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Abstract Object tracking is the process of locating

objects of interest in video frames. Challenges still exist in

handling appearance changes in object tracking for robotic

vision. In this paper, we propose a novel Dirichlet process-

based appearance model (DPAM) for tracking. By explic-

itly introducing a new model variable into the traditional

Dirichlet process, we model the negative and positive tar-

get instances as the combination of multiple appearance

models. Within each model, target instances are dynami-

cally clustered based on their visual similarity. DPAM

provides an infinite nonparametric mixture of distributions

that can grow automatically with the complexity of the

appearance data. In addition, prior off-line training or

specifying the number of mixture components (clusters or

parameters) is not required. We build a tracking system in

which DPAM is applied to cluster negative and positive

target samples and detect the new target location. Our

experimental results on real-world videos show that our

system achieves superior performance when compared

with several state-of-the-art trackers.

Keywords Computer vision � Object tracking � Dirichlet
process � Appearance model

1 Introduction

Object tracking is the process of locating objects of interest

in video frames. Tracking systems are increasingly used in

various applications such as surveillance, security and

robotic vision. Tracking in robotic vision (i.e., with moving

cameras) is considered more difficult than tracking with

static camera videos as segmenting the foreground objects

by background subtraction methods is not applicable.

Although numerous approaches have been proposed for

tracking a specific type of objects (e.g., humans [1], faces

[2], rigid objects [3], mice [4]), robust tracking of a generic

object is still a challenging problem in robotic vision

research. Specifically, one of the major challenges comes

from handling appearance variations caused by changes in

scale, pose, illumination and occlusion during tracking [5].

Current tracking methods can be grouped in two main

categories: discriminative and generative approaches [6–

15]. Discriminative approaches deal with object tracking as

a binary classification problem by finding the best location

that separates the target from the background. The classifier

can be built using off-line training. For example, Avidan

[16] trained support vector machine off-line and Lepetit

et al. [17] trained randomized trees. The main problem with

these methods is that a comprehensive training dataset that

covers all appearance variations and different backgrounds

is required beforehand. Other approaches applied adaptive

classifiers where tracking results are used for classifier

adaptation. To this end, Lim et al. [18] employed incre-

mental subspace learning; Avidan [19] applied adaptive

ensembles classifiers by constructed a feature vector for

main frame pixels. Grabner and Bischof [20] used online

boosting and Kalal et al. [21] applied bootstrapping binary

classifiers. Babenko et al. [22] used online multiple

instance learning and Williams et al. [23] sparse Bayesian
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learning. However, adaptive discriminative methods suffer

from drifting caused by the accumulation of updating

errors.

Generative approaches search in a video frame for the

most similar location based on a target appearance model

[24–27]. The previously observed target instances are used

to learn the appearance model before adopting it to the

current frame. Many generative methods employ static

appearance models (e.g., randomized trees [3]). The

training sets of static appearance models are collected

manually or from the first frame only [1, 3, 28–31]. Gen-

erally, they are unable to cope with the sudden appearance

changes, especially when prior knowledge about the target

is limited. Subsequently, adaptive appearance models are

proposed where a model is constantly updated during

tracking [32–34]. Similar to the adaptive discriminative

methods, adaptive generative approaches suffer from

drifting.

In order to characterize appearance variations and han-

dle drifting and occlusion problems, an appearance model

should have the following desired properties. First, the

capacity of the model should be adaptive to the appearance

complexity. Second, the model should be built based on

both initial target instances and online tracking results as

complete off-line training is only applicable to very limited

scenarios. Finally, for robust tracking, the performance of

the model should not heavily rely on parameter tuning for

each video.

In this paper, we propose a novel multiple appearance

model based on Dirichlet process (DP) to address the

aforementioned challenges. Our method differs from the

traditional DP by explicitly introducing a new model

variable v, which categorizes the negative and positive

target instances into different models. Within each model,

target instances are dynamically clustered based on their

visual similarity (see Fig. 1 for an illustrative example).

DPAM provides an infinite nonparametric mixture of

distributions that can grow automatically with the com-

plexity of the appearance data. In addition, prior off-line

training or specifying the number of mixture components

(clusters or parameters) is not required. We build a tracking

system in which DPAM is applied to cluster negative and

positive target samples and detect the new target location.

In our tracker, the target object can be arbitrarily chosen

with no prior knowledge except its initial location in the

first frame. Our experimental results on real-world videos

show that our system can provide stable, robust tracking in

complex scenes (e.g., with occlusions, illumination and

pose variations) and achieve superior performance when

compared with several state-of-the-art tracking systems.

The rest of this paper is organized as follows. We start

with reviewing relevant works in Sect. 2. Section 3

describes DPAM, the model structure and the Bayesian

decision in detail. Section 4 gives our tracking system.

Section 5 presents the experiment results. Finally, Sect. 6

concludes.

2 Related works

Appearance modeling has been widely used in object

tracking. In this section, we review related work in two

categories: single appearance models and multiple

appearance models.

In single appearance models, previously observed target

instances are used to train the model and then the model is

adapted to the current frame. Collins and Liu [25] utilized

target instances to learn the discriminative color features

that distinguish the target from the background. Aeschli-

man et al. [24] proposed a probabilistic framework for joint

segmentation and tracking. In [16, 19], the target is rep-

resented by a binary classifier that is learned by support

vector machine and AdaBoost, respectively. Later on,

Kalal et al. [21] used randomized trees. Grabner and

Fig. 1 Our system distributes

target instances to positive and

negative samples. Each group

instance is clustered

dynamically based on visual

similarity
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Bischof [20] proposed an online boosting method to update

an appearance model. Babenko et al. [22] applied online

multiple instance learning to build a discriminative tracker.

Zhou et al. [35] used SIFT features and mean shift. Godec

et al. [36] built a tracking system by integrating hough

forests with voting-based detection, back-projection and

rough segmentation. He et al. [37] employed locality sen-

sitive histogram to update the appearance model. Sevilla

and Miller [38] used distribution fields to represent targets

and images in tracking. However, due to the limitation of

building only one appearance model that covers all target

appearance changes, these methods update the model from

subsets of the previous target instances [16, 19, 25] or the

most recent ones [20, 22]. Therefore, they are intolerant of

sudden appearance changes.

Multiple appearance models overcome the limitation by

establishing several models and allowing each one to

represent a specific target situation [39]. Kwon and Lee

[40] decomposed the target appearance and motion into

several models and assigned a tracker for each one. Kim

et al. [41] trained and updated multiple classifiers to

capture the changes of the appearance. Liu et al. [42] used

the sparse representation to extract samples from the

training set with minimal reconstruction errors. Avidan

[19] combined multiple weak classifiers into a strong one.

Han et al. [43] applied Kalman and Particle filters to

evaluate the collected features from color and gradient

orientation histograms. However, the performance of such

models generally depends on the availability of compre-

hensive training sets and fine tuning of the model

parameters for each video.

In this paper, we propose Dirichlet process-based

appearance model (DPAM) for object tracking, which is

different from the aforementioned methods in several

ways. First, the number of mixture components (clusters or

parameters) is automatically determined based on the

complexity of the appearance data. Thus, DPAM can be

used to model various amounts of appearance changes and

is widely applicable in object tracking. Second, DPAM is

an online learning model that can handle significant and

abrupt appearance variations during tracking. Finally,

DPAM is a nonparametric method. Its performance does

not depend on hand tuning of system parameters.

3 Dirichlet process-based appearance model

In this section, we introduce DPAM in details. We begin

with an overview of Dirichlet process (DP) and our con-

tribution and modification to the traditional DP model in

Sect. 3.1, the DPAM model structure in Sect. 3.2 and

finally the Bayesian decision in Sect. 3.3.

3.1 Dirichlet process

Our goal is to learn a target appearance model during real-

time object tracking. Since the target data are unknown in

advance, the capacity of the model should adapt to the

appearance complexity. So, we need a multiple appearance

model. According to De Finetti’s theorem, the probability

distribution of infinite exchangeable observations

fx1; x2; . . .; xng is a mixture of probability distributions of

these observations. That is [44],

p x1; x2; . . .; xnð Þ ¼
Z
H
pðhÞ

Yn
i¼1

p xijhð Þdh; ð1Þ

where H is an infinite-dimensional mixture space of

probability measures and dh defines a probability measure

over distributions.

Dirichlet process (DP) [45] is a Bayesian nonparametric

probabilistic model comes under De Finetti’s theorem

where a Dirichlet random variable h with k-dimensionality

has the property: hi � 0;
Pk

i¼1 hi ¼ 1. DP describes the

distribution of h with the following probability density:

DPða; hÞ ¼
C Rk

i¼1ai
� �

Pk
i¼1C aið Þ

ha1�1
1 � � � hak�1

k ; ð2Þ

where the parameter a is a k-vector with components

ai [ 1 and C is the Gamma function.

As the number of clusters generally grows with the

number of target instances, which is unknown in advance,

an infinite DP is required where k ! 1. The equations for

the infinite DP are:

xn � p xjhmð Þ; ð3Þ
hm � G; ð4Þ
G � DP a;G0ð Þ; ð5Þ

where G0 is the base distribution and a is the concentration

parameter.

The advantage of using the infinite DP for target

instance clustering over traditional clustering methods lies

on the number of repetitions required to infer the number of

clusters. The infinite DP automatically infers the number of

clusters with a single repetition, while the traditional

clustering methods need multiple repetitions to compare

different hypotheses on the number clusters before deter-

mining the best one. Moreover, during testing, DP has the

flexibility of allowing previously unseen data to form a

new cluster.

The distribution over data partitions induced by DP is

known as a Chinese Restaurant Process (CRP) [46]. CRP

can potentially model an infinite number of mixture clus-

ters regarding the input data, where each cluster can have

infinite target’s instances. If the target’s instances
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fx1; x2; . . .; xng have occupied the clusters fh1; . . .; hmg,
when a new target’s instance xnþ1 comes, the probability of

joining or creating a new cluster is given as:

p xnþ1 2 kjx1;...;n; a
� �

¼

a
nþ a

if k ¼ hmþ1

Lk

nþ a
if k 2 h1; . . .; hm

8><
>:

9>=
>;;

ð6Þ

where n is the total number of target instances, Lk is the

number of target instances in cluster k and a the concen-

tration parameter.

When used in tracking, CRP has the nice property where

neither the number of clusters nor the number of target

instances needs to be known in advance. It can dynamically

increase the number of clusters as data grows. In this paper,

we propose a novel appearance model based on CRP to

cluster the target instances and handle the appearance

changes during tracking.

Generally, in order to detect the new location of the

target, we need to model the appearance of both the target

and its surrounding background. Thus, the proposed model,

DPAM, includes two CRPs, one for positive samples and

the other one for negative samples. Since DPAM could

have more than one CRP model, Eq. 6 is rewritten as

follows:

p xnþ1 2 kjxv1;...;n; a; v
� �

¼

a
nv þ a

if k ¼ hvmþ1

Lvk
nv þ a

if k 2 h1; . . .; h
v
m

8><
>:

9>=
>;

ð7Þ

where v is a model variable that will be explained with

details in the next section, nv is the total number of target

instances in model v, fh1; . . .; hvmg are the clusters of model

v, and Lvk is the number of target instances in cluster k.

When a new target instance comes, Eq. 7 determines the

order of the evaluation (joining an existing cluster or cre-

ating a new cluster). Specifically, it chooses the cluster

with the highest number of images first. If the similarity is

lower than the preset threshold, we move to the next

highest cluster. The hyperparameter a is set to 1 to enforce

our system to check all the existing clusters before creating

a new one.

3.2 The model structure

Our appearance model is created based on CRP proposed

by Aldous [46]. We differ from the traditional CRP by

explicitly introducing a new model variable v to categorize

data into different models. Here, we use v to indicate the

positive (target) and negative (surrounding background)

categories, while in general, v can represent any desired

categorization of the target. For example, we can build a

model for each different object in multiple object tracking.

As shown in Fig. 2, a feature vector x represents the

target instance that is used as a base for clustering. A

collection of N instances for the same tracked target is

denoted by X ¼ fx1; x2; . . .; xng. Note that both x and v are

shaded to indicate that they are observed variables.

In our model, the generative process of creating an

object instance x is given in the following steps:

1. Choose the model variable label v � pðvjbÞ for each

instance, where v ¼ f1; . . .;Vg, V is the total number

of model variables and b is a dimensional vector of a

multinomial distribution with length V.

2. Given the model variable label v, we draw a distribu-

tion by choosing hv � pðhjv; aÞ for each instance,

where h is the parameter of a multinomial distribution

for choosing the clusters; a is a V � Z matrix where

V is the total number of model variables and Z is the

total number of clusters under the model variables.

3. For each target instance:

(a) choose cluster assignment hc � MultðhvÞ
(b) choose a target instance x � pðxjhcÞ.

Given the parameters a and b, the generative equation

can be known. The joint probability of an instance mixture

h, a set of N instances x and a model variable v is:

pðx; h; vja; bÞ ¼ pðvjbÞpðhjv; aÞ
YN
n¼1

pðxnjhÞ ð8Þ

pðvjbÞ ¼ MultðvjbÞ ð9Þ

pðhjv; aÞ ¼
YV
j¼1

DPðhjajÞdðv;jÞ ð10Þ

3.3 Bayesian decision

In tracking, DPAM is employed to recognize a given target

instance x. Specifically, the probability of the model vari-

able v is computed as follows:

pðvjx; a; bÞ_ pðxjv; aÞpðvjbÞ ð11Þ

Fig. 2 Dirichlet process-based appearance model (DPAM)
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where pðvjaÞ is the probability of choosing a certain CRP,

pðxjv; aÞ is the probability of choosing a certain cluster in

that CRP, and a and b are parameters learned from the

target’s previously observed instance set. For convenience,

the distribution of pðvjbÞ is assumed to be a fixed uniform

distribution: pðvÞ ¼ 1=V , where V is the number of models.

So, Eq. 11 could be rewritten as,

pðvjx; a; bÞ_ pðxjv; aÞ: ð12Þ

The target recognition problem is solved by computing

the maximal likelihood of (x) given the model variable v:

maxv pðxjv; aÞ � pðxjv; aÞ is obtained by,

pðxjv; aÞ ¼ max
D

BDðx; ydÞ; ð13Þ

where D is the number of clusters in v, yd is the cluster

centroid feature vector of cluster d 2 D, and BD is the

Bhattacharyya distance that is computed as:

BDðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffiffiffiffiffiffiffiffiffi

xyN2
p X

I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðIÞ � yðIÞ

ps
; ð14Þ

where N is the dimension of the feature vectors.

4 Tracking system

In this section, we introduce how DPAM is used to build

the appearance model for positive and negative samples

and track the target. The pipeline of our tracker is illus-

trated in Fig. 1, and the tracking procedure is summarized

in Algorithm 1.

4.1 Target tracking

The performance of the tracking system depends mainly on

the effectiveness of the appearance model. In this paper, we

build two models using DPAM, P-DPAM for positive

samples and N-DPAM for the negative samples. In addi-

tion to the importance of choosing an effective appearance

model, the method of choosing positive and negative

samples when updating the appearance model is also

important. In our system, we applied the most common

technique for choosing positive and negative samples, in

which the patch at the current tracker location is selected as

the positive sample and the neighborhood samples around

the current tracker location are considered as negative

ones. Then, the positive sample is used to update P-DPAM

and the negative ones are used to update N-DPAM.

Before tracking starts, a user first chooses the target of

interest ‘ðxÞ�t . The system extracts the positive samples x 2
XP within an integer radius g from the given target location

XP ¼ fxjjj‘ðxÞ�t � ‘ðxÞtjj\gg. g ¼ 1 gives only one posi-

tive sample, while setting g[ 1 provides multiple positive

samples. For negative samples x 2 XN , the system extracts

patches from an annular region surrounding the target

location, defined by XN ¼ fxjw[ jj‘ðxÞ�t � ‘ðxÞtjj[xg, w
and x are parameters to control the size of the region. The

patches XP and XN are used to update P-DPAM and

N-DPAM, respectively.

In tracking, our system finds the target location ‘ðxÞ�t in
frame t by extracting and evaluating all patches X ¼
fxjjj‘ðxÞ�t�1 � ‘ðxÞtjj\cg that are within a search radius

from the previous target location ‘ðxÞ�t�1 in frame t � 1.

Based on Eq. 13, the appearance tracker first identifies the

candidate patches that have high probability belonging to

the positive cluster pðxjs ¼ P-DPAMÞ (higher than a

threshold f). Second, from the P-DPAM candidates pat-

ches, N-DPAM chooses a candidate that has lowest prob-

ability to belong to the negative appearance model

pðxjs ¼ N-DPAMÞ to consider it as the new target location

‘ðxÞ�t . If no patch is classified as positive patch in the first

step, the target is considered fully occluded. In full

occlusion, the entire frame will be used as the search-

ing area. The detailed steps of tracking are given in

Algorithm 1.

Algorithm 1 TRACKING SYSTEM
INPUT: The target location (x)∗t−1 in frame t − 1.
OUTPUT: The target location (x)∗t in frame t;

1. Extract the patches from the searching area X = {x||| (x)∗t−1 − (x)t|| < γ}.
2. P-DPAM finds the top candidates that have highest probabilities p(x|P − DPAM) (higher than

a threshold ζ). If none of candidates is chosen, the full occlusion is considered. In full occlusion,
patches are collected from the whole frame.

3. N-DPAM chooses a candidate from the top candidates that has the lowest probability p(x|N −
DPAM) to consider as new target location (x)∗t .

4. Extract the positive sample set: XP = {x||| (x)∗t − (x)t|| < η}.
5. Extract the negative sample set: XN = {x|ψ > || (x)∗t − (x)t|| > ω}.
6. Use XP and XN to update P-DPAM and N-DPAM, respectively.
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After the system detects the new tracker location, the

system extracts the positive and negative samples. The

positive samples are extracted according to XP ¼
fxjjj‘ðxÞ�t � ‘ðxÞtjj\gg and the negative samples are

extracted according to XN ¼ fxjw[ jj‘ðxÞ�t � ‘ðxÞtjj[xg.
All the positive and negative samples are used to update

P-DPAM and N-DPAM, respectively. Since the number of

clusters inN-DPAMgrows fast, we remove the cluster that is

not updated for a certain number of frames.

4.2 Image features

Image features, e.g., color and texture, that are sufficiently

robust to changes are very important for appearance

models. In general, using Gabor filter-based texture feature

in tracking gives good results, but is computationally

expensive. On the other hand, simple and fast-to-compute

texture features (e.g., SIFT) do not provide accurate

tracking results, especially in viewpoint change situations

[47]. In the literature, global (from the entire bounding box

of the object) and local (dividing the bounding box into

subregions) Hue-Saturation-Value (HSV) color histograms

are widely used as image descriptors in tracking systems

due to their robustness and simplicity [48, 49]. Following

these practices, in our system we define the target

appearance as the composition of both global and local

color histograms. As discussed in [50], human cognition

about color is mainly based on hue (H), then saturation (S)

and finally value (V). Thus, we used 24 H channels, 12 S

channels and 4 V channels. We chose a low bin number of

V channel to reduce the influence of illumination changes

[51–53]. So, a 40-bin [H ¼ 24; S ¼ 12;V ¼ 4] global HSV

color feature is extracted from the entire bounding box of

the target. In addition, the target is divided into 16 equal-

size sub-windows, and a 40-bin local color histogram is

obtained from each. Thus, the final feature vector contains

17 40-bin HSV histograms.

5 Experiments

We evaluated our appearance model (DPAM) and tracking

system on several challenging image sequences from PETS

2006 [54], AVSS 2007 [55], ViSOR [56] datasets and

publicly available video sequences [57]. These are chal-

lenging videos with multiple occlusions, pose variations,

illumination and scaling changes.

Our tracking system is compared with several state-of-the-

art trackers, i.e., tracking-learning-detection (TLD) [21],

multiple instance learning (MIL) [22], visual tracking

decomposition (VTD) [40], locality sensitive histogram

(LSH) [37] and distribution field (DF) [38]. Specifically, TLD

used positive and negative samples to train a online binary

classifier; MIL used multiple instance learning to build a

discriminative tracker; VTD applied both observation and

motionmodels; LSH employed locality sensitive histogram to

update the appearance model; and DF used distribution fields

to represent targets and images in tracking.

In our comparison, either the binary or source codes for

TLD, MIL, VTL, LSH and DF are obtained from their

authors. The same initialization and default parameter

settings are used in our evaluation. For our system, g (range
of positive samples), w and x (range of negative samples),

c (target search radius) and f (confidence threshold) are set
to 1, 20, 5, 20 and 0.95, respectively, and used for all the

video datasets evaluated in our experiments. These are the

common parameters for any detection-based tracking

algorithms. The values are typically selected based on the

size of the target and the resolution of the video.

Our tracking system is implemented using OpenCV and

C?? language on a machine that has a Quad (2.83 and

3.01 GHz) processor and 4GB RAM. The performance of

tracking is evaluated by using the mean center location

errors between the tracking results and the ground truth.

The center location error was computed for all the frames

in which a method was able to return a target location. That

is, full occlusion frames, when detected by an algorithm,

will be excluded.

5.1 Evaluation of clustering results

In this section, we show the clustering performance of

DPAM by comparing it with the Gaussian mixture model

(GMM) and the mixture model of Kotz-type distributions

(Kotz) using the expectation maximization (EM) algo-

rithm. In both cases, EM starts from some initial estimate

of model parameters and then proceeds to iteratively

update them until finding the maximum likelihood. More

specifically, GMM is a parametric probability density

function represented as a weighted sum of Gaussian com-

ponent densities. Kotz-type distribution has fatter tail

regions compared to Gaussian distribution [58]. While

Gaussian distribution is powerful in modeling rare tail

events, which often represents data with low noise, Kotz-

type distribution can be more amenable for modeling more

frequent tail events and thus may be more suitable for noisy

data. The most general form of Kotz-type distribution is

given by,

f ðx; l;RÞ ¼ cpjRj�
1
2 ðx� lÞTR�1ðx� lÞ
� �N�1

� exp �r ðx� lÞTR�1ðx� lÞ
� �sn o

; ð15Þ

where cp ¼ sCð2=pÞ
p
p
2Cð2Nþp�2=2sÞ

r2Nþp�2=2s: In Kotz-type distri-

butions, N, s and r are tuning parameters to modulate tail
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Fig. 3 Comparing clustering

results between GMM, Kotz and

DPAM
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events, and p represents the dimension of the data. In

practice, a number of special cases appeared in the litera-

ture, such as in [59–62], in which N is routinely set to 1 for

mathematical convenience. Since s and r are a pair of

covariates, we simply fix s at 1 and try a couple of different

values of r around 1
2
, the Gaussian case, to examine the fat

tail events and to demonstrate its impact on our results.

As a base for comparison, we used Davies–Bouldin

index (DBI):

DBI ¼ 1

N

XN
i¼1

max
i 6¼j

Mi þMj

d ci; cj
� �

 !
; ð16Þ

where N is the number of clusters, ck is the centroid of the

kth cluster,Mk is the average distance between all instances

in kth cluster and its centroid, and dðci; cjÞ is the distance

between the ith and jth cluster centroids. The clustering

method that produces the smallest DBI value is considered

the best.

Figure 3 summarizes the comparison, in which three

image sequences from PETS 2006, ViSOR and AVSS 2007

are used. As the number of clusters needs to be specified in

GMM and Kotz, we run it with different number of clus-

ters. Then, we run DPAM on the same image sequences

where the number of clusters is automatically determined.

Clearly, DPAM gives a higher performance in all three

image sequences.

5.2 Tracking results

In this section, we evaluated our tracker on matchmarking

videos [57] and compared it with TLD, VTD, MIL, LSH

and DF. The quantitative results are summarized in Table 1

and Fig. 4. Overall, our system provides the most accurate

and robust tracking with average speed 20 fps on the 320 �
270 frame size.

Comparative tracking results of selected frames are

presented in Fig. 5. Specifically, in Sylvester and David

videos, the tracking results for the target under lighting,

scale and pose changes are presented. Our tracker achieves

the best performance compared with all other tracking

systems. TLD and LSH provide the second best perfor-

mance on David video, and MIL provides the second best

performance on Sylvester video. Our system tracks the

whole target in all video frames with high accuracy and

robustness.

In Face Occluded 1 video, the main challenges are

severe partial occlusion and appearance changes. DF

achieved the second best performance on Face Occluded

video because it is specifically designed to handle occlu-

sion via distribution fields to represent targets and images

in tracking. MIL achieved the third best performance on

the video because it depends on patches during tracking.

This highlights the advantages of using a dynamic

appearance model. Obviously, our system tracked the tar-

get accurately in all situations and provides the most

accurate and robust results.

In Tiger 1, Sylvester, David, Tiger 2 and Coke Can

videos, the main challenges are appearance and pose

changes, fast motion and frequent severe occlusions. In all

videos, our system provides the best performance com-

paring with other systems because our tracker has the

ability to create a new cluster for abrupt appearance or pose

changes. In addition, our system keeps a target’s previous

appearance, which helps re-detect it after full or severe

occlusion.

In Dollar video, two objects have exactly the same

appearance and thus present a big challenge to track the

right one. In Surfer video, the target is small and there is a

pose and lighting changes. In Twinning video, the object

appearance is changed totally. Again, our tracker achieved

excellent tracking results on these three videos. The

robustness of our system is clearly shown. TLD provides

good performance on Surfer, but gets bad results when we

have a big appearance change, i.e., in Twinning and Dollar

videos. MIL provides similar performance as ours on

Twinning video, and LSH provides the second best per-

formance on Dollar Video.

5.3 A case study

In this section, we take a closer look at the tracking results

of Tiger 1 video to clearly illustrate the advantage of

DPAM. The video has 353 frames and many appearance

changes due to heavy occlusion, scale change, 3D-rotation

and uneven illumination. Figure 6 shows representative

frames of the target appearance changes: view angle (frame

54), scale (frame 96), occlusion (frame 120), appearance

(frame 165) and illumination (frame 306). These changes,

Table 1 The mean center location errors (pixels) between the

tracking system results and their ground truth for the videos in Fig. 5

Sequence TLD VTD MIL LSH DF OUR

David 12 28 22 12 99 11*

Dollar 65 75 22 5 80 3*

Sylvester 57 13 11 17 31 5*

Tiger 1 21 24 45 13 25 8*

Surfer 8* 25 12 15 99 10

Tiger 2 58 13 17 14 33 12*

Twinning 30 11 10* 14 37 10*

Coke 17 12 34 31 34 9*

Face occluded 1 34 18 17 31 11 10*

Bold and * indicate the best performance, and bold indicates the

second best
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Fig. 4 The center location error

plots
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Fig. 5 Comparative tracking

results of selected frames. The

tracking results by TLD, VTD,

MIL, LSH, DF and ours are

represented by cyan, blue,

green, magenta, white and red

rectangles, respectively (color

figure online)
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in turn, produce many clusters in P-DPAM. Some repre-

sentative frames in these clusters are shown in Fig. 6. Since

determining the number of clusters in advance is generally

not possible, DPAM provides a general model for tracking

by growing dynamically with the complexity of the video.

MIL, VTD, LSH and DF all lost the target (the center

location error is higher than 30) for the first time between

frames 108 and 150 (frame 120 is used to show the

tracking results), where the target changed its appearance

(scale and rotation) during occlusion. TLD first lost the

target on frame 165. The loss of tracking attributes to a

couple of reasons. First, because of the fast appearance

changes, KLT in TLD failed to track the target. Second,

these methods do not keep the target’s previous appear-

ance. Their tracking mainly depends on the online

updating of the corresponding classifier. In frame 165,

background is added to the target box by TLD, leading to

the misdetection in the subsequent frames. On the other

hand, DPAM can handled sudden appearance changes by

quickly creating a new cluster in P-DPAM. In addition,

P-DPAM explicitly keeps all the previous appearances of

the target, which are used effectively for target detection.

The percentages of correctly tracked frames are 46, 40,

70, 60, 55 and 100 % for LTD, MIL, VTD, LSH, DF and

DPAM, respectively.

In our experiments, DPAM successfully tracks all the

objects for the full length of each video sequence, which

none of other trackers can achieve. Even when other

methods track the target successfully, our method sig-

nificantly improves the tracking accuracy, evidenced by

the lowest average center location errors shown in

Table 1.

6 Conclusion

In this paper, we propose a novel Dirichlet process-based

appearance model (DPAM) to handle target appearance

changes during tracking. DPAM differs from the traditional

Dirichlet process by explicitly introducing a new model

variable v, which categorizes the negative and positive

target instances into different models and dynamically

clusters them based on visual similarity. DPAM provides

an infinite nonparametric mixture of distributions that can

grow automatically with the complexity of the appearance

data. In addition, prior off-line training or specifying the

number of mixture components (clusters or parameters) is

not required. Our tracking system with DPAM achieves

superior performance when compared with several state-of-

the-art trackers.

In the future, we plan to employ our model to more

complicated tracking problems, e.g., multiple object

tracking and deformable object tracking. Specifically,

DPAM can be modified to have a model for the back-

ground and an individual model for each target to handle

the target appearance changes. In this case, the number of

DPAM models will grow automatically regarding the

number of new targets, and the number of clusters in each

model will grow regarding the target appearance changes.
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