevity, denote h�
P0

ik

¼ min
f 0
ik

#¼1

h�Wj#
, hþ

P0
ik

¼ min
f 0
ik

#¼1 h
þ
Wj#

, p0�gik ¼
Pf 0

ik

#¼1 CðAij#Þ � w�
gj#
, and

p0þgik ¼
Pf 0

ik

#¼1 CðAij#Þ � wþ
gj# for g ¼ 1; 2; 3; 4. Then, the entry

P0
ik in the rank contribution matrix P0 is expressed as the

following:

P0
ik ¼ p0�1ik; p

0�
2ik ; p

0�
3ik ;p

0�
4ik ; h

�
P0

ik

� �
; p0þ1ik; p

0þ
2ik; p

0þ
3ik ; p

0þ
4ik ; h

þ
P0

ik

� �h i
;

ð31Þ

where 0� p0�1ik � p0�2ik � p0�3ik � p0�4ik , 0� p0þ1ik � p0þ2ik � p0þ3ik �
p0þ4ik , p

0þ
1ik � p0�1ik , p

0�
4ik � p0þ4ik , and 0� h�

P0
ik

� hþ
P0

ik

� 1.

The rank contribution matrix P0 provides a simple

approach for effectively measuring the contribution of each

alternative to the overall performance (i.e., overall agree-

ment with the criterion-wise rankings) if it is assigned a

particular rank. Nevertheless, a troublesome issue might

occur in situations where some alternatives are tied with

respect to a criterion, resulting in confusing computations

of the P0
ik values. To overcome this difficulty, the initial

ranking must be separated into u! equalized rankings when

the u alternatives are tied in terms of a specific criterion

P0
ik ¼

Xf
0
ik

#¼1

CðAij#Þ � w�
1j#
;
Xf

0
ik

#¼1

CðAij#Þ � w�
2j#
;
Xf

0
ik

#¼1

CðAij#Þ � w�
3j#
;
Xf

0
ik

#¼1

CðAij#Þ � w�
4j#
;min

f 0
ik

#¼1
h�Wj#

0

@

1

A;

2

4

Xf
0
ik

#¼1

CðAij#Þ � wþ
1j#
;
Xf

0
ik

#¼1

CðAij#Þ � wþ
2j#
;
Xf

0
ik

#¼1

CðAij#Þ � wþ
3j#
;
Xf

0
ik

#¼1

CðAij#Þ � wþ
4j#
;min

f 0
ik

#¼1
hþWj#

0

@

1

A

3

5:

ð30Þ
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[11, 13]. Additionally, each of these equalized rankings is

weighted 1/u!.
Let uj represent the number of tied alternatives

regarding a specific criterion cj. Note that, if no tied

alternatives are found with respect to cj, we assume that

uj = 1. Let fik denote the frequency with which the alter-

native zi is ranked as the k-th criterion-wise ranking after

separating the initial criterion-wise ranking into uj!

equalized rankings for all cj 2 C. Then, we obtain the

adjusted rank frequency matrix F as follows:

1st 2nd � � � m-th

F ¼

z1

z2

..

.

zm

f11 f12 � � � f1m

f21 f22 � � � f2m

..

. ..
. . .

. ..
.

fm1 fm2 � � � fmm

2

66664

3

77775
:

ð32Þ

Theorem 8 The entry fik ði; k ¼ 1; 2; . . .;mÞ in the

adjusted rank frequency matrix F satisfies the following

properties:

(T8.1) Pm

k¼1

fik ¼ n for i ¼ 1; 2; . . .;m;

(T8.2) Pm

i¼1

fik ¼ n for k ¼ 1; 2; . . .;m:

Proof (T8.1) and (T8.2) are obvious. h

Let cj1 ; cj2 ; . . .; and cjfik be the criteria for which the

alternative zi is ranked k-th. The adjusted rank contribution

matrix P is expressed as follows:

1

2

m

m

mm

m-th
z
z

z

Π =

1 11 12

2 21 22

1 2

1st     2nd       

m m m

Π Π Π
Π Π Π

Π Π Π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, ð33Þ

where

Pik ¼
CðAij1Þ
uj1

!
�Wj1 


CðAij2Þ
uj2

!
�Wj2 
 � � � 


CðAijfik
Þ

ujfik
!

�Wjfik

ð34Þ

for i; k ¼ 1; 2; . . .;m. Similarly, applying Zadeh’s exten-

sion principle to the IT2 TrFN environment, we calculate

Pik in the following manner:

Because 1=ðuj1
!Þ; 1=ðuj2

!Þ; . . .; and 1=ðujfik
!Þ are non-

negative ordinary numbers, the computation results of the

Pik values are also IT2 TrFNs. For brevity, denote

h�Pik
¼ min

fik
#¼1 h

�
Wj#

, hþPik
¼ min

fik
#¼1 h

þ
Wj#

, p�gik ¼
Pfik

#¼1 C

ðAij#Þ� w�
gj#

.
uj#

!, and pþ1ik ¼
Pfik

#¼1 CðAij#Þ� wþ
1j#

.
uj#

! for

g ¼ 1; 2; 3; 4. Then, the entry Pik in the adjusted rank

contribution matrix P is expressed as the following:

Pik ¼ p�1ik;p
�
2ik; p

�
3ik; p

�
4ik; h

�
Pik

� �
; pþ1ik;p

þ
2ik; p

þ
3ik; p

þ
4ik; h

þ
Pik

� �h i
;

ð36Þ

where 0� p�1ik � p�2ik � p�3ik � p�4ik, 0� pþ1ik � pþ2ik � pþ3ik
� pþ4ik, p

þ
1ik � p�1ik, p

�
4ik � pþ4ik, and 0� h�Pik

� hþPik
� 1.

Based on the rank contribution matrixP0 or the adjusted

rank contribution matrix P, we attempt to obtain an

aggregate ranking that can effectively combine the relative

performance of each alternative with respect to each cri-

terion. In other words, this aggregate ranking is an overall

ranking that is in the closest agreement with the criterion-

wise rankings. Therefore, when the alternative zi is

assigned to the k-th overall rank, we can employ P0
ik or Pik

to measure the contributions of zi to the overall ranking.

Additionally, the larger the contribution indicated byP0
ik or

Pik, the more concordance from assigning zi to the k-th

overall rank will result.

However, the values of P0
ik and Pik are IT2 TrFNs and

cannot be easily compared. Thus, we use a signed dis-

tance-based method presented by Chen [10, 12, 14] and

Chen et al. [20] to obtain comparable values of P0
ik (or

Pik) for each i; k ¼ 1; 2; . . .;m. A signed distance (i.e., an

oriented distance or directed distance) has often been

employed to determine the rankings of fuzzy numbers

[14]. The concept of signed distances has been extended

to the decision environment of IT2 TrFNs, and the signed

distance-based method has been successfully employed to

develop several useful MCDA methods [10, 12–15, 20].

The signed distance-based method can use both positive

Pik ¼
Xfik

#¼1

CðAij#Þ � w�
1j#

uj#
!

;
Xfik

#¼1

CðAij#Þ � w�
2j#

uj#
!

;
Xfik

#¼1

CðAij#Þ � w�
3j#

uj#
!

;
Xfik

#¼1

CðAij#Þ � w�
4j#

uj#
!

;min
fik

#¼1
h�Wj#

 !

;

"

Xfik

#¼1

CðAij#Þ � wþ
1j#

uj#
!

;
Xfik

#¼1

CðAij#Þ � wþ
2j#

uj#
!

;
Xfik

#¼1

CðAij#Þ � wþ
3j#

uj#
!

;
Xfik

#¼1

CðAij#Þ � wþ
4j#

uj#
!

;min
fik

#¼1
hþWj#

 !#

:

ð35Þ
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and negative values to define the ordering of IT2 TrFNs,

an approach that considerably differs from ordinary dis-

tance measures. Signed distances are real numbers; thus,

they satisfy linear ordering. It follows that the signed

distance based on IT2 TrFNs satisfies the law of tri-

chotomy. Therefore, the concept of signed distances is

suggested for acquiring comparable values of P0
ik in the

rank contribution matrix P0 or Pik in the adjusted rank

contribution matrix P.

In reference to Chen [10, 12, 15] and Chen et al. [20],

the signed distance d0ik from P0
ik to the level-1 fuzzy

number map onto the vertical axis at the origin of the

coordinates is expressed as follows:

d0ik ¼
1

8

"

p0�1ik þ p0�2ik þ p0�3ik þ p0�4ik þ 4 � p0þ1ik þ 2 � p0þ2ik

þ2 � p0þ3ik þ 4 � p0þ4ik þ 3 p0þ2ik þ p0þ3ik � p0þ1ik � p0þ4ik
� � h�P0

ik

hþ
P0

ik

#

;

ð37Þ

for all i; k ¼ 1; 2; . . .;m. The signed distance dik from Pik

to the level-1 fuzzy number map onto the vertical axis at

the origin of the coordinates is expressed as follows:

dik ¼
1

8

"

p�1ik þ p�2ik þ p�3ik þ p�4ik þ 4 � pþ1ik þ 2 � pþ2ik

þ2 � pþ3ik þ 4 � pþ4ik

þ3 pþ2ik þ pþ3ik � pþ1ik � pþ4ik
� � h�Pik

hþPik

#

; ð38Þ

for all i; k ¼ 1; 2; . . .;m.

Computing the signed distances d0ik or dik for all

i; k ¼ 1; 2; . . .;m, we can then find the alternative zi for

each k-th rank that maximizes
Pm

k¼1 d
0
ik or

Pm
k¼1 dik. This

problem is an m! comparison problem. A pure integer

linear programming model can be established in the case of

a large m to solve the m! comparison problem. Let a per-

mutation matrix P denote an m� m square matrix whose

element Pik = 1 if the alternative zi is assigned to the

overall rank k; otherwise, Pik = 0. In general, we prefer

the overall ranking in which the value of d0ik � Pik or dik �
Pik is the largest. This is because the overall ranking with

the highest d0ik � Pik or dik � Pik produces the best com-

promise among all of the criterion-wise rankings of the

alternatives. Accordingly, all of the conceivable rank-

ings must be examined, and the one that yields the lar-

gest value of d0ik � Pik or dik � Pik will be chosen. Because

the alternative zi can be assigned to only one rank in the

overall ranking, we know that
Pm

k¼1 Pik ¼ 1. Similarly, a

given rank k can only have one alternative assigned to it,

and thus
Pm

i¼1 Pik ¼ 1.

Consider the situations in which no tied alternatives

exist when comparing the CðAijÞ values with respect to

each criterion cj 2 C, i.e., uj = 1 for all j ¼ 1; 2; . . .; n. The

proposed likelihood-based assignment model can be

expressed using the following pure integer linear pro-

gramming format:

M1½ �

max
Xm

i¼1

Xm

k¼1

d0ik � Pik

s:t:
Xm

k¼1

Pik ¼ 1; i ¼ 1; 2; � � � ;m;

Xm

i¼1

Pik ¼ 1; k ¼ 1; 2; � � � ;m;

Pik ¼ 0 or 1 for all i and k:

ð39Þ

Alternately, consider the situations in which some tied

alternatives exist when comparing the CðAijÞ values, i.e.,

uj 6¼ 1 for at least one j ¼ 1; 2; . . .; n. Then, the proposed

likelihood-based assignment model in tied situations can be

expressed as follows:

½M2�

max
Xm

i¼1

Xm

k¼1

dik � Pik

s:t:
Xm

k¼1

Pik ¼ 1; i ¼ 1; 2; � � � ;m;

Xm

i¼1

Pik ¼ 1; k ¼ 1; 2; � � � ;m;

Pik ¼ 0 or 1 for all i and k:

ð40Þ

The signed distances d0ik and dik can be obtained via P0
ik

in the rank contribution matrix P0 and Pik in the adjusted

rank contribution matrix P, respectively, from the crite-

rion-wise rankings, whereas Pik is unknown and has yet to

be determined by the likelihood-based assignment model.

Using a branch-and-bound algorithm, we can solve the

pure integer linear programming problem [M1] or [M2] to

acquire the optimal permutation matrix P*. The optimal

ordering can then be sequentially obtained by multiplying

Z by P*.

4.2 Proposed algorithm

The proposed likelihood-based assignment method for

solving an MCDA problem within the IT2 TrFN decision

environment comprises three phases: problem formulation

and data input; likelihood-based comparisons and the

ranking procedure; and construction of the linear assign-

ment model. Figure 2 depicts a flowchart of the proposed

likelihood-based assignment method.

The three phases can be summarized by the following

series of steps.
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4.2.1 Steps 1 and 2: problem formulation and input stage

Step 1 Formulate an MCDA problem. Specify the

criterion set C ¼ c1; c2; . . .; cnf g and the

alternative set Z ¼ z1; z2; . . .; zmf g:

Step 2 Select appropriate linguistic variables or other data

collection tools to establish the importance weight

Wj in (10) of the criterion cj 2 C and the evaluative

ratingAij in (9) of the alternative zi 2 Z with respect

to the criterion cj 2 C based on IT2 TrFNs.

4.2.2 Steps 3–6: likelihood-based comparison and ranking

stage

Step 3 Apply (11) and (12) to compute the lower and

upper likelihoods, L�ðAij �Ai0jÞ and
LþðAij �Ai0jÞ, respectively, of a fuzzy preference

relation Aij �Ai0j for each criterion cj 2 C and

each pair of alternatives ðzi; zi0 Þ, where zi; zi0 2 Z

and i 6¼ i0:
Step 4 Calculate the likelihood LðAij �Ai0jÞ using (13)

for each criterion cj 2 C and each pair of

alternatives ðzi; zi0 Þ, where zi; zi0 2 Z and i 6¼ i0.
Moreover, LðAij �AijÞ ¼ 0:5 for i ¼ 1; 2; . . .;m:

Step 5 Employ (24) to determine the optimal degree of

membership CðAijÞ for zi 2 Z and cj 2 C:

Step 6 Rank the m alternatives with respect to each

criterion cj 2 CI and cj 2 CII according to the

descending order and the ascending order,

respectively, of the CðAijÞ values. If the uj

alternatives are tied with respect to a specific

criterion cj, then the uj! equalized rankings should

be listed separately.

4.2.3 Steps 7–10: linear assignment modeling stage

Step 7 Compute P0
ik using (30) and construct the rank

contribution matrix P0 when uj = 1 for all

j ¼ 1; 2; . . .; n. Alternately, compute Pik using

(35) and establish the adjusted rank contribution

matrix P when uj 6¼ 1 for at least one

j ¼ 1; 2; . . .; n:

Step 8 Use (37) or (38) to derive the signed distances

d0ik or dik, respectively, for each

i; k ¼ 1; 2; . . .;m:

Step 9 Define the permutation matrix P as an m� m

square matrix. Construct a linear assignment

model in [M1] or [M2] according to the d0ik
values or the dik values, respectively.

Step 10 Solve [M1] or [M2] using a branch-and-bound

algorithm and obtain the optimal permutation

matrix P*. Next, apply the permutation matrix

P* to Z to obtain the optimal ranking order of the

m alternatives.

Fig. 2 Flowchart of the proposed likelihood-based assignment

method
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5 Applications and comparative analyses

This section illustrates and discusses the proposed likeli-

hood-based assignment method by applying it to two

practical MCDA applications: the selection problem of

landfill sites introduced by Chen [13] and the medical

decision-making problem presented by Chen et al. [20].

Furthermore, comparative discussions are subsequently

devoted to validate the results of the proposed method with

the results from relevant outranking methods. Finally,

additional comparisons are conducted to investigate the

effectiveness and advantages of the proposed method rel-

ative to a widely used scoring method.

5.1 Illustrative application

Only a small number of attempts to extend the linear

assignment method to the interval type-2 fuzzy decision

environment or allow it to cope with IT2 TrFN data have

thus far been conducted. Chen [13] developed an interval

type-2 fuzzy linear assignment method based on signed

distances to handle multiple criteria decisions and imple-

mented the proposed method to a practical example

involving a landfill site selection problem in Kaohsiung

City. Chen’s interval type-2 fuzzy linear assignment

method and our proposed method belong to the linear

assignment methodology. Thus, Chen’s illustrative appli-

cation of landfill site selection can provide a common basis

for implementing a comparative analysis.

The illustrative application presented by Chen [13] asses-

ses the characteristics of candidate landfill sites to determine

whether the candidate sites are qualified in regard to the

interests and the rights of the stakeholders and general public

using seven criteria: transportation convenience (c1), terrain

suitability (c2), community equity (c3), environmental impact

(c4), ecological impact (c5), construction cost (c6), and historic

impact (c7). Among the criteria for evaluating candidate sites,

c1, c2, and c3 are the benefit criteria, whereas all of the others

are cost criteria. Given the dense population of Kaohsiung

City, the number of suitable landfill locations is limited. There

are four candidate locations: z1 (located in theCijin district), z2
(located at the side of an embankment in the Nanzih district),

z3 (located on a hillside by the sea in the Gushan district), and

z4 (located on a hillside in the Zuoying district).

The computational procedure of the proposed likeli-

hood-based assignment method is illustrated as follows. In

Step 1, there are four candidate landfill sites in the MCDA

problem; the set of all candidate sites is denoted as

Z ¼ fz1; z2; z3; z4g. The set of criteria is denoted as

C ¼ fc1; c2; . . .; c7g, with CI ¼ fc1; c2; c3g and

CII ¼ fc4; c5; c6; c7g. In Step 2, the city government eval-

uated the four landfill sites based on the seven criteria and

the importance weights of the criteria using the linguistic

rating system in Table 1 [13]. The details of the linguistic

evaluations are outlined in Table 2. These linguistic terms

were subsequently converted into the IT2 TrFN evaluative

ratings Aij of zi 2 Z with respect to cj 2 C and the IT2

TrFN importance weights Wj of cj 2 C.

In Step 3, we calculated L�ðAij �Ai0jÞ and LþðAij �Ai0jÞ
for each pair of alternatives ðzi; zi0 Þ (zi; zi0 2 Z and i 6¼ i0)
with respect to each criterion cj 2 C. Then, we computed

the likelihood LðAij �Ai0jÞ according to Step 4. Note that

LðAij �AijÞ ¼ 0:5 for i ¼ 1; 2; 3; 4. The computation results

Table 1 Linguistic variables

and their corresponding IT2

TrFNs

Linguistic terms Corresponding IT2 TrFNs

Absolutely low (AL) [(0.0000, 0.0000, 0.0000, 0.0000; 1.0), (0.0000, 0.0000, 0.0000, 0.0000; 1.0)]

Very low (VL) [(0.0075, 0.0075, 0.0150, 0.0525; 0.8), (0.0000, 0.0000, 0.0200, 0.0700; 1.0)]

Low (L) [(0.0875, 0.1200, 0.1600, 0.1825; 0.8), (0.0400, 0.1000, 0.1800, 0.2300; 1.0)]

Medium low (ML) [(0.2325, 0.2550, 0.3250, 0.3575; 0.8), (0.1700, 0.2200, 0.3600, 0.4200; 1.0)]

Medium (M) [(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.3200, 0.4100, 0.5800, 0.6500; 1.0)]

Medium high (MH) [(0.6500, 0.6725, 0.7575, 0.7900; 0.8), (0.5800, 0.6300, 0.8000, 0.8600; 1.0)]

High (H) [(0.7825, 0.8150, 0.8850, 0.9075; 0.8), (0.7200, 0.7800, 0.9200, 0.9700; 1.0)]

Very high (VH) [(0.9475, 0.9850, 0.9925, 0.9925; 0.8), (0.9300, 0.9800, 1.0000, 1.0000; 1.0)]

Absolutely high (AH) [(1.0000, 1.0000, 1.0000, 1.0000; 1.0), (1.0000, 1.0000, 1.0000, 1.0000; 1.0)]

Table 2 Linguistic data of the importance weights and the evaluative

ratings

Criteria Importance weights Ratings of the candidate sites

z1 z2 z3 z4

c1 H L AL AH H

c2 MH AH VH AL L

c3 H AL H MH H

c4 MH L M AH VH

c5 MH L ML AH MH

c6 M AH ML M M

c7 ML AH L VH H
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of the likelihoods for all the fuzzy preference relations

between IT2 TrFNs are presented in Table 3.

In Step 5, we applied (24) to obtain the optimal degree

of membership CðAijÞ for zi 2 Z and cj 2 C. For example,

CðA23Þ is computed as follows:

CðA23Þ ¼
1

4ð4� 1Þ

	
LðA23 �A13Þ þ LðA23 �A23Þ

þ LðA23 �A33Þ þ LðA23 �A43Þ þ
4

2
� 1




¼ 1

4ð4� 1Þ 1:00þ 0:50þ 0:79þ 0:50þ 4

2
� 1

	 


¼ 0:32:

Next, we applied Step 6 to rank the four alternatives in

terms of each benefit criterion and each cost criterion

according to the decreasing order and the increasing order,

respectively, of the CðAijÞ values. Because the alternatives

z2 and z4 are tied with respect to the criterion c3, u3 = 2,

and the original ranking z2 � z4 	 z3 	 z1 is equalized as

two corresponding rankings, z2 	 z4 	 z3 	 z1 and

z4 	 z2 	 z3 	 z1. Additionally, the alternatives z3 and z4
are tied with respect to the criterion c6; thus, u6 = 2, and

the original ranking z2 	 z3 � z4 	 z1 is equalized as two

corresponding rankings, z2 	 z3 	 z4 	 z1 and

z2 	 z4 	 z3 	 z1. The other uj = 1 for j ¼ 1; 2; 4; 5; 7.

The results of the optimal degrees of membership and

criterion-wise rankings are indicated in Table 4.

Because u3; u6 6¼ 1, we employed (35) to determine

Pik for i, k = 1, 2, 3, 4 according to Step 7. Take the

argument p�142 of P42 (¼ ½ðp�142; p�242; p�342; p�442;
h�P42

Þ;ðpþ142; pþ242; pþ342; pþ442; hþP42
Þ�) for example. As indi-

cated in (36), we have

p�142 ¼
Xf42

#¼1

CðAij#Þ � w�
1j#

uj#
!

¼ CðA41Þ � w�
11

1!
þ CðA43Þ � w�

13

2!
þ CðA46Þ � w�

16

2!

þ CðA47Þ � w�
17

1!
¼ 0:29 � 0:7825þ 0:32 � 0:7825

2

þ 0:24 � 0:4025
2

þ 0:22 � 0:2325 ¼ 0:45:

Then, in Step 8, we used (38) to calculate the signed

distance dik for i, k = 1, 2, 3, 4. ConsiderP31 (= [(0.30, 0.31,

0.34, 0.34; 0.80), (0.27, 0.30, 0.35, 0.37; 1.00)]) for example.

The signed distance d31 of P31 is computed as follows:

d31 ¼
1

8

�
0:30þ 0:31þ 0:34þ 0:34þ 4 � 0:27þ 2 � 0:30

þ2 � 0:35þ 4 � 0:37 þ 3 0:30þ 0:35� 0:27� 0:37ð Þ 0:80
1:00




¼ 0:65:

The computation results of the adjusted rank contribu-

tion matrix P and signed distances are revealed in Table 5.

In Step 9, we defined the permutation matrix P as a

4� 4 square matrix, with element Pik for i, k = 1, 2, 3, 4.

According to [M2], we established a linear assignment

model with dik values as follows:

max0:93 � P11 þ 0:00 � P12 þ 0:34 � P13 þ 0:82 � P14

þ 0:49 � P21 þ 1:28 � P22

þ 0:00 � P23 þ 0:24 � P24 þ 0:65 � P31 þ 0:12 � P32

þ 0:69 � P33 þ 1:29 � P34

þ 0:27 � P41 þ 1:01 � P42 þ 1:23 � P43 þ 0:00 � P44

s:t:P11 þ P12 þ P13 þ P14 ¼ 1; P21 þ P22 þ P23 þ P24 ¼ 1;

P31 þ P32 þ P33 þ P34 ¼ 1; P41 þ P42 þ P43 þ P44 ¼ 1;

P11 þ P21 þ P31 þ P41 ¼ 1; P12 þ P22 þ P32 þ P42 ¼ 1;

P13 þ P23 þ P33 þ P43 ¼ 1; P14 þ P24 þ P34 þ P44 ¼ 1;

Pik ¼ 0 or 1 for all i and k:

ð41Þ

Finally, in Step 10, we solved the model in (41) using a

branch-and-bound algorithm. The optimal objective value

is 4.73. Additionally, we obtained the optimal permutation

matrix P* as follows:

1

2*

3

4

P

z
z
z
z

=

1st    2nd   3rd   4th

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

Next, we determined the ordering (z1, z2, z3, z4)

by multiplying Z by P*. That is, z1; z2; z3; z4ð Þ�
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2

664

3

775 ¼ z1; z2; z4; z3ð Þ.

The optimal ranking order of the four candidate sites is

z1 	 z2 	 z4 	 z3. Thus, z1 (located in the Cijin district) is

the best choice. This ranking result is the same as that

obtained using the interval type-2 fuzzy linear assignment

method based on signed distances [13].

5.2 Comparative discussions with outranking

methods

The linear assignment methodology belongs to outranking

models in the MCDA field. Accordingly, this paper further

selected other well-known outranking methods (e.g.,

ELECTRE and QUALIFLEX) to conduct a comparative

analysis and examine the applicability and advantages of

the proposed method.
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Table 3 Results of the likelihoods of Aij �Ai0 j (zi; zi0 2 Z)

L�ðA1j �A2jÞ LþðA1j �A2jÞ LðA1j �A2jÞ L�ðA3j �A1jÞ LþðA3j �A1jÞ LðA3j �A1jÞ

c1 0.70 1.00 0.85 c1 1.00 1.00 1.00

c2 1.00 1.00 1.00 c2 0.00 0.00 0.00

c3 0.00 0.00 0.00 c3 1.00 1.00 1.00

c4 0.00 0.11 0.05 c4 1.00 1.00 1.00

c5 0.01 0.30 0.15 c5 1.00 1.00 1.00

c6 1.00 1.00 1.00 c6 0.00 0.00 0.00

c7 1.00 1.00 1.00 c9 0.00 0.00 0.00

L�ðA1j �A3jÞ LþðA1j �A3jÞ LðA1j �A3jÞ L�ðA3j �A2jÞ LþðA3j �A2jÞ LðA3j �A2jÞ

c1 0.00 0.00 0.00 c1 1.00 1.00 1.00

c2 1.00 1.00 1.00 c2 0.00 0.00 0.00

c3 0.00 0.00 0.00 c3 0.05 0.36 0.21

c4 0.00 0.00 0.00 c4 1.00 1.00 1.00

c5 0.00 0.00 0.00 c5 1.00 1.00 1.00

c6 1.00 1.00 1.00 c6 0.74 0.98 0.86

c7 1.00 1.00 1.00 c7 1.00 1.00 1.00

L�ðA1j �A4jÞ LþðA1j �A4jÞ LðA1j �A4jÞ L�ðA3j �A4jÞ LþðA3j �A4jÞ LðA3j �A4jÞ

c1 0.00 0.00 0.00 c1 1.00 1.00 1.00

c2 1.00 1.00 1.00 c2 0.00 0.30 0.15

c3 0.00 0.00 0.00 c3 0.05 0.36 0.21

c4 0.00 0.00 0.00 c4 1.00 1.00 1.00

c5 0.00 0.00 0.00 c5 1.00 1.00 1.00

c6 1.00 1.00 1.00 c6 0.33 0.67 0.50

c7 1.00 1.00 1.00 c7 0.65 1.00 0.83

L�ðA2j �A1jÞ LþðA2j �A1jÞ LðA2j �A1jÞ L�ðA4j �A1jÞ LþðA4j �A1jÞ LðA4j �A1jÞ

c1 0.00 0.30 0.15 c1 1.00 1.00 1.00

c2 0.00 0.00 0.00 c2 0.00 0.00 0.00

c3 1.00 1.00 1.00 c3 1.00 1.00 1.00

c4 0.89 1.00 0.95 c4 1.00 1.00 1.00

c5 0.70 0.99 0.85 c5 1.00 1.00 1.00

c6 0.00 0.00 0.00 c6 0.00 0.00 0.00

c7 0.00 0.00 0.00 c7 0.00 0.00 0.00

L�ðA2j �A3jÞ LþðA2j �A3jÞ LðA2j �A3jÞ L�ðA4j �A2jÞ LþðA4j �A2jÞ LðA4j �A2jÞ

c1 0.00 0.00 0.00 c1 1.00 1.00 1.00

c2 1.00 1.00 1.00 c2 0.00 0.00 0.00

c3 0.64 0.95 0.79 c3 0.29 0.71 0.50

c4 0.00 0.00 0.00 c4 0.96 1.00 0.98

c5 0.00 0.00 0.00 c5 0.93 1.00 0.97

c6 0.02 0.26 0.14 c6 0.74 0.98 0.86

c7 0.00 0.00 0.00 c7 1.00 1.00 1.00

L�ðA2j �A4jÞ LþðA2j �A4jÞ LðA2j �A4jÞ L�ðA4j �A3jÞ LþðA4j �A3jÞ LðA4j �A3jÞ

c1 0.00 0.00 0.00 c1 0.00 0.00 0.00

c2 1.00 1.00 1.00 c2 0.70 1.00 0.85

c3 0.29 0.71 0.50 c3 0.64 0.95 0.79

c4 0.00 0.04 0.02 c4 0.00 0.00 0.00
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Chen et al. [20] developed an extended QUALIFLEX

method for handling MCDA problems based on IT2 FSs.

They also extended the ELECTRE method to the decision

environment of IT2 FSs. Chen et al. [20] presented a

medical decision-making problem of selecting a suit-

able treatment method for acute inflammatory demyeli-

nating disease. Their case comes from the Department of

Neurology, Chang Gung Memorial Hospital in Taiwan.

They applied the extended QUALIFLEX method and the

extended ELECTRE method to the medical decision-

making problem. Additionally, Chen and Tsui [25] devel-

oped the intuitionistic fuzzy QUALIFLEX method based

on optimistic and pessimistic estimations. Although Chen

and Tsui’s proposed method is suitable for the intuitionistic

fuzzy decision environment, they also applied it to the

same medical decision-making problem.

In addition to a comparative discussion regarding the

selection problem of landfill sites using the interval type-2

fuzzy linear assignment method [13], we further applied the

proposed method to a medical decision-making problem

introduced by Chen et al. [20] to facilitate comparative

analyses with other outranking methods. With regard to the

medical decision-making problem, this paper compared the

solution result via the proposed likelihood-based assignment

Table 3 continued

L�ðA2j �A4jÞ LþðA2j �A4jÞ LðA2j �A4jÞ L�ðA4j �A3jÞ LþðA4j �A3jÞ LðA4j �A3jÞ

c5 0.00 0.07 0.03 c5 0.00 0.00 0.00

c6 0.02 0.26 0.14 c6 0.33 0.67 0.50

c7 0.00 0.00 0.00 c7 0.00 0.35 0.17

Table 4 Results of the optimal degrees of membership and criterion-wise rankings

Benefit criteria Cost criteria

c1 c2 c3 c4 c5 c6 c7

Results of the optimal degree of membership C(Aij) for zi 2 Z and cj 2 C

z1 0.20 0.38 0.13 0.13 0.14 0.38 0.38

z2 0.14 0.29 0.32 0.21 0.20 0.15 0.13

z3 0.38 0.14 0.24 0.38 0.38 0.24 0.28

z4 0.29 0.20 0.32 0.29 0.29 0.24 0.22

Rank

Results of criterion-wise rankings

1st z3 z1 z2, z4 z1 z1 z2 z2

2nd z4 z2 z2 z2 z3, z4 z4

3rd z1 z4 z3 z4 z4 z3

4th z2 z3 z1 z3 z3 z1 z1

Benefit criteria Cost criteria

c1 c2 c3(1) c3(2) c4 c5 c6(1) c6(2) c7

Rank

Adjusted results of criterion-wise rankings

1st z3 z1 z2 z4 z1 z1 z2 z2 z2

2nd z4 z2 z4 z2 z2 z2 z3 z4 z4

3rd z1 z4 z3 z3 z4 z4 z4 z3 z3

4th z2 z3 z1 z1 z3 z3 z1 z1 z1
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model with the results yielded by the extendedQUALIFLEX

method [20], the intuitionistic fuzzy QUALIFLEX method

[25], and the extended ELECTRE method [20].

In the medical decision-making problem presented by

Chen et al. [20], the attending physician assessed the

patient’s medical history and her current physical condi-

tions and provided the following treatment options: steroid

therapy (z1), plasmapheresis (z2), and albumin immune

therapy (z3). Nine criteria were used to evaluate the alter-

natives, including survival rate (c1), severity of the side

effects (c2), severity of the complications (c3), probability

of a cure (c4), discomfort index of the treatment (c5), cost

(c6), number of days of hospitalization (c7), probability of a

recurrence (c8), and self-care capacity (c9). According to

the IT2 TrFN data in Chen et al. [20], we applied the

proposed method to analyze the same medical decision-

making problem and constructed the following linear

assignment model:

max0:62 � P11 þ 0:08 � P12 þ 1:76 � P13 þ 2:27 � P21

þ 2:03 � P22 þ 0:06 � P23

þ 1:97 � P31 þ 1:93 � P32 þ 0:24 � P33

s:t:P11 þ P12 þ P13 ¼ 1; P21 þ P22 þ P23 ¼ 1;

P31 þ P32 þ P33 ¼ 1;

P11 þ P21 þ P31 ¼ 1; P12 þ P22 þ P32 ¼ 1;

P13 þ P23 þ P33 ¼ 1;

Pik ¼ 0 or 1 for all i and k: ð42Þ

We solved the model in (42) and obtained P�
13 ¼ P�

21 ¼
P�
32 ¼ 1 and the remaining P�

ik ¼ 0 in the optimal permu-

tation matrix P*. Therefore, the optimal ranking order of

the three treatment options is z2 	 z3 	 z1, which is the

same as those obtained using the extended QUALIFLEX

method [20] and the intuitionistic fuzzy QUALIFLEX

method [25]. Additionally, the extended ELECTRE

method renders the outranking relationships z2 	 z1 and

Table 5 Results of the adjusted rank contribution matrix P and signed distances

Pik in the adjusted rank contribution matrix P dik

P11 [(0.42, 0.44, 0.49, 0.51; 0.80), (0.38, 0.41, 0.52, 0.56; 1.00)] 0.93

P12 [(0.00, 0.00, 0.00, 0.00; 1.00), (0.00, 0.00, 0.00, 0.00; 1.00)] 0.00

P13 [(0.16, 0.16, 0.18, 0.18; 0.80), (0.14, 0.16, 0.18, 0.19; 1.00)] 0.34

P14 [(0.34, 0.37, 0.44, 0.47; 0.80), (0.28, 0.34, 0.48, 0.53; 1.00)] 0.82

P21 [(0.22, 0.23, 0.26, 0.28; 0.80), (0.19, 0.21, 0.28, 0.31; 1.00)] 0.49

P22 [(0.58, 0.60, 0.67, 0.70; 0.80), (0.52, 0.57, 0.71, 0.76; 1.00)] 1.28

P23 [(0.00, 0.00, 0.00, 0.00; 1.00), (0.00, 0.00, 0.00, 0.00; 1.00)] 0.00

P24 [(0.11, 0.11, 0.12, 0.13; 0.80), (0.10, 0.11, 0.13, 0.14; 1.00)] 0.24

P31 [(0.30, 0.31, 0.34, 0.34; 0.80), (0.27, 0.30, 0.35, 0.37; 1.00)] 0.65

P32 [(0.05, 0.05, 0.06, 0.07; 0.80), (0.04, 0.05, 0.07, 0.08; 1.00)] 0.12

P33 [(0.30, 0.32, 0.37, 0.39; 0.80), (0.26, 0.30, 0.39, 0.43; 1.00)] 0.69

P34 [(0.59, 0.61, 0.68, 0.71; 0.80), (0.52, 0.57, 0.72, 0.77; 1.00)] 1.29

P41 [(0.13, 0.13, 0.14, 0.15; 0.80), (0.12, 0.12, 0.15, 0.16; 1.00)] 0.27

P42 [(0.45, 0.48, 0.53, 0.56; 0.80), (0.40, 0.45, 0.56, 0.61; 1.00)] 1.01

P43 [(0.56, 0.58, 0.66, 0.68; 0.80), (0.49, 0.54, 0.69, 0.75; 1.00)] 1.23

P44 [(0.00, 0.00, 0.00, 0.00; 1.00), (0.00, 0.00, 0.00, 0.00; 1.00)] 0.00

Table 6 Comparison analysis of the obtained results

Applications Comparative methods The optimal ranking order of the

alternatives

The selection problem of landfill sites The interval type-2 fuzzy linear assignment

method [13]

z1 	 z2 	 z4 	 z3

Proposed likelihood-based assignment method z1 	 z2 	 z4 	 z3

The medical decision-making problem of treatment

options

The extended QUALIFLEX method [20] z2 	 z3 	 z1

The intuitionistic fuzzy QUALIFLEX method

[25]

z2 	 z3 	 z1

The extended ELECTRE method [20] z2 	 z1; z3 	 z1

Proposed likelihood-based assignment method z2 	 z3 	 z1
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z3 	 z1 [20], which are also in agreement with the result

obtained via our proposed method.

A summary of the results obtained by applying the pro-

posed method and the comparative methods to the selection

problem of landfill sites and the medical decision-making

problem of treatment options is presented in Table 6.

Compared with the interval type-2 fuzzy linear assign-

ment method [13], the computations associated with our

proposed method are simple and effective. More specifi-

cally, we have no need to normalize IT2 TrFN evaluative

ratings and importance weights when using the proposed

likelihood-based assignment method. However, Chen’s

[13] method must use a scale normalization method to

establish the normalized decision matrix and the normal-

ized importance weights of criteria. Consider the applica-

tion of the landfill site selection problem. Although the

procedure of the proposed method and the developed linear

assignment model in (41) are easy to implement, the

illustrative application still reveals a valid and reasonable

result using the proposed method.

Conversely, when employing Chen’s [13] interval type-

2 fuzzy linear assignment method to solve MCDA prob-

lems, it can be observed that no attention has been paid to

incorporating the IT2 TrFN evaluative ratings into the

weighted rank frequency matrix. More specifically, the

weighted rank frequency matrix presented by Chen [13]

only contains the information of the rank frequency and the

criterion importance. In contrast, our proposed method

considers all of the useful information contained in the

evaluative ratings and importance weights. To make the

information content complementary, we determine the

(adjusted) rank contribution matrix by aggregating the

products of multiplying the IT2 TrFN importance weights

by the optimal degrees of membership. This approach can

not only consider the criterion importance but also fully

utilize information contained in the evaluative ratings and

fuzzy preference relations between IT2 TrFNs.

Consider the second application of the medical decision-

making problem. Note that the priority orders of z2 and z3
cannot be differentiated via the extended ELECTRE results

even though z1 is dominated by z2 and z3. In contrast, the

proposed likelihood-based assignment method can differ-

entiate the priority orders of z2 and z3, rendering the

outranking relationship of z2 	 z3. Therefore, the obtained

result yielded by the proposed method provides more

important information than that of Chen et al. [20] exten-

ded ELECTRE method. Compared with the extended

QUALIFLEX method, the intuitionistic fuzzy QUALI-

FLEX method, and the extended ELECTRE method, the

computations associated with the proposed method are

simple and effective, and the linear assignment model in

(42) is easy to solve for the optimal solution.

As a whole, the comparative results indicate that the

solution result using the proposed method is valid and

credible even though the computation procedure of the

proposed method is much simpler than that of the

comparative methods (i.e., the interval type-2 fuzzy

linear assignment method, the extended QUALIFLEX

method, the intuitionistic fuzzy QUALIFLEX method,

and the extended ELECTRE method). The proposed

likelihood-based assignment method fully utilizes the

extended concept of likelihoods regarding fuzzy prefer-

ence relations between IT2 TrFNs. This method does not

require a complicated computation procedure and pro-

duces actionable and valid results that aid the MCDA

process.

5.3 Additional comparative discussions with scoring

methods

This subsection compares the results of the current likeli-

hood-based assignment method with those of the widely

used scoring model. The scoring model selects the alter-

native that has the highest score (or the maximum util-

ity/value). Over the past few decades, the most traditionally

representative method of the scoring model is the SAW

method. Thus, this paper conducted a comparative analysis

with the well-known SAW method to further examine the

distinct advantage of the proposed method.

In general, some tied alternatives possibly exist in the

solution results when employing most of the existing

decision-making methods to solve an MCDA problem. For

example, an alternative ties with another alternative

because of the same overall evaluation values if the SAW

method is used or because of the same closeness coeffi-

cients if the TOPSIS method is used. In particular, the

result of more than one best alternative is a sticky problem

for the decision-maker because he/she must make a hard

decision among the tied best alternatives. Consider a sim-

ple MCDA problem with two similar alternatives and three

benefit criteria in the context of IT2 TrFNs. Assume that

the three criteria are of equal importance. Because equal

importance is assigned to the three criteria, let the IT2

TrFN importance weights W1 ¼ W2 ¼ W3 ¼ ½ð1; 1; 1; 1; 1Þ;
ð1; 1; 1; 1; 1Þ� for convenience. Suppose that the IT2 TrFN

evaluative ratings are given as follows: A11 ¼ [(0.78, 0.82,

0.89, 0.91; 0.80), (0.74, 0.78, 0.92, 0.97; 1.00)], A21 ¼
[(0.78, 0.82, 0.89, 0.91; 0.80), (0.71, 0.78, 0.92, 0.97;

1.00)], A12 ¼ A22 ¼ [(0.95, 0.99, 0.99, 0.99; 0.80), (0.93,

0.98, 1.00, 1.00; 1.00)], and A13 ¼ A23 ¼ [(0.09, 0.12, 0.16,

0.18; 0.80), (0.04, 0.10, 0.18, 0.23; 1.00)]. Note that the

IT2 TrFN evaluative ratings of the alternatives z1 and z2 are

the same except for aþ111 (=0.74) in A11 and aþ121 (=0.71) in

A21. It directly follows that the fuzzy preference relation
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A11 [A21 holds. Accordingly, z1 	 z2 is the expected

solution result.

Employing the SAW method, we calculated the

weighted average value EVi (¼½EV�
i ;EV

þ
i �) of each zi 2 Z

by multiplying Aij by Wj and then summing these products

over all of the criteria in the following manner:

The computation results in the example were as follows:

EV1 ¼ [(1.82, 1.93, 2.04, 2.08; 0.80), (1.71, 1.86, 2.10,

2.20; 1.00)] and EV2 ¼ [(1.82, 1.93, 2.04, 2.08; 0.80),

(1.68, 1.86, 2.10, 2.20; 1.00)].

Next, we employed the signed distance-based method to

acquire the overall evaluation value of each alternative as

follows:

dðEViÞ ¼
1

8

�
ev�1i þ ev�2i þ ev�3i þ ev�4i þ 4 � evþ1i þ 2 � evþ2i

þ2 � evþ3i þ 4 � evþ4i þ 3 evþ2iþevþ3i � evþ1i � evþ4i
� � h�EVi

hþEVi

#

:

ð44Þ

In the example, the overall evaluation values were

derived as follows: dðEV1Þ ¼ 3.94 and dðEV2Þ ¼ 3.94. The

result of z1 � z2 was acquired via the SAW method.

Instead, we applied the proposed method to the same

decision-making problem. The following linear assignment

model was constructed:

max2:02 � P11 þ 1:00 � P12 þ 1:00 � P21 þ 1:98 � P22

s:t: P11 þ P12 ¼ 1; P21 þ P22 ¼ 1; P11 þ P21 ¼ 1;

P12 þ P22 ¼ 1;

Pik ¼ 0 or 1 for all i and k: ð45Þ

We solved the above model and acquired P�
11 ¼ P�

22 ¼ 1

and P�
12 ¼ P�

21 ¼ 0 in the optimal permutation matrix P*.

Thus, the ranking order of the alternatives is z1 	 z2.

Therefore, the priority orders of z1 and z2 can be clearly

differentiated via the proposed method.

As revealed in the respective solution results using SAW

and the proposed method, the likelihood-based assignment

method can indeed differentiate the priority orders of

similar alternatives and provide a definite complete ranking

of all alternatives for decision support. This paper estab-

lishes the likelihood-based assignment model to determine

the priority order of various alternatives. In general, the

tied situation among alternatives hardly occurs by virtue of

using the permutation matrix in the current method.

Specifically, the proposed likelihood-based assignment

method is expressed using a pure integer linear program-

ming model. The solution result of the optimal permutation

matrix can clearly differentiate the priority orders of all

alternatives and render the outranking relationship of

alternatives that have similar overall evaluation values (or

closeness coefficients if the TOPSIS method is used).

Therefore, the proposed method is appropriate for

addressing the MCDA problem if the decision-maker

cannot accept the final result of tied alternatives or would

like to obtain a crisp complete ranking order of various

alternatives. In short, differentiation of the priority orders

among similar alternatives is a distinct advantage of the

proposed method.

Combining the application results regarding the selec-

tion problem of landfill sites and the medical decision-

making problem, the usefulness of the proposed likelihood-

based assignment method for practical applications has

been demonstrated. In brief, the proposed method has

various significant advantages over the existing relevant

methods, including simple and effective computations, full

utilization of the information contained in the evaluative

ratings and importance weights, a pure integer linear pro-

gramming model that is easy to solve, and differentiation

of the priority orders among all alternatives.

6 Conclusions

In this paper, we have proposed a new approach for eval-

uating and selecting the alternatives for solving MCDA

problems in the context of IT2 TrFNs. This approach has

been developed based on the linear assignment method

with some significant modifications. First, we have estab-

lished an effective ranking procedure using the concept of

EVi ¼ ðev�1i; ev�2i; ev�3i; ev�4i; h�EVi
Þ; ðevþ1i; evþ2i; evþ3i; evþ4i; hþEVi

Þ
h i

¼
Xn

j¼1

a�1ij � w�
1j;
Xn

j¼1

a�2ij � w�
2j;
Xn

j¼1

a�3ij � w�
3j;
Xn

j¼1

a�4ij � w�
4j;min min

j
h�Aij

;min
j

h�Wj

� � !

;

"

Xn

j¼1

aþ1ij � wþ
1j;
Xn

j¼1

aþ2ij � wþ
2j;
Xn

j¼1

aþ3ij � wþ
3j;
Xn

j¼1

aþ4ij � wþ
4j;min min

j
hþAij

;min
j

hþWj

� � !#

: ð43Þ
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likelihoods to compare IT2 TrFN evaluative ratings. This

paper has employed novel concepts of lower and upper

likelihoods proposed by Chen [19] and Wang et al. [62] to

determine the likelihood of a fuzzy preference relation in

the context of IT2 TrFNs. Based on the obtained likeli-

hoods, we have employed a ranking procedure using the

optimal membership degree determination method to

identify criterion-wise preference rankings of the decision

alternatives. Consider the situation that no tied alternatives

are found when comparing the optimal degrees of mem-

bership with respect to each criterion. We have established

the concepts of a rank frequency matrix and a rank con-

tribution matrix to combine the relative performances of

the alternatives in terms of each criterion. Alternately,

concerning the fact that some tied alternatives exist when

comparing the optimal degrees of membership in regard to

at least one criterion, we have proposed the concepts of an

adjusted rank frequency matrix and an adjusted rank con-

tribution matrix. To obtain an aggregate ranking of the

alternatives, this paper has separately employed the rank

contribution matrix and the adjusted rank contribution

matrix to construct two likelihood-based assignment

models using a signed distances approach. This aggregate

ranking is an overall ranking that is in the closest agree-

ment with the criterion-wise preferences of the alternatives.

Furthermore, this paper has provided an algorithmic pro-

cedure consisting of three phases, including problem for-

mulation, likelihood-based comparisons and ranking, and

linear assignment modeling, to implement the proposed

likelihood-based assignment method for handling MCDA

problems in the context of IT2 TrFNs. The comparative

results with other relevant methods also indicate that the

effectiveness and the applicability of the proposed likeli-

hood-based assignment method were validated within the

decision environment of IT2 TrFNs.
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