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Abstract Intuitionistic fuzzy sets (IFSs) are a very effi-

cient tool to depict uncertain or fuzzy information. In the

course of decision making with IFSs, intuitionistic fuzzy

aggregation operators play a very important role which has

received more and more attention in recent years. This

paper proposes a family of intuitionistic fuzzy Einstein

hybrid weighted operators, including the intuitionistic

fuzzy Einstein hybrid weighted averaging operator, the

intuitionistic fuzzy Einstein hybrid weighted geometric

operator, the quasi-intuitionistic fuzzy Einstein hybrid

weighted averaging operator, and the quasi-intuitionistic

fuzzy Einstein hybrid weighted geometric operator. All

these newly developed operators not only can weight both

the intuitionistic fuzzy arguments and their ordered posi-

tions simultaneously but also have some desirable proper-

ties, such as idempotency, boundedness, and monotonicity.

Based on these proposed operators, two algorithms are

given to solve multi-criteria single-person decision making

and multi-criteria group decision making with intuitionistic

fuzzy information, respectively. Two numerical examples

are provided to illustrate the practicality and validity of the

proposed methods and aggregation operators.

Keywords Multi-criteria single-person decision making �
Multi-criteria group decision making � Intuitionistic fuzzy

set � Intuitionistic fuzzy Einstein hybrid weighted

aggregation operator � Quasi-intuitionistic fuzzy Einstein

hybrid weighted aggregation operator

1 Introduction

Intuitionistic fuzzy set (IFS), introduced by Atanassov [1],

is the generalization of Zadeh’s fuzzy set [38]. IFS is

characterized by a membership function and a non-mem-

bership function and thus can depict the fuzzy character of

data more detailedly and comprehensively than Zadeh’s

fuzzy set which is only characterized by a membership

function. The core of an IFS is intuitionistic fuzzy number

(IFN) [25, 30], which is composed of the membership

degree and non-membership degree. Intuitionistic fuzzy

numbers (IFNs) are a very useful tool to express a decision-

maker preference information under uncertain or vague

environments. Until now, different kinds of intuitionistic

fuzzy aggregation operators, which are suitable for differ-

ent situations, have been given to aggregate IFNs. With the

help of the algebraic operational laws on IFNs, Xu [25]

developed some basic arithmetic aggregation operators,

such as the intuitionistic fuzzy weighted averaging (IFWA)

operator, the intuitionistic fuzzy ordered weighted aver-

aging (IFOWA) operator, and the intuitionistic fuzzy

hybrid averaging (IFHA) operator, for aggregating IFNs.

Xu and Yager [30] developed some basic geometric

aggregation operators, such as the intuitionistic fuzzy

weighted geometric (IFWG) operator, the intuitionistic

fuzzy ordered weighted geometric (IFOWG) operator, and

the intuitionistic fuzzy hybrid geometric (IFHG) operator,

and applied them to multiple attribute decision making

(MADM) based on IFNs. These basic aggregation opera-

tors proposed in [25, 30] have been further generalized by

using generalized means [6] and order inducing variables

[34]. Zhao et al. [42] extended the IFWA, IFOWA, and

IFHA operators and proposed a family of generalized

aggregation operators, such as the generalized IFWA

(GIFWA) operator, the generalized IFOWA (GIFOWA)
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operator, and the generalized IFHA (GIFHA) operator. Wei

[20] proposed some induced geometric aggregation oper-

ators with intuitionistic fuzzy information and applied them

to group decision making. Xia and Xu [21] proposed a

series of intuitionistic fuzzy point operations, and then they

developed various generalized intuitionistic fuzzy point

aggregation operators. These basic operators proposed in

[25, 30] had also been further generalized by combining

the knowledge of dynamic programming, Choquet integral

[3], and Dempster–Shafer theory of evidence [4]. Xu and

Yager [31] defined dynamic IFWA operator and developed

a procedure to solve the dynamic intuitionistic fuzzy

MADM problems. Tan and Chen [15] and Xu [26] used the

Choquet integral to propose some intuitionistic fuzzy

aggregation operators. Xu and Xia [29] applied Choquet

integral and Dempster–Shafer theory of evidence to

aggregate intuitionistic fuzzy information and developed

the induced generalized aggregation operators under intu-

itionistic fuzzy environments. The intuitionistic fuzzy

Bonferroni means were proposed by Xu and Yager [32],

based on which the generalized intuitionistic fuzzy Bon-

ferroni means and the geometric Bonferroni means were

established by Xia et al. [23, 24]. Yu and Xu [37] estab-

lished a collection of prioritized intuitionistic fuzzy

aggregation operators. Xu [27] proposed a class of intu-

itionistic fuzzy power aggregation operators. Zhang [39]

developed a family of generalized intuitionistic fuzzy

power geometric operators and applied them to multiple

attribute group decision making (MAGDM) with intu-

itionistic fuzzy information. Recently, Xia et al. [22]

developed some new aggregation operators for IFNs based

on Archimedean t-conorm and t-norm. Xu and Cai [28]

have provided a survey of the aggregation techniques of

intuitionistic fuzzy information and their applications in

various fields. Yu [36] developed some confidence intu-

itionistic fuzzy weighted aggregation operators, such as the

confidence intuitionistic fuzzy weighted averaging

(CIFWA) operator and the confidence intuitionistic fuzzy

weighted geometric (CIFWG) operator. Yu [35] proposed

the intuitionistic fuzzy geometric Heronian mean (IFGHM)

operator and the intuitionistic fuzzy geometric weighed

Heronian mean (IFGWHM) operator. Qin and Liu [14]

developed the intuitionistic fuzzy Maclaurin symmetric

mean (IFMSM) and the weighted intuitionistic fuzzy

Maclaurin symmetric mean (WIFMSM). Liao and Xu [12]

proposed a family of intuitionistic fuzzy hybrid weighted

aggregation operators, such as the intuitionistic fuzzy

hybrid weighted averaging operator, the intuitionistic fuzzy

hybrid weighted geometric operator, the generalized intu-

itionistic fuzzy hybrid weighted averaging operator, and

the generalized intuitionistic fuzzy hybrid weighted geo-

metric operator. Zhao et al. [40] developed some heavy

aggregation operators for aggregating intuitionistic fuzzy

information and then applied them to develop some models

for decision-making problems. Zhao et al. [43] developed

some intuitionistic fuzzy density-based aggregation oper-

ators and investigated their applications to group decision

making with intuitionistic preference relations.

It is noted that the above aggregation operators are

developed based on the basic algebraic product and alge-

braic sum of IFSs, which are not the unique operations to

model the intersection and union of IFSs. Recently,

Deschrijver and Kerre [5] have constructed a generalized

union and a generalized intersection of IFSs from a general

t-norm and t-conorm. It is well known that the product and

Einstein t-norms are two prototypical examples of the class

of strict Archimedean t-norms [11]. Thus, for an intersec-

tion of IFSs, a good alternative to the algebraic product is

the Einstein product. Equivalently, for an union of IFSs, a

good alternative to the algebraic sum is the Einstein sum.

Recently, Wang and Liu [16] developed the intuitionistic

fuzzy Einstein weighted averaging (IFEWA) operator and

the intuitionistic fuzzy Einstein ordered weighted averag-

ing (IFEOWA) operator. Yu [36] proposed the confidence

intuitionistic fuzzy Einstein weighted averaging

(CIFEWA) operator and the confidence intuitionistic fuzzy

Einstein weighted geometric (CIFEWG) operator. Wang

and Liu [17] further developed the intuitionistic fuzzy

Einstein weighted geometric (IFEWG) operator and the

intuitionistic fuzzy Einstein ordered weighted geometric

(IFEOWG) operator. Wang and Liu [16, 17] have also

proven that the IFEWA, IFEWG, IFEOWA, and IFEOWG

operators have the following properties: idempotency,

boundedness, and monotonicity. It is noted that the IFEWA

and IFEWG operators can be used to weight the intu-

itionistic fuzzy arguments, but ignore the importance

degrees of the ordered positions of the arguments, whereas

the IFOWA and IFOWG operators only weight the ordered

position of each given argument, but ignore the importance

degrees of the given arguments. To solve this drawback,

Zhao and Wei [41] proposed the intuitionistic fuzzy Ein-

stein hybrid averaging (IFEHA) operator and the intu-

itionistic fuzzy Einstein hybrid geometric (IFEHG)

operator to aggregate intuitionistic fuzzy arguments, which

weight both the given arguments and their ordered posi-

tions simultaneously. However, these two operators have a

flaw that they do not satisfy some basic properties such as

idempotency and boundedness, which are desirable for

aggregating a finite collection of IFNs. To circumvent this

issue, motivated by the hybrid weighted arithmetical

averaging (HWAA) operator proposed by Lin and Jiang

[13], we in this paper aim at developing some new intu-

itionistic fuzzy Einstein hybrid weighted aggregation

operators, which not only weight the given arguments and

their ordered positions simultaneously but also maintain

those basic properties. The proposed intuitionistic fuzzy
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Einstein hybrid weighted aggregation operators are gener-

alizations of the HWAA operator within the context of

IFSs. In addition, inspired by the quasi-arithmetical aver-

age [7, 9], we extend our proposed operator to more gen-

eral forms and develop the quasi-intuitionistic fuzzy

Einstein hybrid weighted averaging (QIFEHWA) operator

and the quasi-intuitionistic fuzzy Einstein hybrid weighted

geometric (QIFEHWG) operator. Moreover, we also give

some procedures based on our proposed operators for

multi-criteria single-person decision making and multi-

criteria group decision making under intuitionistic fuzzy

environments.

This paper is organized as follows. Section 2 gives some

fundamental knowledge of IFS and the intuitionistic fuzzy

Einstein aggregation operators. Section 3 develops the

intuitionistic fuzzy Einstein hybrid weighted averaging

(IFEHWA) operator and the intuitionistic fuzzy Einstein

hybrid weighted geometric (IFEHWG) operator. Some

desired properties of these two operators are also investi-

gated in this section. Section 4 extends the IFEHWA and

IFEHWG operators to the quasi-IFEHWA and the quasi-

IFEHWG operators, respectively. In Sect. 5, we apply our

proposed operators to develop two methods for multi-cri-

teria single-person decision making and multi-criteria

group decision making under intuitionistic fuzzy environ-

ments. Meanwhile, two practical examples are given to

illustrate the validity and applicability of the proposed

methods. The paper is concluded in Sect. 6.

2 Preliminaries

2.1 Intuitionistic fuzzy sets and intuitionistic fuzzy

numbers

Definition 2.1 [1]. Let X be a fixed set, an intuitionistic

fuzzy set (IFS) on X is defined as:

A ¼ x; lA xð Þ; mA xð Þh ijx 2 Xf g ð1Þ

which assigns to each element x 2 X a membership infor-

mation lA xð Þ and a non-membership information mA xð Þ,
with the conditions that

0� lA xð Þ; mA xð Þ� 1; lA xð Þ þ mA xð Þ� 1; 8x 2 X: ð2Þ

Furthermore, pA xð Þ ¼ 1� lA xð Þ � mA xð Þ (8x 2 X) is

called a hesitancy degree or intuitionistic index of x in A.

In the special case pA xð Þ ¼ 0, 8x 2 X, i.e.,

lA xð Þ þ mA xð Þ ¼ 1, 8x 2 X, the IFS A reduces to a fuzzy

set [38].

Xu and Yager [30] called each pair lA xð Þ; mA xð Þð Þ an

intuitionistic fuzzy number (IFN) and, for convenience,

denoted an IFN by a ¼ la; mað Þ, where

0� la; ma � 1; la þ ma � 1: ð3Þ

For convenience, let M be the set of all the intuitionistic

fuzzy numbers (IFNs).

For an IFN a ¼ la; mað Þ, Chen and Tan [2] introduced

the score function s að Þ to get the score of a. Later, Hong
and Choi [10] defined the accuracy function h að Þ to

evaluate the accuracy degree of a:

s að Þ ¼ la � ma ð4Þ
h að Þ ¼ la þ ma ð5Þ

Based on the score function and the accuracy function,

Xu and Yager [30] gave an order relation between any two

IFNs:

Definition 2.2 [30]. Let ai ¼ lai ; mai
� �

(i ¼ 1; 2) be any

two IFNs, s aið Þ and h aið Þ (i ¼ 1; 2) be the scores

and accuracy degrees of ai (i ¼ 1; 2), respectively, and

then

1. If s a1ð Þ[ s a2ð Þ, then a1 [ a2;
2. If s a1ð Þ ¼ s a2ð Þ, then

If h a1ð Þ[ h a2ð Þ, then a1 [ a2;
If h a1ð Þ ¼ h a2ð Þ, then a1 ¼ a2.

2.2 Einstein t-conorm and t-norm

The set theoretical operators have had an important role

since in the beginning of fuzzy set (FS) theory. Starting

from Zadeh’s operators min and max, many other

operators were introduced in the fuzzy set literature [38].

All types of the particular operators were included in the

general concepts of the t-norms and t-conorms [8, 11],

which satisfy the requirements of the conjunction and

disjunction operators, respectively. The t-norms T and

t-conorms S are the most general families of binary

functions that map the unit square into the unit interval,

i.e., T : 0; 1½ �2! 0; 1½ � and S : 0; 1½ �2! 0; 1½ �, and they are

related by the De Morgan duality, i.e., the t-conorm s

can be defined as S a; bð Þ ¼ 1� T 1� a; 1� bð Þ,
8a; b 2 0; 1½ �.

Based on a t-norm and t-conorm, Deschrijver and Kerre

[5] proposed a generalized intersection and a generalized

union of intuitionistic fuzzy sets (IFSs).

Definition 2.3 [5]. Let A ¼ x; lA xð Þ; mA xð Þh ijx 2 Xf g and

B ¼ x; lB xð Þ; mB xð Þh ijx 2 Xf g be any two IFSs, and then

the generalized intersection and generalized union between

A and B are proposed as follows:

A \T ;S B ¼ x; T lA xð Þ; lB xð Þð Þ; S mA xð Þ; mB xð Þð Þh ijx 2 Xf g
ð6Þ
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A [T;S B ¼ x; S lA xð Þ; lB xð Þð Þ; T mA xð Þ; mB xð Þð Þh ijx 2 Xf g ð7Þ

where any pair of dual t-norm T and t-conorm S can be

used.

Definition 2.4 Let ai ¼ lai ; mai
� �

(i ¼ 1; 2) be any two

IFNs, and then the generalized intersection and generalized

union between a1 and a2 are defined as follows:

a1 �T ;S a2 ¼ T la1 ; la2
� �

; S ma1 ; ma2ð Þ
� �

ð8Þ

a1 �T ;S a2 ¼ S la1 ; la2
� �

; T ma1 ; ma2ð Þ
� �

ð9Þ

where any pair of dual t-norm T and t-conorm S can be

used.

Various t-norms and t-conorms families can be used to

perform the corresponding intersections and unions of

IFNs. As examples of t-norms and t-conorms, Einstein

product TE and Einstein sum SE are defined as follows [11]:

TE a; bð Þ ¼ a � b
1þ 1� að Þ � 1� bð Þ ; SE a; bð Þ ¼ aþ b

1þ a � b ;

8a; b 2 0; 1½ � ð10Þ

2.3 Einstein operations of intuitionistic fuzzy

numbers

Motivated by Eq. (10), the Einstein product a1 �E a2 and

Einstein sum a1 �E a2 on two IFNs a1 ¼ la1 ; ma1
� �

and

a2 ¼ la2 ; ma2
� �

are defined as follows [16, 17]:

a1 �E a2 ¼
la1la2

1þ 1� la1
� �

1� la2
� � ;

ma1 þ ma2
1þ ma1ma2

 !

ð11Þ

a1 �E a2 ¼
la1 þ la2
1þ la1la2

;
ma1ma2

1þ 1� ma1ð Þ 1� ma2ð Þ

� �
ð12Þ

ka ¼ 1þ lað Þk� 1� lað Þk

1þ lað Þkþ 1� lað Þk
;

2mka
2� mað Þkþmka

 !

; k[ 0

ð13Þ

ak ¼ 2lka
2� lað Þkþlka

;
1þ mað Þk� 1� mað Þk

1þ mað Þkþ 1� mað Þk

 !

; k[ 0

ð14Þ

Based on the above Einstein operations of IFNs, a

series of intuitionistic fuzzy Einstein aggregation opera-

tors were developed to aggregate intuitionistic fuzzy

information:

Definition 2.5 [16, 17]. Let ai ¼ lai ; mai
� �

(i ¼ 1; 2;

. . .; n) be a collection of IFNs, and let w ¼

w1;w2; . . .;wnð ÞT be the weight vector of ai (i ¼ 1; 2; . . .; n)

with wi 2 0; 1½ � and
Pn

i¼1 wi ¼ 1, and then

1. An intuitionistic fuzzy Einstein weighted averaging

(IFEWA) operator is a mapping IFEWA : Mn ! M,

such that

IFEWA a1; a2; . . .; anð Þ ¼ �
n

i¼1
wiaið Þ

¼
Qn

i¼1 1þ lai
� �wi �

Qn
i¼1 1� lai
� �wi

Qn
i¼1 1þ lai
� �wi þ

Qn
i¼1 1� lai
� �wi

;

 

2
Qn

i¼1 m
wi
aiQn

i¼1 2� maið Þwi þ
Qn

i¼1 m
wi
ai

!
ð15Þ

2. An intuitionistic fuzzy Einstein weighted geometric

(IFEWG) operator is a mapping IFEWG : Mn ! M,

where

IFEWG a1; a2; . . .; anð Þ ¼ �
n

i¼1
awi

ið Þ

¼
2
Qn

i¼1 l
wi
aiQn

i¼1 2� lai
� �wi þ

Qn
i¼1 l

wi
ai

;

 

Qn
i¼1 1þ maið Þwi �

Qn
i¼1 1� maið Þwi

Qn
i¼1 1þ maið Þwi þ

Qn
i¼1 1� maið Þwi

!
ð16Þ

Based on the idea of the ordered weighted averaging

(OWA) operator [33], the following operators can be

defined:

Definition 2.6 [16, 17]. Let ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n) be a collection of IFNs, ar ið Þ be the ith

largest of them, and x ¼ x1;x2; . . .;xnð ÞT be the aggre-

gation-associated vector such that xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, and then

1. An intuitionistic fuzzy Einstein ordered weighted

averaging (IFEOWA) operator IFEOWA : Mn ! M,

where

IFEOWA a1; a2; . . .; anð Þ ¼ �
n

i¼1
xiar ið Þ
� �

¼
Qn

i¼1 1þ lar ið Þ

� �xi

�
Qn

i¼1 1� lar ið Þ

� �xi

Qn
i¼1 1þ lar ið Þ

� �xi

þ
Qn

i¼1 1� lar ið Þ

� �xi
;

0

B@

2
Qn

i¼1 m
xi
ar ið Þ

Qn
i¼1 2� mar ið Þ

� �xi

þ
Qn

i¼1 m
xi
ar ið Þ

1

CA

ð17Þ
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2. An intuitionistic fuzzy Einstein ordered weighted

geometric (IFEOWG) operator IFEOWG : Mn ! M,

where

IFEOWG a1; a2; . . .; anð Þ ¼ �
n

i¼1
axi

r ið Þ

� �

¼
2
Qn

i¼1 l
xi
ar ið Þ

Qn
i¼1 2� lar ið Þ

� �xi

þ
Qn

i¼1 l
xi
ar ið Þ

;

0

B@

Qn
i¼1 1þ mar ið Þ

� �xi

�
Qn

i¼1 1� mar ið Þ

� �xi

Qn
i¼1 1þ mar ið Þ

� �xi

þ
Qn

i¼1 1� mar ið Þ

� �xi

1

CA

ð18Þ

It is noted that the IFEWA and IFEWG operators only

weight the intuitionistic fuzzy arguments themselves, but

ignore the importance of the ordered position of the argu-

ments, while the IFEOWA and IFEOWG operators only

weight the ordered position of each given arguments, but

ignore the importance of the arguments. To solve this

drawback, Zhao and Wei [41] introduced some hybrid

aggregation operators for intuitionistic fuzzy arguments,

which weight all the given arguments and their ordered

positions.

Definition 2.7 [41]. For a collection of IFNs ai ¼
lai ; mai
� �

(i ¼ 1; 2; . . .; n), k ¼ k1; k2; . . .; knð ÞT is the

weight vector of them with ki 2 0; 1½ � and
Pn

i¼1 ki ¼ 1,

where n is the balancing coefficient which plays a role of

balance, and then we define the following aggregation

operators, which are all based on the mapping Mn ! M

with an aggregation-associated vector x ¼
x1;x2; . . .;xnð ÞT such that xi 2 0; 1½ � and

Pn
i¼1 xi ¼ 1:

1. The intuitionistic fuzzy Einstein hybrid averaging

(IFEHA) operator:

IFEHA a1; a2; . . .; anð Þ ¼ �
n

i¼1
xi _ar ið Þ
� �

¼
Qn

i¼1 1þ _lar ið Þ

� �xi

�
Qn

i¼1 1� _lar ið Þ

� �xi

Qn
i¼1 1þ _lar ið Þ

� �xi

þ
Qn

i¼1 1� _lar ið Þ

� �xi
;

0

B@

2
Qn

i¼1 _mxi
ar ið Þ

Qn
i¼1 2� _mar ið Þ

� �xi

þ
Qn

i¼1 _mxi
ar ið Þ

1

CA ð19Þ

where _ar ið Þ ¼ _lar ið Þ
; _mar ið Þ

� �
is the ith largest of _ak ¼

_lak ; _mak
� �

¼ nkkak (k ¼ 1; 2; . . .; n).

2. The intuitionistic fuzzy Einstein hybrid geometric

(IFEHG) operator:

IFEHG a1; a2; . . .; anð Þ ¼ �
n

i¼1
€axi

r ið Þ

� �

¼
2
Qn

i¼1 €l
xi
ar ið Þ

Qn
i¼1 2� €lar ið Þ

� �xi

þ
Qn

i¼1 €l
xi
ar ið Þ

;

0

B@

Qn
i¼1 1þ €mar ið Þ

� �xi

�
Qn

i¼1 1� €mar ið Þ

� �xi

Qn
i¼1 1þ €mar ið Þ

� �xi

þ
Qn

i¼1 1� €mar ið Þ

� �xi

1

CA

ð20Þ

where €ar ið Þ ¼ €lar ið Þ
; €mar ið Þ

� �
is the ith largest of

€ak ¼ €lak ; €mak
� �

¼ ankkk , (k ¼ 1; 2; . . .; n).

Particularly, if x ¼ 1
n
; 1
n
; . . .; 1

n

� �T
, then the IFEHA and

IFEHG operators reduce to the IFEWA and IFEWG

operators, respectively; if k ¼ 1
n
; 1
n
; . . .; 1

n

� �T
, then the

IFEHA and IFEHG operators reduce to the IFEOWA and

IFEOWG operators, respectively.

3 Some new intuitionistic fuzzy Einstein hybrid
weighted aggregation operators

3.1 Intuitionistic fuzzy Einstein hybrid weighted

averaging operators

Although the IFEHA (IFEHG) operator generalizes both

the IFEWA (IFEWG) and IFEOWA (IFEOWG) operators

and reflects both the given importance and the ordered

position of the arguments, there is a flaw that the IFEHA

(IFEHG) operator does not satisfy some desirable proper-

ties, such as boundedness and idempotency. An example

can be used to illustrate this drawback.

Example 3.1 Assume a1 ¼ 0:7; 0:3ð Þ, a2 ¼ 0:7; 0:3ð Þ, and
a3 ¼ 0:7; 0:3ð Þ are three IFNs, whose weight vector is k ¼
1; 0; 0ð ÞT and the aggregation-associated vector is also

x ¼ 1; 0; 0ð ÞT . Then,
_a1 ¼ 3� 1� a1 ¼ 3a1

¼ 1þ 0:7ð Þ3� 1� 0:7ð Þ3

1þ 0:7ð Þ3þ 1� 0:7ð Þ3
;

2� 0:33

2� 0:3ð Þ3þ0:33

 !

¼ 0:9891; 0:0109ð Þ

_a2 ¼ 3� 0� a2 ¼ 0a2

¼ 1þ 0:7ð Þ0� 1� 0:7ð Þ0

1þ 0:7ð Þ0þ 1� 0:7ð Þ0
;

2� 0:30

2� 0:3ð Þ0þ0:30

 !

¼ 0; 1ð Þ
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_a3 ¼ 3� 0� a3 ¼ 0a3

¼ 1þ 0:7ð Þ0� 1� 0:7ð Þ0

1þ 0:7ð Þ0þ 1� 0:7ð Þ0
;

2� 0:30

2� 0:3ð Þ0þ0:30

 !

¼ 0; 1ð Þ

Since s _a1ð Þ[ s _a2ð Þ ¼ s _a3ð Þ, thus _ar 1ð Þ ¼ _a1, _ar 2ð Þ ¼ _a2,
and _ar 3ð Þ ¼ _a3. By using Eq. (19), we have

IFEHA a1; a2; a3ð Þ ¼ �
3

i¼1
xi _ar ið Þ
� �

¼
Q3

i¼1 1þ _lar ið Þ

� �xi

�
Q3

i¼1 1� _lar ið Þ

� �xi

Q3
i¼1 1þ _lar ið Þ

� �xi

þ
Q3

i¼1 1� _lar ið Þ

� �xi
;

0

B@

2
Q3

i¼1 _mxi
ar ið Þ

Q3
i¼1 2� _mar ið Þ

� �xi

þ
Q3

i¼1 _mxi
ar ið Þ

1

CA ¼ 0:9891; 0:0109ð Þ

Obviously, IFEHA a1; a2; a3ð Þ 6¼ 0:7; 0:3ð Þ and

IFEHA a1; a2; a3ð Þ[ 0:7; 0:3ð Þ ¼ max1� i� 3 aif g.
Analogously,

€a1 ¼ a3�1
1 ¼ a31

¼ 2� 0:73

2� 0:7ð Þ3þ0:73
;
1þ 0:3ð Þ3� 1� 0:3ð Þ3

1þ 0:3ð Þ3þ 1� 0:3ð Þ3

 !

¼ 0:2701; 0:7299ð Þ

€a2 ¼ a3�0
2 ¼ a02

¼ 2� 0:70

2� 0:7ð Þ0þ0:70
;
1þ 0:3ð Þ0� 1� 0:3ð Þ0

1þ 0:3ð Þ0þ 1� 0:3ð Þ0

 !

¼ 1; 0ð Þ

€a3 ¼ a3�0
3 ¼ a03

¼ 2� 0:70

2� 0:7ð Þ0þ0:70
;
1þ 0:3ð Þ0� 1� 0:3ð Þ0

1þ 0:3ð Þ0þ 1� 0:3ð Þ0

 !

¼ 1; 0ð Þ

Since s €a2ð Þ ¼ s €a3ð Þ[ s €a1ð Þ, thus €ar 1ð Þ ¼ a2, €ar 2ð Þ ¼ a3,
and €ar 3ð Þ ¼ a1. By using Eq. (20), we have

IFEHG a1; a2; a3ð Þ ¼ �
3

i¼1
€axi

r ið Þ

� �

¼
2
Q3

i¼1 €l
xi
ar ið Þ

Q3
i¼1 2� €lar ið Þ

� �xi

þ
Q3

i¼1 €l
xi
ar ið Þ

;

0

B@

Q3
i¼1 1þ €mar ið Þ

� �xi

�
Q3

i¼1 1� €mar ið Þ

� �xi

Q3
i¼1 1þ €mar ið Þ

� �xi

þ
Q3

i¼1 1� €mar ið Þ

� �xi

1

CA ¼ 1; 0ð Þ

Obviously, IFEHG a1; a2; a3ð Þ 6¼ 0:7; 0:3ð Þ and

IFEHG a1; a2; a3ð Þ[ 0:7; 0:3ð Þ ¼ max1� i� 3 aif g.
Since boundedness and idempotency are the most

important properties for every aggregation operators [13],

but the IFEHA and IFEHG operators do not meet these

basic properties, we need to develop some new hybrid

aggregation operators which also weight the importance of

each argument and its ordered position simultaneously. In

this section below, we focus on solving this problem and

try to develop some new hybrid operators for IFNs.

Consider the IFEOWA operator given as Eq. (17), it can

be equivalently written as:

IFEOWA a1; a2; . . .; anð Þ ¼ �
n

i¼1
xr�1 ið Þai
� �

ð21Þ

where r�1 : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the inverse

permutation of r. ai is the r�1 ið Þth largest element of the

collection of IFNs ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n). Let

e ¼ r�1, and then Eq. (21) can also be written as

IFEOWA a1; a2; . . .; anð Þ ¼ �
n

i¼1
xe ið Þai
� �

ð22Þ

It is clear that ai is the e ið Þth largest element of the

collection of IFNs ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n). Moti-

vated by this, supposing the weighting vector of the

elements is k ¼ k1; k2; . . .; knð ÞT , in order to weight the

position and the element simultaneously, we can use such a

form as �n
i¼1 kixe ið Þai
� �

, which weights both the position

and the element. After normalization, a new intuitionistic

fuzzy Einstein hybrid weighted averaging operator can be

generated.

Definition 3.1 For a collection of IFNs ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n), an intuitionistic fuzzy Einstein hybrid

weighted averaging (IFEHWA) operator is a mapping

IFEHWA : Mn ! M, defined by an associated weighting

vector x ¼ x1;x2; . . .;xnð ÞT with xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, such that

IFEHWA a1; a2; . . .; anð Þ ¼ �
n

i¼1

kixe ið ÞPn
i¼1 kixe ið Þ

ai

� �
ð23Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation

such that ai is the e ið Þth largest element of the collection of

IFNs ai (i ¼ 1; 2; . . .; n), and k ¼ k1; k2; . . .; knð ÞT is the

weighting vector of the IFNs ai (i ¼ 1; 2; . . .; n), with ki 2
0; 1½ � and

Pn
i¼1 ki ¼ 1.

By using the different manifestation of weighting vec-

tor, the IFEHWA operator can be reduced into some spe-

cial cases. For example, if the associated weighting vector

x ¼ 1
n
; 1
n
; . . .; 1

n

� �T
, then the IFEHWA operator reduces to

the IFEWA operator (Eq. 15); if k ¼ 1
n
; 1
n
; . . .; 1

n

� �T
, then

the IFEHWA operator reduces to the IFEOWA operator

(Eq. 17). It must be pointed out that the weighting opera-

tion of the ordered position can be synchronized with the

weighting operation of the given importance by the
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IFEHWA operator. This characteristic is different from the

IFEHA operator.

Based on Eq. (15), we can easily obtain the following

result.

Theorem 3.1 For a collection of IFNs ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n), the aggregated value by using the

IFEHWA operator is also an IFN, and

IFEHWA a1;a2; . . .;anð Þ

¼
Qn

i¼1 1þ lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ �

Qn
i¼1 1� lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn
i¼1 1þ lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 1� lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

;

0

@

2
Qn

i¼1 m
kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

ai

Qn
i¼1 2� maið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

1

A

ð24Þ

where x ¼ x1;x2; . . .;xnð ÞT is an associated weighting

vector with xi 2 0; 1½ � and
Pn

i¼1 xi ¼ 1, e :
1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that ai

is the e ið Þth largest element of the collection of IFNs ai
(i ¼ 1; 2; . . .; n), and k ¼ k1; k2; . . .; knð ÞT is the weighting

vector of the IFNs ai (i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � andPn
i¼1 ki ¼ 1.

Example 3.2 Let a1 ¼ 0:4; 0:5ð Þ, a2 ¼ 0:7; 0:1ð Þ, and

a3 ¼ 0:6; 0:3ð Þ be three IFNs, whose weight vector is k ¼
0:2; 0:5; 0:3ð ÞT and the aggregation-associated vector is

x ¼ 0:1; 0:7; 0:2ð ÞT .
At first, comparing a1, a2, and a3 by using the score

function given as Eq. (4), we have s a1ð Þ ¼ �0:1,

s a2ð Þ ¼ 0:6, and s a3ð Þ ¼ 0:3. Since s a2ð Þ[ s a3ð Þ[
s a1ð Þ, we obtain a2 [ a3 [ a1 and hence e 1ð Þ ¼ 3,

e 2ð Þ ¼ 1, and e 3ð Þ ¼ 2. Then,

k1xe 1ð Þ
P3

i¼1 kixe ið Þ
¼ 0:2� 0:2

0:2� 0:2þ 0:5� 0:1þ 0:3� 0:7

¼ 0:1333;
k2xe 2ð Þ

P3
i¼1 kixe ið Þ

¼ 0:1667;
k1xe 1ð Þ

P3
i¼1 kixe ið Þ

¼ 0:7000

Then, by using Eq. (24), we can calculate that

IFEHWA a1; a2; a3ð Þ ¼ 0:5956; 0:2714ð Þ.

Theorem 3.2 (Idempotency). Let ai (i ¼ 1; 2; . . .; n) be a

collection of IFNs, and if all ai (i ¼ 1; 2; . . .; n) are equal,

i.e., ai ¼ a ¼ la; mað Þ, for all i, then
IFEHWA a1; a2; . . .; anð Þ ¼ IFEHWA a; a; . . .; að Þ ¼ a

ð25Þ

Proof According to Definition 3.1 and Theorem 3.1, we

have

IFEHWA a1; a2; . . .; anð Þ ¼ IFEHWA a; a; . . .; að Þ

¼
Qn

i¼1 1þ lað Þ kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ �

Qn
i¼1 1� lað Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn
i¼1 1þ lað Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 1� lað Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

;

 

2
Qn

i¼1 m
kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

a

Qn
i¼1 2� mað Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

a

1

A

¼ la; mað Þ ¼ a

This completes the proof. h

Theorem 3.3 (Boundedness). Let ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n) be a collection of IFNs, and

a� ¼ mini lai
� 	

;maxi maif g
� �

;
aþ ¼ maxi lai

� 	
;mini maif g

� �

and then

a� � IFEHWA a1; a2; . . .; anð Þ� aþ ð26Þ

Proof Let IFEHWA a1; a2; . . .; anð Þ ¼ a ¼ la; mað Þ.
According to Theorem 3.1, we have

la ¼
Qn

i¼1 1þ lai
� � kixeðiÞð Þ=

Pn

i¼1
kixeðiÞ �

Qn
i¼1 1� lai
� � kixeðiÞð Þ=

Pn

i¼1
kixeðiÞ

Qn
i¼1 1þ lai
� � kixeðiÞð Þ=

Pn

i¼1
kixeðiÞ þ

Qn
i¼1 1� lai
� � kixeðiÞð Þ=

Pn

i¼1
kixeðiÞ

ma ¼
2
Qn

i¼1 m
kixeðiÞð Þ=

Pn

i¼1
kixeðiÞ

ai

Qn
i¼1 2� maið Þ kixeðiÞð Þ=

Pn

i¼1
kixeðiÞ þ

Qn
i¼1 m

kixeðiÞð Þ=
Pn

i¼1
kixv

ai

Firstly, la can be equivalently written as:

la ¼ 1� 2

1þ
Qn

i¼1

1þlai
1�lai

� � kixeðiÞð Þ=
Pn

i¼1
kixeðiÞ

Let f xð Þ ¼ 1þx
1�x

, x 2 0; 1½ �; then, f 0 xð Þ ¼ 2

1�xð Þ2 [ 0; thus,

f xð Þ is an increasing function. Since mini lai
� 	

�
lai � maxi lai

� 	
, for all i, then f mini lai

� 	� �
� f lai
� �

�

f maxi lai
� 	� �

, for all i, i.e.,
1þmini laif g
1�mini laif g � 1þlai

1�lai
�

1þmaxi laif g
1�maxi laif g, for all i. Therefore, we have

mini lai
� 	

¼ 1� 2

1þ
Qn

i¼1

1þmini laif g
1�mini laif g

� � kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

� 1� 2

1þ
Qn

i¼1

1þlai
1�lai

� � kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

¼la

� 1� 2

1þ
Qn

i¼1

1þmaxi laif g
1�maxi laif g

� � kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

¼ maxi lai
� 	

ð27Þ
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Secondly, ma can be equivalently written as:

ma ¼
2

1þ
Qn

i¼1

2�mai
mai

� � kixeðiÞð Þ=
Pn

i¼1
kixeðiÞ

Let g yð Þ ¼ 2�y
y
, y 2 0; 1½ �; then, g0 yð Þ ¼ �2

y2
\0; thus,

g yð Þ is an decreasing function. Since mini maif g� mai
� maxi maif g, for all i, then g maxi maif gð Þ�

g maið Þ� g mini maif gð Þ, for all i, i.e.,
2�maxi maif g
maxi maif g �

2�mai
mai

� 2�mini maif g
mini maif g , for all i. Therefore, we have

mini maif g ¼ 2

1þ
Qn

i¼1

2�mini maif g
mini maif g

� � kixeðiÞð Þ=
Pn

i¼1
kixeðiÞ

� 2

1þ
Qn

i¼1

2�mai
mai

� � kixeðiÞð Þ=
Pn

i¼1
kixeðiÞ

¼ ma

� 1� 2

1þ
Qn

i¼1

2�maxi maif g
maxi maif g

� � kixeðiÞð Þ=
Pn

i¼1
kixeðiÞ

¼ maxi maif g

ð28Þ

Then, according to Eq. (4), we obtain

s að Þ ¼ la � ma � maxi lai
� 	

�mini maif g ¼ s aþð Þ;
s að Þ ¼ la � ma 	 mini lai

� 	
�maxi maif g ¼ s a�ð Þ

If s að Þ ¼ s aþð Þ and s að Þ[ s a�ð Þ, then by Definition

2.2, a�\IFEHWA a1; a2; . . .; anð Þ\aþ.
If s að Þ ¼ s aþð Þ, i.e., la � ma ¼ maxi lai

� 	
�mini maif g,

then by Eqs. (27) and (28), it follows that la ¼ maxi lai
� 	

and ma ¼ mini maif g; thus, h að Þ ¼ la þ ma ¼ maxi lai
� 	

þ
mini maif g ¼ h aþð Þ, which implies that IFEHWA

a1; a2; . . .; anð Þ ¼ aþ.
If s að Þ ¼ s aþð Þ, i.e., la � ma ¼ mini lai

� 	
�maxi maif g,

then by Eqs. (39) and (42), we have la ¼ mini lai
� 	

and

ma ¼ maxi maif g; thus, h að Þ ¼ la þ ma ¼ mini lai
� 	

þ
maxi maif g ¼ h a�ð Þ, which implies that a� ¼ IFEHWA

a1; a2; . . .; anð Þ.
From the above analysis, we can conclude that Eq. (26)

always holds. h

Theorem 3.4 (Monotonicity). Let ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n) and bi ¼ lbi ; mbi

� �
(i ¼ 1; 2; . . .; n) be two

collections of IFNs. Assume that x ¼ x1;x2; . . .;xnð ÞT is

an associated weighting vector with xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the per-

mutation such that ai is the e ið Þth largest element of the

collection of IFNs ai (i ¼ 1; 2; . . .; n), d : 1; 2; . . .; nf g !
1; 2; . . .; nf g is the permutation such that bi is the d ið Þth

largest element of the collection of IFNs bi (i ¼ 1; 2; . . .; n),

and k ¼ k1; k2; . . .; knð ÞT is the weighting vector of the

IFNs ai and bi (i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � andPn
i¼1 ki ¼ 1. If lai � lbi , mai 	 mbi , and e ið Þ ¼ d ið Þ, for all i,

then

IFEHWA a1; a2; . . .; anð Þ� IFEHWA b1; b2; . . .; bnð Þ ð29Þ

Proof Let IFEHWA a1; a2; . . .; anð Þ ¼ a and IFEHWA

b1; b2; . . .; bnð Þ ¼ b. Let f xð Þ ¼ 1þx
1�x

, x 2 0; 1½ �; then, it is an
increasing function. If lai � lbi , for all i, then f lai

� �
�

f lbi

� �
, i.e.,

1þlai
1�lai

� 1þlbi
1�lbi

, for all i. Therefore, we have

la¼
Qn

i¼1 1þlai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ �

Qn
i¼1 1�lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn
i¼1 1þlai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 1�lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

¼1� 2

1þ
Qn

i¼1

1þlai
1�lai

� � kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

�1� 2

1þ
Qn

i¼1

1þlbi
1�lbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

¼
Qn

i¼1 1þlbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

�
Qn

i¼1 1�lbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

Qn
i¼1 1þlbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

þ
Qn

i¼1 1�lbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

¼lb

ð30Þ

Let g yð Þ ¼ 2�y
y
, y 2 0; 1½ �; then, it is an decreasing

function. If mai 	 mbi , for all i, then g maið Þ� g mbi
� �

, i.e.,
2�mai
mai

� 2�mbi
mbi

, for all i. Therefore, we have

ma ¼
2
Qn

i¼1 m
kixeðiÞð Þ=

Pn

i¼1
kixeðiÞ

ai

Qn
i¼1 2� maið Þ kixe ið Þð Þ=

Pn

i¼1
kixeðiÞ þ

Qn
i¼1 m

kixeðiÞð Þ=
Pn

i¼1
kixeðiÞ

ai

¼ 2

1þ
Qn

i¼1

2�mai
mai

� � kixeðiÞð Þ=
Pn

i¼1
kixeðiÞ

	 2

1þ
Qn

i¼1

2�mbi
mbi

� � kixd ið Þð Þ=
Pn

i¼1
kixdðiÞ

¼
2
Qn

i¼1 m
kixeðiÞð Þ=

Pn

i¼1
kixeðiÞ

bi
Qn

i¼1 2� mbi
� � kixdðiÞð Þ=

Pn

i¼1
kixdðiÞ þ

Qn
i¼1 m

kixdðiÞð Þ=
Pn

i¼1
kixdðiÞ

bi

¼ mb

ð31Þ

By Eq. (4), we have s að Þ ¼ la � ma � lb � mb ¼ s bð Þ.
If s að Þ\s bð Þ, then by Definition 2.2, we have a\b.
If s að Þ ¼ s bð Þ, i.e., s að Þ ¼ la � ma ¼ lb � mb ¼ s bð Þ,

then, by Eqs. (30) and (31), we have la ¼ lb and ma ¼ mb.
Thus, h að Þ ¼ la þ ma ¼ lb þ mb ¼ h bð Þ, which implies

that a ¼ b.
Based on the above analysis, we can conclude that

Eq. (29) always holds. h

Theorems 3.2, 3.3, and 3.4 reveal that the IFEHWA

operator has the idempotency, the boundedness, and the

monotonicity, just as the IFEWA and IFEOWA operators

have. Meanwhile, it can also weight both the given argu-

ments and their ordered positions simultaneously just as the

3788 Neural Comput & Applic (2017) 28:3781–3800

123



IFEHA operator does. From this point of view, the

IFEHWA operator is more reasonable and powerful than

the IFEWA, IFEOWA, and IFEHA operators.

Example 3.3 Let us use our developed IFEHWA operator

to revisit Example 3.1. We have

IFEHWA a1; a2; a3ð Þ ¼ 0:7; 0:3ð Þ ¼ a1 ¼ a2 ¼ a3

which satisfies the properties of idempotency and boundedness.

This is also consistentwith our intuition. From this example,we

can see that our proposed IFEHWAoperator ismore reasonable

than the IFEHA operator developed by Zhao and Wei [41].

Moreover, we investigate some other desirable proper-

ties of the IFEHWA operator.

Theorem 3.5 Let ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n) be a

collection of IFNs. Suppose that x ¼ x1;x2; . . .;xnð ÞT is

an associated weighting vector with xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the per-

mutation such that ai is the e ið Þth largest element of the

collection of IFNs ai (i ¼ 1; 2; . . .; n), and k ¼
k1; k2; . . .; knð ÞT is the weighting vector of the IFNs ai
(i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � and

Pn
i¼1 ki ¼ 1. If r[ 0

is a real number, then

IFEHWA ra1; ra2; . . .; ranð Þ ¼ rIFEHWA a1; a2; . . .; anð Þ
ð32Þ

Proof

1. Let bi ¼ rai, and then, by Eq. (13), we have

bi ¼
1þ lai
� �r� 1� lai

� �r

1þ lai
� �rþ 1� lai

� �r ;
2mrai

2� maið Þrþmrai

 !

Let d : 1; 2; . . .; nf g ! 1; 2; . . .; nf g be the permutation

such that bi is the d ið Þth largest element of the col-

lection of IFNs bi (i ¼ 1; 2; . . .; n). For any

i; j ¼ 1; 2; . . .; n, i 6¼ j, without loss of generality, let

ai � aj, i.e., lai � laj and mai 	 maj , and then,

lbi ¼
1þ lai
� �r� 1� lai

� �r

1þ lai
� �rþ 1� lai

� �r

¼ 1� 2
1þlai
1�lai

� �r
þ1

� 1� 2

1þlaj
1�laj

� �r

þ1

¼
1þ laj

� �r
� 1� laj

� �r

1þ laj

� �r
þ 1� laj

� �r ¼ lbi

mbi ¼
2mrai

2� maið Þrþmrai
¼ 2

2�mai
mai

� �r
þ1

	 2
2�maj
maj

� �r
þ1

¼
2mraj

2� maj
� �rþmraj

¼ mbj ;

and thus, we have bi � bj, which implies that

d ið Þ ¼ e ið Þ, for all i ¼ 1; 2; . . .; n.
For the left-hand side of Eq. (32), we have

IFEHWA ra1; ra2; . . .; ranð Þ ¼ IFEHWA b1; b2; . . .; bnð Þ

¼

Qn
i¼1 1þ 1þlaið Þr� 1�laið Þr

1þlaið Þrþ 1�laið Þr
� � kixd ið Þð Þ=

Pn

i¼1
kixd ið Þ

�
Qn

i¼1 1� 1þlaið Þr� 1�laið Þr
1þlaið Þrþ 1�laið Þr

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

Qn
i¼1 1þ 1þlaið Þr� 1�laið Þr

1þlaið Þrþ 1�laið Þr
� � kixd ið Þð Þ=

Pn

i¼1
kixd ið Þ

þ
Qn

i¼1 1� 1þlaið Þr� 1�laið Þr
1þlaið Þrþ 1�laið Þr

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

;

2
Qn

i¼1

2mrai
2�maið Þrþmrai

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

Qn
i¼1 2� 2mrai

2�maið Þrþmrai

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

þ
Qn

i¼1

2mrai
2�maið Þrþmrai

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

¼

Qn
i¼1 1þ lai
� � rkixd ið Þð Þ=

Pn

i¼1
kixd ið Þ �

Qn
i¼1 1� lai
� � rkixd ið Þð Þ=

Pn

i¼1
kixd ið Þ

Qn
i¼1 1þ lai
� � rkixd ið Þð Þ=

Pn

i¼1
kixd ið Þ þ

Qn
i¼1 1� lai
� � rkixd ið Þð Þ=

Pn

i¼1
kixd ið Þ

;

2
Qn

i¼1 m
rkixd ið Þð Þ=

Pn

i¼1
kixd ið Þ

ai

Qn
i¼1 2� maið Þ rkixd ið Þð Þ=

Pn

i¼1
kixd ið Þ þ

Qn
i¼1 m

rkixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

ai

0
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2. For the right-hand side of Eq. (32), we can obtain

Therefore, we have IFEHWA ra1; ra2; . . .; ranð Þ ¼
rIFEHWA a1; a2; . . .; anð Þ, which completes the

proof. h

Theorem 3.6 Let ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n) be a

collection of IFNs. Suppose that x ¼ x1;x2; . . .;xnð ÞT is

an associated weighting vector with xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the per-

mutation such that ai is the e ið Þth largest element of the

collection of IFNs ai (ai), and k ¼ k1; k2; . . .; knð ÞT is the

weighting vector of the IFNs ai (ai), with ki 2 0; 1½ � andPn
i¼1 ki ¼ 1, If a ¼ la; mað Þ is an IFN, then

IFEHWA a1 � a; a2 � a; . . .; an � að Þ
¼ IFEHWA a1; a2; . . .; anð Þ � a ð33Þ

Proof

1. Let bi ¼ ai � a, and then, by Eq. (12), we have

bi ¼ ai � a ¼
lai þ la
1þ laila

;
maima

1þ 1� maið Þ 1� mað Þ

� �

Let d : 1; 2; . . .; nf g ! 1; 2; . . .; nf g be the permutation

such that bi is the d ið Þth largest element of the col-

lection of IFNs bi (i ¼ 1; 2; . . .; n). For any

i; j ¼ 1; 2; . . .; n, i 6¼ j, without loss of generality, let

ai � aj, i.e., lai � laj and mai 	 maj . Let f xð Þ ¼ xþa
1þax

,

x; a 2 0; 1½ �; then, f 0 xð Þ ¼ 1�a2

1þaxð Þ2 [ 0; thus, f xð Þ is an

increasing function. Thus,

lbi ¼
lai þ la
1þ laila

�
laj þ la
1þ lajla

¼ lbj

In addition, let g yð Þ ¼ by
1þ 1�yð Þ 1�bð Þ, y; b 2 0; 1½ �; then,

g0 yð Þ ¼ b 2�bð Þ
1þ 1�yð Þ 1�bð Þð Þ2 [ 0; thus, g yð Þ is an increasing

function. Thus,

mbi ¼
maima

1þ 1� maið Þ 1� mað Þ 	
majma

1þ 1� maj
� �

1� mað Þ
¼ mbj

and thus, we have bi � bj, which implies that

d ið Þ ¼ e ið Þ, for all i ¼ 1; 2; . . .; n.

For the left-hand side of Eq. (33), we have

rIFEHWA a1; a2; . . .; anð Þ

¼

1þ
Qn

i¼1
1þlaið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ�

Qn

i¼1
1�laið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn

i¼1
1þlaið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þþ

Qn

i¼1
1�laið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

 !r

� 1�
Qn

i¼1
1þlaið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ�

Qn

i¼1
1�laið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn

i¼1
1þlaið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þþ

Qn

i¼1
1�laið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

 !r

1þ
Qn

i¼1
1þlaið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ�

Qn

i¼1
1�laið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn

i¼1
1þlaið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þþ

Qn

i¼1
1�laið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

 !r

þ 1�
Qn

i¼1
1þlaið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ�

Qn

i¼1
1�laið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn

i¼1
1þlaið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þþ

Qn

i¼1
1�laið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

 !r ;

2
2
Qn

i¼1
m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

Qn

i¼1
2�maið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þþ

Qn

i¼1
m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

0

@

1

A

r

2� 2
Qn

i¼1
m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

Qn

i¼1
2�maið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þþ

Qn

i¼1
m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

0

@

1

A

r

þ 2
Qn

i¼1
m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

Qn

i¼1
2�maið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þþ

Qn

i¼1
m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

0

@

1

A

r

0
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¼

Qn
i¼1 1þ lai
� � rkixe ið Þð Þ=

Pn

i¼1
kixe ið Þ �

Qn
i¼1 1� lai
� � rkixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn
i¼1 1þ lai
� � rkixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 1� lai
� � rkixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

;

2
Qn

i¼1 m
rkixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

ai

Qn
i¼1 2� maið Þ rkixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 m

rkixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

0

BBBBBBB@

1
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For the right-hand side of Eq. (33), we can obtain

So, we have IFEHWA a1 � a; a2 � a; . . .; an � að Þ ¼
IFEHWA a1; a2; . . .; anð Þ � a, which completes the

proof. h

According to Theorems 3.5 and 3.6, we can easily

obtain Theorem 3.7:

Theorem 3.7 Let ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n) be a

collection of IFNs. Suppose that x ¼ x1;x2; . . .;xnð ÞT is

an associated weighting vector with xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the per-

mutation such that ai is the e ið Þth largest element of the

collection of IFNs ai (i ¼ 1; 2; . . .; n), and k ¼
k1; k2; . . .; knð ÞT is the weighting vector of the IFNs ai
(i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � and

Pn
i¼1 ki ¼ 1. If r[ 0

is a real number and a is an IFN, then

IFEHWA a1 � a; a2 � a; . . .; an � að Þ ¼ IFEHWA b1; b2; . . .; bnð Þ

¼

Qn
i¼1 1þ laiþla

1þlaila

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

�
Qn

i¼1 1� laiþla
1þlaila

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

Qn
i¼1 1þ laiþla

1þlaila

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

þ
Qn

i¼1 1� laiþla
1þlaila

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

;

2
Qn

i¼1

mai ma
1þ 1�maið Þ 1�mað Þ

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

Qn
i¼1 2� mai ma

1þ 1�maið Þ 1�mað Þ

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

þ
Qn

i¼1

mai ma
1þ 1�maið Þ 1�mað Þ

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

¼

1þ lað Þ
Qn

i¼1 1þ lai
� � kixd ið Þð Þ=

Pn

i¼1
kixd ið Þ � 1� lað Þ

Qn
i¼1 1� lai
� � kixd ið Þð Þ=

Pn

i¼1
kixd ið Þ

1þ lað Þ
Qn

i¼1 1þ lai
� � kixd ið Þð Þ=

Pn

i¼1
kixd ið Þ þ 1� lað Þ

Qn
i¼1 1� lai
� � kixd ið Þð Þ=

Pn

i¼1
kixd ið Þ

;

2ma
Qn

i¼1 m
kixd ið Þð Þ=

Pn

i¼1
kixd ið Þ

ai

2� mað Þ
Qn

i¼1 2� maið Þ kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ þ ma

Qn
i¼1 m

kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

ai

0

BBBBBBB@

1

CCCCCCCA

IFEHWA a1; a2; . . .; anð Þ � a

¼
Qn

i¼1 1þ lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ �

Qn
i¼1 1� lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn
i¼1 1þ lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 1� lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

;
2
Qn

i¼1 m
kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

ai

Qn
i¼1 2� maið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

0

@

1

A� a

¼

1þ lað Þ
Qn

i¼1 1þ lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ � 1� lað Þ

Qn
i¼1 1� lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

1þ lað Þ
Qn

i¼1 1þ lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ 1� lað Þ

Qn
i¼1 1� lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

;

2ma
Qn

i¼1 m
kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

ai

2� mað Þ
Qn

i¼1 2� maið Þ kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ þ ma

Qn
i¼1 m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

0

BBBBBBB@

1

CCCCCCCA

Neural Comput & Applic (2017) 28:3781–3800 3791

123



IFEHWA ra1 � a; ra2 � a; . . .; ran � ~að Þ
¼ rIFEHWA a1; a2; . . .; anð Þ � a ð34Þ

Theorem 3.8 Let ai ¼ lai ; mai
� �

and bi ¼ lbi ; mbi

� �

(i ¼ 1; 2; . . .; n) be two collections of IFNs. Suppose that

x ¼ x1;x2; . . .;xnð ÞT is an associated weighting vector

with xi 2 0; 1½ � and
Pn

i¼1 xi ¼ 1, k ¼ k1; k2; . . .; knð ÞT is

the weighting vector of the IFNs ai, bi, and ai þ bi
(i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � and

Pn
i¼1 ki ¼ 1, e :

1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that ai
is the e ið Þth largest element of the collection of IFNs ai
(i ¼ 1; 2; . . .; n), d : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the

permutation such that bi is the b ið Þth largest element of the

collection of IFNs bi (i ¼ 1; 2; . . .; n), and h :

1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that

ai þ bi is the h ið Þth largest element of the collection of

IFNs ai þ bi (i ¼ 1; 2; . . .; n), then

IFEHWA a1 � b1; a2 � b2; . . .; an � bnð Þ
¼ IFEHWA a1; a2; . . .; anð Þ � IFEHWA b1; b2; . . .; bnð Þ

ð35Þ

Proof For the left-hand side of Eq. (35), according to

Eq. (12), we have

ai þ bi ¼
lai þ lbi
1þ lailbi

;
maimbi

1þ 1� maið Þ 1� mbi
� �

 !

and then, we have

IFEHWA a1 � b1; a2 � b2; . . .; an � bnð Þ

¼

Qn
i¼1 1þ laiþlbi

1þlailbi

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

�
Qn

i¼1 1� laiþlbi
1þlailbi

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

Qn
i¼1 1þ laiþlbi

1þlailbi

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

þ
Qn

i¼1 1� laiþlbi
1þlailbi

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

;

2
Qn

i¼1

mai mbi
1þ 1�maið Þ 1�mbið Þ

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

Qn
i¼1 2� mai mbi

1þ 1�maið Þ 1�mbið Þ

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

þ
Qn

i¼1

mai mbi
1þ 1�maið Þ 1�mbið Þ

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

0
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¼

Qn
i¼1 1þ lailbi þ lai þ lbi

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

�
Qn

i¼1 1þ lailbi � lai � lbi

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

Qn
i¼1 1þ lailbi þ lai þ lbi

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

þ
Qn

i¼1 1þ lailbi � lai � lbi

� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ

;

2
Qn

i¼1 maimbi
� � kixh ið Þð Þ=

Pn

i¼1
kixh ið Þ

Qn
i¼1 2� maið Þ 2� mbi

� �� � kixh ið Þð Þ=
Pn

i¼1
kixh ið Þ þ

Qn
i¼1 maimbi
� � kixh ið Þð Þ=

Pn

i¼1
kixh ið Þ

0
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For the right-hand side of Eq. (35), we have

Therefore, we can obtain

IFEHWA a1 � b1; a2 � b2; . . .; an � bnð Þ
¼ IFEHWA a1; a2; . . .; anð Þ � IFEHWA b1; b2; . . .; bnð Þ

which completes the proof. h

3.2 Intuitionistic fuzzy Einstein hybrid weighted

geometric operators

Analogously, we also can develop the IFEHWG operator

for IFNs:

Definition 3.2 For a collection of IFNs ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n), an intuitionistic fuzzy Einstein hybrid

weighted geometric (IFEHWG) operator is a mapping

IFEHWG : Mn ! M, defined by an associated weighting

vector x ¼ x1;x2; . . .;xnð ÞT with xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, such that

IFEHWG a1; a2; . . .; anð Þ ¼ �
n

i¼1
a

kixe ið ÞPn

i¼1
kixe ið Þ

i ð36Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation

such that ai is the e ið Þth largest element of the collection of

IFNs ai (i ¼ 1; 2; . . .; n), and k ¼ k1; k2; . . .; knð ÞT is the

weighting vector of the IFNs ai (i ¼ 1; 2; . . .; n), with ki 2
0; 1½ � and

Pn
i¼1 ki ¼ 1. Particularly, if the associated

weighting vector x ¼ 1
n
; 1
n
; . . .; 1

n

� �T
, then the IFEHWG

operator reduces to the IFEWG operator; if

k ¼ 1
n
; 1
n
; . . .; 1

n

� �T
, then the IFEHWG operator reduces to

the IFEOWG operator. With the IFEHWG operator, the

weighting operation of the ordered position also can be

synchronized with the weighting operation of the given

importance, while the IFEHG operator does not have this

characteristic.

Based on Eq. (16), we can easily obtain the following

result.

Theorem 3.9 For a collection of IFNs ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n), the aggregated value by using the

IFEHWG operator is also an IFN, and

IFEHWG a1; a2; . . .; anð Þ

¼ 2
Qn

i¼1 l
kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

ai

Qn
i¼1 2� lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 l

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

;

0

@

Qn
i¼1 1þ maið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ �

Qn
i¼1 1� maið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn
i¼1 1þ maið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 1� maið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

!

ð37Þ

where x ¼ x1;x2; . . .;xnð ÞT is an associated weighting

vector with xi 2 0; 1½ � and
Pn

i¼1 xi ¼ 1, e :
1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that ai

is the e ið Þth largest element of the collection of IFNs ai
(i ¼ 1; 2; . . .; n), and k ¼ k1; k2; . . .; knð ÞT is the weighting

vector of the IFNs ai (i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � andPn
i¼1 ki ¼ 1.

Example 3.4 Let us use the IFEHWG operator to fuse the

IFNs a1, a2, and a3 in Example 3.2. According to Theo-

rem 3.9, we have IFEHWG a1; a2; a3ð Þ ¼ ð0:5859; 0:2974Þ.

IFEHWA a1;a2; . . .;anð Þ� IFEHWA b1;b2; . . .;bnð Þ

¼

Qn
i¼1 1þlai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ �

Qn
i¼1 1�lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

Qn
i¼1 1þlai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 1�lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

;

2
Qn

i¼1 m
kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

ai

Qn
i¼1 2� maið Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ þ

Qn
i¼1 m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

0

BBBBBBB@

1

CCCCCCCA

�

Qn
i¼1 1þlbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

�
Qn

i¼1 1�lbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

Qn
i¼1 1þlbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

þ
Qn

i¼1 1�lbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

;

2
Qn

i¼1 m
kixd ið Þð Þ=

Pn

i¼1
kixd ið Þ

bi
Qn

i¼1 2� mbi
� � kixd ið Þð Þ=

Pn

i¼1
kixd ið Þ þ

Qn
i¼1 m

kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

bi

0

BBBBBBBBBB@

1

CCCCCCCCCCA

¼

Qn
i¼1 1þlai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið ÞQn

i¼1 1þlbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

�
Qn

i¼1 1�lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið ÞQn

i¼1 1�lbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

Qn
i¼1 1þlai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið ÞQn

i¼1 1þlbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

þ
Qn

i¼1 1�lai
� � kixe ið Þð Þ=

Pn

i¼1
kixe ið ÞQn

i¼1 1�lbi

� � kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

;

2
Qn

i¼1 m
kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

ai

Qn
i¼1 m

kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

bi
Qn

i¼1 2� maið Þ kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

Qn
i¼1 2� mbi
� � kixd ið Þð Þ=

Pn

i¼1
kixd ið Þ þ

Qn
i¼1 m

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

ai

Qn
i¼1 m

kixd ið Þð Þ=
Pn

i¼1
kixd ið Þ

bi

0

BBBBBBBBBB@

1

CCCCCCCCCCA
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Theorem 3.10 (Idempotency). Let ai (i ¼ 1; 2; ldots; n)

be a collection of IFNs, and if all ai (i ¼ 1; 2; ldots; n) are

equal, i.e., ai ¼ a ¼ la; mað Þ, for all i, then
IFEHWG a1; a2; . . .; anð Þ ¼ IFEHWG a; a; . . .; að Þ ¼ a

ð38Þ

Theorem 3.11 (Boundedness). Let ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n) be a collection of IFNs, and

a� ¼ mini lai
� 	

;maxi maif g
� �

;
aþ ¼ maxi lai

� 	
;mini maif g

� �

and then

a� � IFEHWG a1; a2; . . .; anð Þ� aþ ð39Þ

Theorem 3.12 (Monotonicity). Let ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n) and bi ¼ lbi ; mbi

� �
(i ¼ 1; 2; . . .; n) be two

collections of IFNs. Assume that x ¼ x1;x2; . . .;xnð ÞT is

an associated weighting vector with xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the per-

mutation such that ai is the e ið Þth largest element of the

collection of IFNs ai (i ¼ 1; 2; . . .; n), d : 1; 2; . . .; nf g !
1; 2; . . .; nf g is the permutation such that bi is the d ið Þth

largest element of the collection of IFNs bi (i ¼ 1; 2; . . .; n),

and k ¼ k1; k2; . . .; knð ÞT is the weighting vector of the

IFNs ai and bi (i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � andPn
i¼1 ki ¼ 1. If lai � lbi , mai 	 mbi , and e ið Þ ¼ d ið Þ, for all i,

then

IFEHWG a1; a2; . . .; anð Þ� IFEHWG b1; b2; . . .; bnð Þ ð40Þ

Since the IFEHWG operator can not only weight both

the given arguments and their ordered positions simulta-

neously but also maintain those ideal properties, idempo-

tency, boundedness, and monotonicity, just as the IFEWG

and IFEOWG operators have, it is more powerful and

efficient in fusing intuitionistic fuzzy information. It takes

in both the advantages of IFEWG, IFEOWG, and IFEHG

operators and, meanwhile, circumvents their disadvan-

tages. Thus, the proposed IFEHWG operator has more

wide applications in the practical decision-making process.

Example 3.5 Let us use our proposed IFEHWG operator

to calculate Example 3.1. We have

IFEHWG a1; a2; a3ð Þ ¼ 0:7; 0:3ð Þ ¼ a1 ¼ a2 ¼ a3

which means the IFEHWG operator satisfies idempotency

and boundedness, which in other words is more reasonable

than Zhao and Wei’s IFEHG operator [41].

Moreover, we investigate some other desirable proper-

ties of the IFEHWG operator.

Theorem 3.13 Let ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n) be a

collection of IFNs. Suppose that x ¼ x1;x2; . . .;xnð ÞT is

an associated weighting vector with xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the per-

mutation such that ai is the e ið Þth largest element of the

collection of IFNs ai (i ¼ 1; 2; . . .; n), and k ¼
k1; k2; . . .; knð ÞT is the weighting vector of the IFNs ai
(i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � and

Pn
i¼1 ki ¼ 1. If r[ 0

is a real number, then

IFEHWG ar1; a
r
2; . . .; a

r
n

� �
¼ IFEHWG a1; a2; . . .; anð Þð Þr ð41Þ

Theorem 3.14 Let ai ¼ lai ; mai
� �

(i = 1,2, … ,n) be a

collection of IFNs. Suppose that x ¼ x1;x2; . . .;xnð ÞT is

an associated weighting vector with xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the per-

mutation such that ai is the e ið Þth largest element of the

collection of IFNs ai (i ¼ 1; 2; . . .; n), and k ¼
k1; k2; . . .; knð ÞT is the weighting vector of the IFNs ai
(i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � and

Pn
i¼1 ki ¼ 1, If a ¼

la; mað Þ is an IFN, then

IFEHWG a1 � a; a2 � a; . . .; an � að Þ
¼ IFEHWG a1; a2; . . .; anð Þ � a ð42Þ

Theorem 3.15 Let ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n) be a

collection of IFNs. Suppose that x ¼ x1;x2; . . .;xnð ÞT is

an associated weighting vector with xi 2 0; 1½ � andPn
i¼1 xi ¼ 1, e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the per-

mutation such that ai is the e ið Þth largest element of the

collection of IFNs ai (i ¼ 1; 2; . . .; n), and k ¼
k1; k2; . . .; knð ÞT is the weighting vector of the IFNs ai
(i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � and

Pn
i¼1 ki ¼ 1. If r[ 0

is a real number and a is an IFN, then

IFEHWG ar1 � a; ar2 � a; . . .; arn � a
� �

¼ IFEHWG a1; a2; . . .; anð Þð Þr�a ð43Þ

Theorem 3.16 Let ai ¼ lai ; mai
� �

and bi ¼ lbi ; mbi

� �
(

i ¼ 1; 2; . . .; n) be two collections of IFNs. Suppose that

x ¼ x1;x2; . . .;xnð ÞT is an associated weighting vector

with xi 2 0; 1½ � and
Pn

i¼1 xi ¼ 1, k ¼ k1; k2; . . .; knð ÞT is

the weighting vector of the IFNs ai, bi, and ai þ bi (

i ¼ 1; 2; . . .; n), with ki 2 0; 1½ � and
Pn

i¼1 ki ¼ 1, e :
1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that ai

is the e ið Þth largest element of the collection of IFNs ai (
i ¼ 1; 2; . . .; n), d : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the per-

mutation such that bi is the b ið Þth largest element of the

collection of IFNs bi ( i ¼ 1; 2; . . .; n), and h :

1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that

ai þ bi is the h ið Þth largest element of the collection of

IFNs ai þ bi ( i ¼ 1; 2; . . .; n), then
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IFEHWG a1 � b1; a2 � b2; . . .; an � bnð Þ
¼ IFEHWG a1; a2; . . .; anð Þ � IFEHWG b1; b2; . . .; bnð Þ

ð44Þ

4 Quasi-intuitionistic fuzzy Einstein hybrid
weighted aggregation operators

If we replace the arithmetical average and the arith-

metical geometric average in Definitions 3.1 and 3.2

with the quasi-arithmetical average [7, 9], respectively,

then the QIFEHWA and QIFEHWG operators will

be obtained, which are in mathematical forms as

below:

Definition 4.1 For a collection of IFNs ai ¼ lai ; mai
� �

(i ¼ 1; 2; . . .; n), let k ¼ k1; k2; . . .; knð ÞT be the weight

vector of them with ki 2 0; 1½ � and
Pn

i¼1 ki ¼ 1. Then, the

following aggregation operators are defined, which are all

based on the mapping Mn ! M with an aggregation-as-

sociated vector x ¼ x1;x2; . . .;xnð ÞT such that xi 2 0; 1½ �
and

Pn
i¼1 xi ¼ 1, and a continuous strictly monotonic

function g xð Þ:

1. The quasi-intuitionistic fuzzy Einstein hybrid weighted

averaging (QIFEHWA) operator:

QIFEHWA a1; a2; . . .; anð Þ

¼ g�1 �n
i¼1

kixe ið ÞPn
i¼1 kixe ið Þ

g aið Þ
� �� � ð45Þ

2. The quasi-intuitionistic fuzzy Einstein hybrid weighted

geometric (QIFEHWG) operator:

QIFEHWG a1; a2; . . .; anð Þ ¼ g�1 �n
i¼1 g aið Þð Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

� �

ð46Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permuta-

tion such that ai is the e ið Þth largest element of the

collection of IFNs ai (i ¼ 1; 2; . . .; n).

Note that when assigning different weighting vector of

x or k or choosing different types of function g xð Þ, the
QIFEHWA and QIFEHWG operators will reduce to many

special cases, which can be set out as follows:

1. If the associated weighting vector x ¼ 1
n
; 1
n
; . . .; 1

n

� �T
,

then the QIFEHWA operator reduces to the quasi-

intuitionistic fuzzy Einstein weighted averaging

(QIFEWA) operator shown as:

QIFEWA a1; a2; . . .; anð Þ ¼ g�1 �n
i¼1 kig aið Þ

� �
ð47Þ

while the QIFEHWG operator reduces to the quasi-

intuitionistic fuzzy Einstein weighted geometric

(QIFEWG) operator shown as:

QIFEWG a1; a2; . . .; anð Þ ¼ g�1 �
n

i¼1
g aið Þð Þki

� �
ð48Þ

2. If the arguments’ weight vector k ¼ 1
n
; 1
n
; . . .; 1

n

� �T
, then

the QIFEHWA operator reduces to the quasi-intuition-

istic fuzzy Einstein ordered weighted averaging

(QIFEOWA) operator shown as:

QIFEOWA a1; a2; . . .; anð Þ ¼ g�1 �
n

i¼1
xig ar ið Þ
� �

� �
ð49Þ

while the QIFEHWG operator reduces to the quasi-

intuitionistic fuzzy Einstein ordered weighted geo-

metric (QIFEOWG) operator shown as:

QIFEOWG a1; a2; . . .; anð Þ ¼ g�1 �
n

i¼1
g ar ið Þ
� �� �xi

� �
ð50Þ

3. If g xð Þ ¼ x, then the QIFEHWA operator reduces to

the IFEHWA operator given as Definition 3.1, while

the QIFEHWG operator reduces to the IFEHWG

operator given as Definition 3.2. It is obvious and

herein we do not show some proofs.

4. If g xð Þ ¼ ln xð Þ, then the QIFEHWA operator reduces

to the IFEHWG operator given as Definition 3.2, while

the QIFEHWG operator reduces to the IFEHWA

operator given as Definition 3.1. The derivation can

be shown as below:

QIFEHWA a1;a2; . . .;anð Þ¼g�1 �n
i¼1 kixe ið Þg aið Þ
� �
Pn

i¼1kixe ið Þ

� �

¼ e

�n
i¼1

kixe ið Þ ln aið Þð ÞPn

i¼1
kixe ið Þ

¼ e
�
n

i¼1
kixe ið Þ ln aið Þð Þ

� �1=
Pn

i¼1
kixe ið Þ

¼ �
n

i¼1
a

kixe ið Þð Þ=
Pn

i¼1
kixe ið Þ

i

¼ IFEHWG a1;a2; . . .;anð Þ

while

QIFEHWG a1;a2; . . .;anð Þ¼ e
�
n

i¼1
ln aið Þð Þ kixe ið Þð Þ=

Pn

i¼1
kixe ið Þ

¼ e
�
n

i¼1
ln aið Þð Þkixe ið Þ

Pn
i¼1kixe ið Þ

¼
�n

i¼1kixe ið ÞaiPn
i¼1kixe ið Þ

¼ IFEHWA a1;a2; . . .;anð Þ

It must be pointed out that the QIFEHWA and

QIFEHWG operators are not just these special situations

above, and some other special cases can also be
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constructed choosing different types of the function g xð Þ
for the QIFEHWA and QIFEHWG operators, such as

g xð Þ ¼ xt, g xð Þ ¼ 1� 1� xð Þt, g xð Þ ¼ sin px
2

� �
, g xð Þ ¼

1� sin
p 1�xð Þ

2

� �
, g xð Þ ¼ cos px

2

� �
, g xð Þ ¼ 1� cos

p 1�xð Þ
2

� �
,

g xð Þ ¼ tan px
2

� �
, g xð Þ ¼ 1� tan

p 1�xð Þ
2

� �
, and g xð Þ ¼ tx.

The QIFEHWA and QIFEHWG operators have some

desirable properties similar to the IFEHWA and IFEHWG

operators. In should be noted that the proofs of these

properties are also similar to the IFEHWA and IFEHWG

operators. Therefore, we will not list out these properties

here due to space limitations.

5 Two approaches to multi-criteria single-person
decision making and multi-criteria group
decision making under intuitionistic fuzzy
environments based on the proposed operators

In this section, we will apply the developed operators to

multi-criteria single-person decision making and multi-

criteria group decision making, respectively.

5.1 Multi-criteria decision making

with intuitionistic fuzzy information

When a decision maker intends to evaluate a collection of

m alternatives X ¼ x1; x2; . . .; xmf g with respect to the

predetermined n criteria C ¼ c1; c2; . . .; cnf g, he/she may

find it is hard to give a single value or a single interval for

the membership degree of an element to a given set but an

IFN due to the complexity of the problem and the incom-

plete information. For example, suppose that the decision

maker uses an IFN aij ¼ laij ; maij
� �

to express his/her

preference information about the alternatives xi under the

criterion cj, where l
a kð Þ
ij

indicates the degree that the alter-

native xi satisfies the criterion cj given by the decision

maker and m
a kð Þ
ij

indicates the degree that the alternative xi

does not satisfy the attribute cj given by the decision

maker, with the conditions: l
a kð Þ
ij

; m
a kð Þ
ij

2 0; 1½ � and

l
a kð Þ
ij

þ m
a kð Þ
ij

� 1. All the IFNs aij (i; j ¼ 1; 2; . . .; n) construct

the intuitionistic fuzzy decision matrix A ¼ aij
� �

n�n
. He/

she also determines the importance degrees kj
(j ¼ 1; 2; . . .; n) for the relevant criteria according to his/her

preferences, where kj 2 0; 1½ �, j ¼ 1; 2; . . .; n, andPn
j¼1 kj ¼ 1. Meanwhile, since different alternatives may

have different focuses and advantages, to reflect this issue,

the decision maker also gives the ordering weights xj

(j ¼ 1; 2; . . .; n) for different criteria, where xj 2 0; 1½ �,
j ¼ 1; 2; . . .; n, and

Pn
j¼1 xj ¼ 1.

Based on the developed aggregation operators, we can

propose a procedure for the decision maker to select the

best choice with intuitionistic fuzzy information, which

involves the following steps:

Algorithm 1

Step 1. Utilize the QIFEHWA operator

ai ¼ QIFEHWA ai1; ai2; . . .; ainð Þ

¼ g�1 �
n

j¼1

kjxe jð ÞPn
j¼1 kjxe jð Þ

g aij
� �

 ! !

;

i ¼ 1; 2; . . .;m

ð51Þ

or the QIFEHWG operator

ai ¼ QIFEHWA ai1; ai2; . . .; ainð Þ

¼ g�1 �
n

j¼1

kjxe jð ÞPn
j¼1 kjxe jð Þ

g aij
� �

 ! !

;

i ¼ 1; 2; . . .;m

ð52Þ

to obtain the overall preference values ai
(i ¼ 1; 2; . . .;m) with respect to the alternative xi,where

e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such

that aij is the e ijð Þth largest element of the collection of

IFNs aij (j ¼ 1; 2; . . .; n), and g is a continuous strictly

monotonic function.

Step 2. Compute the score functions s aið Þ
(i ¼ 1; 2; . . .;m) of ai (i ¼ 1; 2; . . .;m) by Eq. (4) and

the accuracy degree h aið Þ (i ¼ 1; 2; . . .;m) of ai
(i ¼ 1; 2; . . .;m) by Eq. (5), respectively, and then rank

ai (i ¼ 1; 2; . . .;m) by Definition 2.2.

Step 3. Rank all the alternatives xi (i ¼ 1; 2; . . .;m) and
then select the optimal one(s).

Step 4. End.

We next use a numerical example (adapted from Wang

et al. [19]) to implement our method:

Example 5.1 Consider a person is interested in investing

his money to any one of the four portfolios: bank deposit

(BD, x1), debentures (DB, x2), government bonds (GB, x3),

and shares (SH, x4). Out of these portfolios, he has to

choose only one based on four criteria: return (c1), risk (c2),

tax benefits (c3), and liquidity (c4). The four possible

portfolios xi (i ¼ 1; 2; 3; 4) are to be evaluated using the

intuitionistic fuzzy information by the decision maker

under the above four attributes, as listed in the intuitionistic

fuzzy decision matrix A ¼ aij
� �

4�4
(see Table 1).

The weight information of these four criteria is also

determined by the decision maker as

k ¼ 0:3; 0:4; 0:2; 0:1ð ÞT . In addition, since different port-

folios may focus on different points, the person gives

another weight vector x ¼ 0:5; 0:2; 0:2; 0:1ð ÞT for each
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criterion, which denotes that the most prominent feature of

the portfolio assigns more weight while the remainders

assign less weight. In the following, we use Algorithm 1 to

select the most desirable portfolio, which involves the

following steps:

Step 1. Utilize the QIFEHWA operator (without the loss

of generality, let g xð Þ ¼ x) to obtain the overall IFNs ai
for the portfolios x1, x2, x3, x4. Take x1 as an example.

Since s a11ð Þ ¼ 0:4, s a12ð Þ ¼ �0:1, s a13ð Þ ¼ 0:1,

s a14ð Þ ¼ �0:3, then a11 [ a13 [ a12 [ a14. Thus,

e 11ð Þ ¼ 1, e 12ð Þ ¼ 3, e 13ð Þ ¼ 2, e 14ð Þ ¼ 4. It follows

that

k1xe 11ð Þ
P4

j¼1 kjxe 1jð Þ
¼ 0:3� 0:5

0:3� 0:5þ 0:4� 0:2þ 0:2� 0:2þ 0:1� 0:1
¼ 0:5357;

k2xe 12ð Þ
P4

j¼1 kjxe 1jð Þ
¼ 0:2857;

k3xe 13ð Þ
P4

j¼1 kjxe 1jð Þ
¼ 0:1429;

k4xe 14ð Þ
P4

j¼1 kjxe 1jð Þ
¼ 0:0357

:

Thus, using Eq. (24), we can calculate that a1 ¼
IFEHWA a11; a12; a13; a14ð Þ ¼ IFEHWA 0:7; 0:3ð Þ;ð
0:4; 0:5ð Þ; 0:5; 0:4ð Þ; 0:3; 0:6ð ÞÞ ¼ 0:5884; 0:3734ð Þ
Similarly, the results for alternatives x2, x3, and x4 can be

calculated by the IFEHWA operator.

a2 = IFEHWA a21; a22; a23; a24ð Þ ¼ 0:5962; 0:2258ð Þ
a3 = IFEHWA a31; a32; a33; a34ð Þ ¼ 0:6368; 0:2507ð Þ
a4 = IFEHWA a41; a42; a43; a44ð Þ ¼ 0:8254; 0:1361ð Þ

Step 2: Calculate the scores s aið Þ (i ¼ 1; 2; 3; 4) of ai
(i ¼ 1; 2; 3; 4): s a1ð Þ ¼ 0:2149; s a2ð Þ ¼ 0:3704;

s a3ð Þ ¼ 0:3860; s a4ð Þ ¼ 0:6893

Since s a4ð Þ[ s a3ð Þ[ s a2ð Þ[ s a1ð Þ, we get

a4 [ a3 [ a2 [ a1 and then x4 
 x3 
 x2 
 x1, i.e., the

portfolio x4: shares (SH) are the most desirable choice

for the decision maker.

If we use the QIFEHWG operator (let g xð Þ ¼ x) instead

of the QIFEHWA operator to aggregate the decision

information, then we can obtain the overall IFNs ai for
the portfolios x1, x2, x3, x4 as follows:

a1 ¼ 0:5591; 0:3868ð Þ; a2 ¼ 0:4920; 0:3050ð Þ;
a3 ¼ 0:5206; 0:2657ð Þ; a4 ¼ 0:7284; 0:1984ð Þ

Finally, we can compute the score values s aið Þ
(i ¼ 1; 2; 3; 4) and the variance values h aið Þ
(i ¼ 1; 2; 3; 4) of ai (i ¼ 1; 2; 3; 4). By ranking s aið Þ
(i ¼ 1; 2; 3; 4), we can get the priorities of the alterna-

tives xi (i ¼ 1; 2; 3; 4). Since s a1ð Þ ¼ 0:1723,

s a2ð Þ ¼ 0:1870, s a3ð Þ ¼ 0:2549, and s a4ð Þ ¼ 0:5300, we

get s a4ð Þ[ s a3ð Þ[ s a2ð Þ[ s a1ð Þ, then a4 [ a3 [ a2
[ a1 and x4 
 x3 
 x2 
 x1, i.e., the portfolio x4: shares

(SH) are the most desirable choice for the decision

maker, which is the same as that obtained by the

QIFEHWA operator.

If we use Zhao and Wei’s IFEHA operator (Eq. 19) to

solve this problem, then we have

a1 ¼ IFEHA a11; a12; a13; a14ð Þ ¼ 0:6388; 0:3228ð Þ;
a2 = IFEHA a21; a22; a23; a24ð Þ ¼ 0:5596; 0:2610ð Þ
a3 = IFEHA a31; a32; a33; a34ð Þ ¼ 0:6874; 0:2039ð Þ
a4 = IFEHA a41; a42; a43; a44ð Þ ¼ 0:8545; 0:0787ð Þ

Since s a1ð Þ ¼ 0:3161, s a2ð Þ ¼ 0:2986, s a3ð Þ ¼ 0:4835,

and s a4ð Þ ¼ 0:7758, we get

s a4ð Þ[ s a3ð Þ[ s a1ð Þ[ s a2ð Þ, then a4 [ a3 [ a1 [ a2,
and x4 
 x3 
 x1 
 x2, which is slightly different from

the results derived by our approach as the positions of

the portfolios x1 and x2 are changed. With Zhao and

Wei’s IFEHA operator, the portfolio x4: shares (SH) turn

out to be the most desirable choice for the decision

maker. The result is the same as ours which explains the

validity of our method. Meanwhile, when using Zhao

and Wei’s IFEHA operator, we need to calculate _ak ¼
nkkak first and compare them, and then calculate xi _ar ið Þ,

after which, we shall compute the aggregation values

�n
i¼1 xi _ar ið Þ
� �

. Obviously, the computation process with

Zhao and Wei’s IFEHA operator is very complex. As for

our proposed IFEHWA operator, the weighting opera-

tion of the ordered position is synchronized with the

weighting operation of the given importance, which is in

the mathematical form as kixe ið Þ. Since both ki and xe ið Þ

are crisp numbers, we only need to calculate
�n

i¼1
kixe ið Þaið ÞPn

i¼1
kixe ið Þ

,

which makes our proposed IFEHWA operator is easier

to calculate than Zhao and Wei’s IFEHA operator.

5.2 Multi-criteria group decision making

with intuitionistic fuzzy information

Consider a group decision-making problem with intu-

itionistic fuzzy information. Let X ¼ x1; x2; . . .; xmf g be a

Table 1 Intuitionistic fuzzy decision matrix A

c1 c2 c3 c4

x1 (0.7, 0.3) (0.4, 0.5) (0.5, 0.4) (0.3, 0.6)

x2 (0.2, 0.5) (0.3, 0.5) (0.8, 0.1) (0.7, 0.1)

x3 (0.8, 0.2) (0.2, 0.3) (0.6, 0.3) (0.2, 0.7)

x4 (0.9, 0.1) (0.8, 0.1) (0.2, 0.7) (0.2, 0.6)
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set of m alternatives, C ¼ c1; c2; . . .; cnf g be a collection of

n criteria, and D ¼ d1; d2; . . .; dp
� 	

be a set of p decision

makers. Let A kð Þ ¼ a kð Þ
ij

� �

m�n
be an intuitionistic fuzzy

decision matrix, where a kð Þ
ij ¼ l

a kð Þ
ij

; m
a kð Þ
ij

� �
is an IFN pro-

vided by the decision maker dk 2 D; here, l
a kð Þ
ij

indicates

the degree to which the alternative xi 2 X satisfies the

attribute cj 2 C and m
a kð Þ
ij

indicates the degree to which the

alternative xi 2 X does not satisfy the attribute cj 2 C. The

following conditions hold: l
a kð Þ
ij

; m
a kð Þ
ij

2 0; 1½ �,
l
a kð Þ
ij

þ m
a kð Þ
ij

� 1, i ¼ 1; 2; . . .;m, j ¼ 1; 2; . . .; n.

The decision maker dk (k ¼ 1; 2; . . .; p) also determines

the importance degrees k kð Þ
j (j ¼ 1; 2; . . .; n) for the relevant

criteria according to his/her preferences, where

k kð Þ
j 2 0; 1½ �, j ¼ 1; 2; . . .; n, and

Pn
j¼1 k

kð Þ
j ¼ 1. Meanwhile,

since different alternatives may have different focuses and

advantages, to reflect this issue, the decision maker dk

(k ¼ 1; 2; . . .; p) also gives the ordering weights x kð Þ
j

(j ¼ 1; 2; . . .; n) for different criteria, where x kð Þ
j 2 0; 1½ �,

j ¼ 1; 2; . . .; n, and
Pn

j¼1 x
kð Þ
j ¼ 1. Suppose that the weight

vector of the decision makers is g ¼ g1; g2; . . .; gp
� �T

,

which satisfies gk 2 0; 1½ �, k ¼ 1; 2; . . .; p, andPp
k¼1 gk ¼ 1. Then, based on the developed aggregation

operators, we give a method for GDM with intuitionistic

fuzzy information, which consists of the following steps:

Algorithm 2 Step 1. Utilize the QIFEHWA (or

QIFEHWG) operator to aggregate all a kð Þ
ij (j ¼ 1; 2; . . .; n)

corresponding to the alternative xi, and then get the aver-

aged IFN a kð Þ
i of the alternative xi over all the criteria for

the decision maker dk:

a kð Þ
i ¼ QIFEHWA a kð Þ

i1 ; a kð Þ
i2 ; . . .; a kð Þ

in

� �

¼ g�1
�n

j¼1 k kð Þ
j x kð Þ

e ijð Þg a kð Þ
ij

� �� �

Pn
j¼1 k

kð Þ
j x kð Þ

e ijð Þ

0

@

1

A ð53Þ

or

a kð Þ
i ¼ QIFEHWG a kð Þ

i1 ; a kð Þ
i2 ; . . .; a kð Þ

in

� �

¼ g�1 �n
j¼1 g a kð Þ

ij

� �� � k kð Þ
j
x kð Þ

e ijð Þ

� �.Pn

j¼1
k kð Þ
j
x kð Þ

e ijð Þ

0

@

1

A ð54Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation

such that a kð Þ
ij is the e ijð Þth largest element of the collection

of IFNs a kð Þ
ij (j ¼ 1; 2; . . .; n), and g is a continuous strictly

monotonic function.

Step 2. Utilize the IFEWA (or IFEWG) operator to

aggregate all a kð Þ
i (k ¼ 1; 2; . . .; p) into a collective IFN ai

of the alternative xi:

ai ¼ IFEWA a 1ð Þ
i ; a 2ð Þ

i ; . . .; a pð Þ
i

� �
¼ �

p

k¼1
gka

kð Þ
i

� �
;

i ¼ 1; 2; . . .;m
ð55Þ

or

ai ¼ IFEWG a 1ð Þ
i ; a 2ð Þ

i ; . . .; a pð Þ
i

� �
¼ �

p

k¼1
a kð Þ
i

� �gk
;

i ¼ 1; 2; . . .;m
ð56Þ

Step 3. Compute the score functions s aið Þ (i ¼ 1; 2; . . .;m)

of ai (i ¼ 1; 2; . . .;m) by Eq. (4) and the accuracy degree

h aið Þ (i ¼ 1; 2; . . .;m) of ai (i ¼ 1; 2; . . .;m) by Eq. (5).

Step 4. Get the priority of the alternatives xi
(i ¼ 1; 2; . . .;m) by ranking s aið Þ and h aið Þ
(i ¼ 1; 2; . . .;m) according to Definition 2.2.

We now use a numerical example (adapted from [18]) to

illustrate our method:

Example 5.2 [18]. Suppose that a computer center in a

university wishes to select a new information system to

improve work productivity. After a preliminary screening,

four alternatives xi (i ¼ 1; 2; 3; 4) remain in the candidate

list. Three experts dk (k ¼ 1; 2; 3) form a committee to act

as decision makers; the decision-maker weight vector is

g ¼ 0:2; 0:5; 0:3ð ÞT . There are four criteria that must be

considered: (1) the costs of the hardware and software

investment (c1); (2) the contribution to organization per-

formance (c2); (3) the effort to transition from the current

systems (c3); and (4) the reliability of outsourcing software

development (c4). The experts dk (k ¼ 1; 2; 3) evaluate the

software packages xi (i ¼ 1; 2; 3; 4) with respect to the

criteria cj (j ¼ 1; 2; 3; 4) and construct three intuitionistic

fuzzy decision matrices A kð Þ ¼ a kð Þ
ij

� �

4�4
(k ¼ 1; 2; 3) (see

Table 2 Intuitionistic fuzzy decision matrix A 1ð Þ

c1 c2 c3 c4

x1 (0.5, 0.4) (0.4, 0.3) (0.5, 0.3) (0.2, 0.6)

x2 (0.5, 0.4) (0.3, 0.7) (0.2, 0.8) (0.4, 0.5)

x3 (0.2, 0.6) (0.8, 0.1) (0.6, 0.4) (0.1, 0.7)

x4 (0.1, 0.9) (0.2, 0.8) (0.7, 0.2) (0.4, 0.6)

Table 3 Intuitionistic fuzzy decision matrix A 2ð Þ

c1 c2 c3 c4

x1 (0.3, 0.6) (0.2, 0.7) (0.5, 0.5) (0.5, 0.3)

x2 (0.3, 0.7) (0.6, 0.4) (0.7, 0.2) (0.4, 0.5)

x3 (0.6, 0.3) (0.4, 0.4) (0.2, 0.7) (0.3, 0.6)

x4 (0.2, 0.5) (0.5, 0.3) (0.5, 0.4) (0.3, 0.3)
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Tables 2, 3, 4). The decision maker dk (k ¼ 1; 2; 3) deter-

mines the weight vector k kð Þ ¼ k kð Þ
1 ; k kð Þ

2 ; k kð Þ
3 ; k kð Þ

4

� �
of the

four criteria according to his/her preferences, which are

k 1ð Þ ¼ 0:4; 0:3; 0:1; 0:2ð Þ, k 2ð Þ ¼ 0:1; 0:3; 0:5; 0:1ð Þ, and

k 3ð Þ ¼ 0:1; 0:2; 0:3; 0:4ð Þ. Furthermore, considering the fact

that different experts are familiar with different research

fields, and meanwhile, different information systems may

focus on different partitions, the experts may want to give

more weights to the criterion which is more prominent.

Hence, another weight vectors are determined by the

experts according to their preferences, which are

x 1ð Þ ¼ 0:4; 0:3; 0:2; 0:1ð Þ, x 2ð Þ ¼ 0:3; 0:3; 0:2; 0:2ð Þ, and

x 3ð Þ ¼ 0:5; 0:3; 0:1; 0:1ð Þ.

To get the optimal information system, the following

steps are given:

Step 1. Utilize the aggregation operator (such as the

QIFEHWA or QIFEHWG operator) to aggregate all a kð Þ
ij

(j ¼ 1; 2; 3; 4) corresponding to the alternative xi, and

then get the averaged IFN a kð Þ
i (i ¼ 1; 2; 3; 4) of the

alternative xi over all the criteria for the decision maker

dk (k ¼ 1; 2; 3). Here, we adopt the QIFEHWA operator

and let g xð Þ ¼ x, and then we can get

a 1ð Þ
1 ¼ 0:4382; 0:3541ð Þ; a 1ð Þ

2 ¼ 0:4315; 0:4868ð Þ;
a 1ð Þ
3 ¼ 0:5937; 0:2601ð Þ; a 1ð Þ

4 ¼ 0:3640; 0:5966ð Þ

a 2ð Þ
1 ¼ 0:4226; 0:5215ð Þ; a 2ð Þ

2 ¼ 0:6290; 0:2973ð Þ;
a 2ð Þ
3 ¼ 0:3415; 0:5126ð Þ; a 2ð Þ

4 ¼ 0:4679; 0:3641ð Þ

a 3ð Þ
1 ¼ 0:5897; 0:2421ð Þ; a 3ð Þ

2 ¼ 0:7330; 0:1191ð Þ;
a 3ð Þ
3 ¼ 0:5699; 0:3284ð Þ; a 3ð Þ

4 ¼ 0:6932; 0:2200ð Þ

Step 2. Utilize the aggregation operator (such as the

IFEWA or IFEWG operator) to aggregate all a kð Þ
i

(k ¼ 1; 2; 3) into a collective IFN ai of the alternative

xi. Here, we use the IFEWA operator. Thus, we have

a1 ¼ 0:4797; 0:3884ð Þ; a2 ¼ 0:6308; 0:2541ð Þ;
a3 ¼ 0:4690; 0:3954ð Þ; a4 ¼ 0:5272; 0:3503ð Þ

Step 3. Compute the score values s aið Þ (i ¼ 1; 2; 3; 4) of

ai (i ¼ 1; 2; 3; 4) by Eq. (4), and then we have

s a1ð Þ ¼ 0:0913, s a2ð Þ ¼ 0:3768, s a3ð Þ ¼ 0:0736, and

s a4ð Þ ¼ 0:1769.

Step 4. Since s a2ð Þ[ s a4ð Þ[ s a1ð Þ[ s a3ð Þ, then we get

a2 [ a4 [ a1 [ a3 and x2 
 x4 
 x1 
 x3, which means

that x2 is the most desirable information system.

If we use the QIFEHWG operator (g xð Þ ¼ x) instead of

the QIFEHWA operator in Step 1 and the IFEWG operator

instead of the IFEWA operator in Step 2, then we can

obtain the averaged IFN a kð Þ
i (i ¼ 1; 2; 3; 4; 5) of the alter-

native xi over all the criteria for the decision maker dk
(k ¼ 1; 2; 3) and the collective IFN ai of the alternative xi
as follows:

a 1ð Þ
1 ¼ 0:4261; 0:3649ð Þ; a 1ð Þ

2 ¼ 0:4191; 0:5115ð Þ;
a 1ð Þ
3 ¼ 0:4506; 0:3715ð Þ; a 1ð Þ

4 ¼ 0:2867; 0:7027ð Þ

a 2ð Þ
1 ¼ 0:3953; 0:5414ð Þ; a 2ð Þ

2 ¼ 0:6086; 0:3328ð Þ;
a 2ð Þ
3 ¼ 0:3126; 0:5488ð Þ; a 2ð Þ

4 ¼ 0:4550; 0:3695ð Þ

a 3ð Þ
1 ¼ 0:5829; 0:2567ð Þ; a 3ð Þ

2 ¼ 0:7075; 0:1442ð Þ;
a 3ð Þ
3 ¼ 0:4840; 0:3751ð Þ; a 3ð Þ

4 ¼ 0:5202; 0:3451ð Þ

a1 ¼ 0:4529; 0:4287ð Þ; a2 ¼ 0:5948; 0:3181ð Þ;
a3 ¼ 0:3854; 0:4658ð Þ; a4 ¼ 0:4343; 0:4433ð Þ

We further compute the scores s aið Þ (i ¼ 1; 2; 3; 4) of

the collective IFN ai (i ¼ 1; 2; 3; 4), and then we have

s a1ð Þ ¼ 0:0242, s a2ð Þ ¼ 0:2767, s a3ð Þ ¼ �0:0804, and

s a4ð Þ ¼ �0:0091, which indicates that a2 [ a1 [ a4 [ a3
and thus x2 
 x1 
 x4 
 x3, which is slightly different

from the results derived by the QIFEHWG and IFEWG

operators as the positions of the information systems x1 and

x4 are changed. The main reason for this difference is that

the QIFEHWA and IFEWA operators are developed based

the usual arithmetic average which pays more attention to

the group opinion and the number of arguments, while the

QIFEHWG and IFEWG operators are developed based on

the geometric mean which mainly focuses on the individual

opinion and the average of arguments where the smaller

deviation between arguments, the better the results by the

QIFEHWG and IFEWG operators.

6 Concluding remarks

In this paper, we have pointed out the drawbacks of some

existing aggregation operators for IFNs, and then some new

intuitionistic fuzzy Einstein hybrid weighted aggregation

operators, such as the IFEHWA operator, the IFEHWG

operator, the QIFEHWA operator, and the QIFEHWG

operator, have been introduced to overcome the drawbacks

in the existed operators. The properties of these new opera-

tors have been clarified as well. To show the applications of

Table 4 Intuitionistic fuzzy decision matrix A 3ð Þ

c1 c2 c3 c4

x1 (0.7, 0.3) (0.4, 0.5) (0.5, 0.4) (0.6, 0.2)

x2 (0.5, 0.5) (0.3, 0.5) (0.8, 0.1) (0.7, 0.1)

x3 (0.8, 0.2) (0.2, 0.3) (0.6, 0.3) (0.2, 0.7)

x4 (0.9, 0.1) (0.8, 0.1) (0.2, 0.7) (0.2, 0.6)
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our proposed intuitionistic fuzzy Einstein hybrid weighted

aggregation operators, we have also proposed two simple

procedures for multi-criteria single-person decision making

and multi-criteria group decision making, respectively, and

then used two numerical examples to illustrate the validity

and applicability of the proposed procedures and also the

hybrid aggregation operators.
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