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Abstract This paper addresses the globally stable track-

ing control problem of a class of uncertain multiple-input–

multiple-output nonlinear systems. By employing the radial

basis function neural networks to compensate for the sys-

tem uncertainties, a novel switching controller is devel-

oped. The key features of the proposed control scheme are

presented as follows. First, to design the desired adaptive

neural controller successfully, an nth-order smoothly

switching function is constructed originally. Second, the

number of the neural networks and the adaptive parameters

is reduced by adopting the direct adaptive approach, so a

simplified controller is designed and it is easy to implement

in practice. By utilizing the special properties of the affine

terms of the considered systems, the singularity problem of

the controller is completely avoided. Finally, the overall

controller guarantees that all the signals in the closed-loop

system are globally uniformly ultimately bounded and the

system output converges to a small neighborhood of the

reference trajectory by appropriately choosing the design

parameters. A simulation example is given to illustrate the

effectiveness of the proposed control scheme.

Keywords Globally stable tracking control � Uncertain

multiple-input–multiple-output (MIMO) system � Direct

adaptive backstepping control � Radial basis function

neural networks (RBFNNs)

1 Introduction

Due to the fact that neural networks (NNs) have good

approximation capabilities over a compact set, they play an

important role in control community, especially in uncer-

tain nonlinear systems control. A large amount of progress

in adaptive neural network control (ANNC) has been

obtained in theory and applications, e.g., see [1–3].

In the early stage, some optimization techniques have

been primarily used to derive parameter adaptive laws [4].

However, these control schemes cannot ensure the stabil-

ity, robustness, and performance of the closed-loop sys-

tems. To overcome the above problems, some ANNC

strategies have been established based on Lyapunov sta-

bility theory [5, 6]. In particular, an interesting ANNC has

been originally established in [7] via the backstepping

technique for strict-feedback systems. Since then, the so-

called adaptive backstepping NN control (ABNNC) has

been developed to solve the control problems of various

systems, such as pure-feedback systems [8], output-feed-

back systems [9, 10], discrete-time systems [11–13],

stochastic systems [14, 15], time-delay systems [16–19],

and large-scale systems [20–23]. Meanwhile, several

problems on ABNNC have also been resolved. For exam-

ple, the problem of ‘‘explosion of complexity’’ has been

overcome by introducing the adaptive dynamic surface
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technique in [24]. Recently, the globally stable ABNNC

problem has been considered in [25, 26]. However, note

that almost all the above control schemes just are applied to

single-input–single-output (SISO) systems.

On the contrary, most practical systems are naturally

described as nonlinear multiple-input–multiple-output

(MIMO) models, such as flexible-joint robot systems [27],

helicopter systems [28], missile systems [29]. Thus, it is

more interesting to address the control problem of MIMO

systems. Due to the inputs strong coupling in MIMO sys-

tems, some control methods cannot be directly extended to

these systems under the weaker conditions, such as feed-

back linearization techniques [30], fuzzy logic control [31],

and adaptive control [32]. However, of course, a few

interesting results are still obtained for MIMO systems

[33–36].

It is well known that the uncertain parameters and/or

unknown nonlinear functions usually exist in the input

coupling matrix, so it becomes very difficult to solve the

control problem for uncertain MIMO systems. In the past

decades, much effort has been made in ANNC for MIMO

systems and some important results are obtained [37–43].

In [37] and [38], the ABNNC schemes have been estab-

lished for MIMO systems in block-triangular forms, and

the controller singularity problem has been completely

avoided by using the integral-type Lyapunov function and

the special properties of the affine terms [43]. Subse-

quently, ABNNC has been extended to solve the control

problem for MIMO discrete-time systems [39, 40] and

time-delay systems [41]. Moreover, there are other meth-

ods used to study the control problem of uncertain MIMO

systems in the existing literature. For example, based on

the principle of sliding mode control and the use of

Nussbaum-type functions [44], an ANNC has been devel-

oped for MIMO systems with unknown nonlinear dead-

zones in [42].

However, note that all of the above ANNC methods just

ensure the closed-loop MIMO systems being semi-globally

uniformly ultimately bounded (SGUUB). It is well known

that these control schemes are effective under the condition

that the RBFNNs approximation ability must be valid over

the compact sets (or called NNs approximation domain

[45]) all the time. In controller design, such a condition is

difficult to be verified beforehand for the MIMO systems

with high nonlinearity and uncertainty. Once the NNs

inputs run out the NNs approximation domain, the ANNC

law is invalid. In this case, the tracking performance may

be deteriorated, even the stability of the control systems

can be destroyed in practical implementation. Conse-

quently, for uncertain MIMO systems, to develop an

ANNC to guarantee the closed-loop system being globally

uniformly ultimately bounded (GUUB) is an interesting

topic. To the best of authors’ knowledge, no reports on this

issue have been found in the field of ANNC at present

stage.

Motivated by the aforementioned discussions, in this

paper we attempt to design an ANNC such that the closed-

loop MIMO system is GUUB. The main contributions are

listed as follows.

1. This paper is the first time to address the globally

stable tracking control problem for MIMO systems.

We design a switching ANNC law which includes a

conventional ANNC law and an extra robust con-

troller. The advantage of this controller is that the

switching term Mð�Þ is to switch off the conventional

ANNC law once the NN inputs go beyond the neural

networks approximation domain, and the extra robust

controller begins to work at the same time. Such a

controller guarantees that the closed-loop system

remains GUUB.

2. To deign the desired controller, we originally construct

an nth-order smoothly switching function which has

continuous derivatives up to the nth order. This ensures

the successful design of the switching ANNC law by

using the backstepping technique.

3. By combining the direct adaptive approach with the

backstepping technique, an ANNC scheme is devel-

oped, where only an NN is used to compensate for all

the unknown parts in each backstepping design

procedure, so the number of adaptive parameters is

reduced. A simplified controller is obtained, and it is

easy to implement in practice.

The rest of this paper is organized as follows. Section 2

presents some preliminaries. In Sect. 3, the design proce-

dure of the globally stable ANNC is given and then the

main results of this paper are addressed. In Sect. 4, two

simulation examples are provided to verify effectiveness of

the proposed control scheme. We conclude the work of this

paper in Sect. 5.

Notation Throughout this paper, the following notations

are adopted. R denotes the set of all real numbers; Rn

denotes the real n-dimensional space; |x| denotes the

absolute value of a scalar x; ||X|| denotes the Frobenius

norm of an m� n matrix X, i.e., jjXjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðXTXÞ
p

where

Trð�Þ represents the trace operator; Ci denotes the set of all

functions with continuous ith partial derivatives; if no

confusion arises, we always denote ð~�Þ ¼ ð�̂Þ � ð�Þ; where

ð�̂Þ is the estimate of ð�Þ; kminðAÞ and kmaxðAÞ; respectively,

denote the smallest and largest eigenvalues of a square

matrix A; expð�Þ denotes the exponential function; tanhð�Þ
refers to the hyperbolic tangent function.
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2 Preliminaries

2.1 System stability

Consider a general nonlinear system [46]

_x ¼ f ðx; tÞ; xðt0Þ ¼ x0 ð1Þ

where xðtÞ 2 Rn is the system state, f : Rn � ½t0;1� ! Rn

is a continuous vector-valued function, t0 and x0 2 Rn

denote the initial time and the initial state vector,

respectively.

Definition 1 [46]: We say the solution of (1) is uniformly

ultimately bounded (UUB) if there exists a compact set

X � Rn such that for all xðt0Þ ¼ x0 2 X; there exist an

e[ 0 and a number Tðe; x0Þ such that jjxðtÞjj\e for all

t� Tðe; x0Þ þ t0: In particular, if the compact set X ¼ Rn;

then the solution of system (1) is GUUB.

Usually, the following result is used to analyze the

convergence of the tracking error in the field of ANNC. Let

function VðtÞ� 0 be a continuous and bounded function

defined for t 2 ½0;1Þ: If _VðtÞ� � �cVðtÞ þ �j where �c and �j

are positive constants, then VðtÞ� Vð0Þ � �j
�c

h i

e��ct þ �j
�c : In

particular, lim
t!1

VðtÞ� �j
�c which implies that V(t) will con-

verge to the neighborhood around zero with radius �j
�c :

2.2 RBFNNs approximation

As pointed out in [26], it has been proved in [2] and [47]

that RBFNNs can be employed as a tool for modeling

uncertain nonlinear functions appearing in the control

systems owing to their linearly parameterized structure and

good capabilities in function approximation. In this paper,

an unknown continuous nonlinear function hijðZiÞ : Rm !
R will be approximated over a compact set XZi � Rm by an

RBFNN, that is, the following relation holds

hijðZiÞ ¼ SijðZiÞT
Wij þ �ijðZiÞ ð2Þ

where the input vector [1] Zi 2 XZi � Rm; the optimal

weight vector Wij 2 Rlij ; the NN node number lij [ 1,

�ijðZiÞ is the NN inherent approximation error which is

bounded over the compact set, i.e., j�ijðZiÞj � �ij where �ij is

an unknown constant, and SijðZiÞ ¼ ½sij1ðZiÞ; . . .; sijlijðZiÞ�
T :

XZi ! Rlij is a known smooth vector function with sijqðZiÞ
being chosen as the commonly used Gaussian functions,

which has the following form

sijqðZiÞ ¼ exp
�ðZi � lijqÞTðZi � lijqÞ

g2
i

" #

;

q ¼ 1; . . .; lij ð3Þ

where lijq is the center of the receptive field and gi [ 0 is

the [1] of the Gaussian functions. The optimal weight

vector Wij ¼ ½wij1; . . .;wijlij �
T

is defined as

Wij :¼ arg min
Ŵij2Rlij

sup
Zi2XZi

jhijðZiÞ � SijðZiÞT
Ŵijj

( )

ð4Þ

where Ŵij is the estimate of Wij.

2.3 Key definition and lemmas

Definition 2 (nth-order smoothly switching function): For

all z 2 Rp and given constants 0\ r1\ r2; the function

mðzÞ is called an nth-order smoothly switching function

with n being a finite positive integer, if it satisfies the

following conditions:

(a) when jjzjj � r1, mðzÞ ¼ 1;

(b) when jjzjj � r2 [ r1, mðzÞ ¼ 0;

(c) mðzÞ is nth-order continuous differentiable.

In particular, for all zij 2 R; j ¼ 1; . . .;m, the following

switching function is constructed

mðzijÞ ¼

1; jzijj � rij1

cosnþ1 p
2

sinnþ1 p
2

jzijj2 � r2
ij1

r2
ij2 � r2

ij1

 ! !

; otherwise

0; jzijj � rij2

8

>

>

>

<

>

>

>

:

with rij2 [ rij1 [ 0:
Let

MðZiÞ :¼
Y

m

j¼1

mðzijÞ ð5Þ

with Zi ¼ ½zi1; . . .; zim�T 2 Rm; which is the key to design

the globally stable ABNNC.

Lemma 1 The function mðzijÞ is an n th-order smoothly

switching function.

Proof By using the definition of the derivative, this

lemma can be verified directly. To save space, the detailed

proof is omitted here. h

Lemma 2 [7]: The following inequality holds for any

�[ 0 and for any g 2 R

0� jgj � g tanh
g
�

� �

� j� ð6Þ

where j is a constant satisfying j ¼ e�ðjþ1Þ, i.e.,

j 	 0:2785.
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3 Problem formulation and main result

3.1 System description and problem formulation

In this paper, consider the following uncertain MIMO

nonlinear system which is assumed that it has unique

analytical solution on the given interval

_xi ¼ gið�xiÞxiþ1 þ fið�xiÞ; i ¼ 1; 2; . . .; n� 1

_xn ¼ gnð�xnÞuþ fnð�xnÞ
y ¼ x1

8

<

:

ð7Þ

where xi ¼ ½xi1; . . .; xip�T 2 Rp; u ¼ ½u1; . . .; up�T 2 Rp; and

y ¼ ½y1; . . .; yp�T 2 Rp represent the measurable state, the

control input, and the output of system (7), respectively;

p is a positive integer; �xi is defined as �xi :¼ ½xT
1 ; . . .;

xT
i �

T 2 Rip; fið�xiÞ ¼ ½fi1ð�xiÞ; . . .; fipð�xiÞ�T and gið�xiÞ ¼
diagfgi1ð�xiÞ; . . .; gipð�xiÞg with the unknown smooth func-

tions fij : R
ip ! R and gij : R

ip ! R; i ¼ 1; . . .; n; j ¼ 1;

. . .; p.

It is worth stating that in many cases, since uncertain

MIMO nonlinear systems are often derived from problems

in physical world, existence, and uniqueness are often

obvious for the physical reasons. Notwithstanding this, a

mathematical statement about existence and uniqueness is

worthwhile. Uniqueness would be of importance if, for

instance, we wished to approximate the solution numeri-

cally. If two solutions passed through a point, then suc-

cessive approximations could very well jump from one

solution to the other-with misleading consequences.

Remark 1 The system (7) is in the canonical strict-feed-

back form. In the field of ANNC, the tracking/regulation

problem of such system has been extensively studied, such

as continuous-time systems [7, 9, 10, 25], discrete-time

systems [12, 13, 39], and time-delay systems [21, 22].

The objective of this paper is to design a direct ANNC

law u(t) for system (7) such that

1. all the signals in the closed-loop MIMO system remain

GUUB;

2. the system output y can track a known reference

trajectory yr ¼ ½yr1; . . .; yrp�T, i.e.,

lim
t!1

jjy� yrjj � �0 ð8Þ

for any �0 [ 0.

Remark 2 Some ANNC schemes have been established

for different uncertain MIMO nonlinear systems (e.g., see

[30–37]). Nevertheless, all the existing ANNC schemes

only can guarantee the closed-loop MIMO systems being

SGUUB. To the best of our knowledge, until now still no

globally stable ANNC approaches have been developed for

MIMO nonlinear systems. In this paper, we attempt to

design an ANNC such that the closed-loop MIMO system

is GUUB.

To design the desired controller, the following assump-

tions on system functions are made.

Assumption 1 [26]: For i ¼ 1; . . .; n; suppose that there

exist the known positive smooth functions uið�xiÞ and the

unknown constants .i � 0 such that

jjfið�xiÞjj � .iuið�xiÞ; 8�xi 2 Rip: ð9Þ

Remark 3 It should be emphasized that the above assump-

tion is necessary to design the extra robust controller when we

develop the globally stable ANNC scheme later. This

assumption is very similar that made in [26], where fið�xiÞ 2 R

are assumed to be bounded by known functions. Here, the

upper bounds are allowed to be unknown constants multiplied

by known functions. Compared with the previous hypothesis,

a weaker assumption is given in this paper.

Assumption 2 [38]: For i ¼ 1; . . .; n; j ¼ 1; . . .; p; the

signs of gijð�xiÞ are known, and there exist the known pos-

itive smooth functions gijð�xiÞ; gijð�xiÞ and the positive con-

stant g
0

such that

g
0
\g

ij
ð�xiÞ� jgijð�xiÞj � gijð�xiÞ;

8�xi 2 Rip:
ð10Þ

Remark 4 Condition (10) implies that system functions

gijð�xiÞ are strictly either positive or negative, which may

limit the class of systems under investigation. In the past

decades, lots of significant research results about ANNC

still have been obtained under the similar assumptions in

the existing literature (e.g., see [38–41]). Without loss of

generality, here we assume that gijð�xiÞ are positive. Based

on condition (10), for all �xi 2 Rip, we can have

jjgið�xiÞjj � �Gið�xiÞ and jjg�1
i ð�xiÞjj � �gið�xiÞ

where �Gið�xiÞ and �gið�xiÞ are the known smooth positive

functions.

Assumption 3 [19]: Suppose that the time derivatives of

gið�xiÞ along the solutions of (7), denoted by _gi, satisfy

jj _gijj � mibið�xiÞ; 8�xi 2 Rip ð11Þ

where bið�xiÞ are known positive smooth functions and

mi � 0 are unknown constants.

Remark 5 Assumption 3 is similar with the conditions

made in [16, 19], where _gi 2 R are assumed to be bounded

by known constants. Here, the upper bounds are allowed to

be unknown constants multiplied by known functions.

Compared with the existing hypothesis, a weaker

assumption is given. The conditions (10) and (11) play the

same important role as Assumption 1 in the globally

stable ANNC scheme design. Moreover, from condition

3804 Neural Comput & Applic (2017) 28:3801–3813
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(11) we can see that the affine term gnð�Þ is independent of

state xn. By using this special structure property, the con-

troller singularity problem is avoided completely without

projection algorithm [38, 42].

Assumption 4 [38]: The reference signal yr and its

derivatives up to the nth order are continuous and bounded.

3.2 Globally stable ANNC design

In this subsection, based on Assumptions 1–4 made in the

above subsection, we give the detailed design procedure of

the globally stable ANNC law by using the backstepping

technique. To this end, define the following n error variables

z1 ¼ y� yr

zi ¼ xi � ai�1ð�xi�1; �y
ði�1Þ
r ; �̂�i�1; �̂si�1; Ŵi�1Þ; i ¼ 2; . . .; n

�

ð12Þ

where zi ¼ ½zi1; . . .; zip�T and �y
ði�1Þ
r ¼ ½yr; _yr; . . .; y

ði�1Þ
r �T;

�̂�i�1 ¼ ½�̂1; . . .; �̂i�1�T, �̂si�1 ¼ ½ŝ1; . . .; ŝi�1�T; and Ŵi�1 ¼
½ŴT

1 ; . . .; Ŵ
T

i�1�
T
; the estimates of the unknown parameters

�k; sk and the NN weight vectors Wk are denoted by

�̂k; ŝk and Ŵk, k ¼ 1; . . .; i� 1; respectively; ai�1 denote the

virtual control variables which will be designed later step

by step. Now, we proceed to the backstepping design

procedure with n steps.

Step 1 Under the coordinate transformation (12), the

time derivative of z1 along the solution of the first sub-

system of (7) is given by

_z1 ¼ g1ð�x1Þx2 þ f1ð�x1Þ � _yr

¼ g1ð�x1Þða1 þ z2 þ g�1
1 ð�x1Þðf1ð�x1Þ � _yrÞÞ: ð13Þ

Take a Lyapunov function as

V1 ¼ 1

2
zT

1g
�1
1 ð�x1Þz1

whose time derivative along the solution of (13) is

_V1 ¼ zT
1g

�1
1 ð�x1Þ _z1

� 1

2
zT

1g
�1
1 ð�x1Þ _g1ð�x1Þg�1

1 ð�x1Þz1

¼ zT
1 ½a1 þ z2 þ g�1

1 ð�x1Þðf1ð�x1Þ � _yrÞ�

� 1

2
zT

1g
�1
1 ð�x1Þ _g1ð�x1Þg�1

1 ð�x1Þz1: ð14Þ

Let

h1ðZ1Þ :¼ g�1
1 ð�x1Þðf1ð�x1Þ � _yrÞ

� 1

2
g�1

1 ð�x1Þ _g1ð�x1Þg�1
1 ð�x1Þz1 ð15Þ

where

Z1 :¼ ½xT
1 ; y

T
r ; _y

T
r �

T 2 XZ1
� R3p

with a compact set XZ1
. Thus, Eq. (14) can be rewritten as

_V1 ¼ zT
1 ½a1 þ z2 þ h1ðZ1Þ�: ð16Þ

We design the first virtual controller as

a1 ¼ �k1z1 þMðZ1Þaan1 þ ð1 �MðZ1ÞÞar1 ð17Þ

where k1 [ 0 is a design parameter, the function Mð�Þ is

defined as shown in (5), aan1 ¼ �S1ðZ1ÞT
Ŵ1 � �̂1!

z1

-

� �

and

ar1 ¼ �ŝ1c1ðZ1Þ! c1ðZ1Þz1

-

� �

with the basis function S1ðZ1Þ
and the function c1ðZ1Þ to be defined in the following

subsection, -[ 0 being a design parameter, !ðz1

-Þ :¼
½tanhðz11

- Þ; . . .; tanhðz1p

- Þ�
T

and !ðc1ðZ1Þz1

- Þ :¼ ½tanhðc1ðZ1Þz11

- Þ;
. . .; tanhðc1ðZ1Þz1p

- Þ�T.

Substituting (17) into (16) yields

_V1 ¼ zT
1 ½�k1z1 þMðZ1Þaan1

þ ð1 �MðZ1ÞÞar1 þ z2 þ h1ðZ1Þ�: ð18Þ

Step ið2� i� n� 1Þ: The derivative of zi ¼ xi � ai�1 is

given by

_zi ¼ gið�xiÞðai þ ziþ1Þ þ fið�xiÞ � _ai�1

¼ gið�xiÞðai þ ziþ1Þ þ fið�xiÞ

�
X

i�1

j¼1

oai�1

oxj
gjð�xjÞxjþ1 þ fjð�xjÞ
� �

þ /i�1

" #

ð19Þ

where

/i�1 ¼ oai�1

oyr
_yr þ

X

i�1

j¼1

oai�1

oy
ðjÞ
r

yðjþ1Þ
r

þ
X

i�1

j¼1

oai�1

o�̂j
_̂�j þ

X

i�1

j¼1

oai�1

oŝj
_̂sj

þ
X

i�1

j¼1

oai�1

oŴj

_̂
Wj:

Consider the following Lyapunov function

Vi ¼ Vi�1 þ
1

2
zT
i g

�1
i ð�xiÞzi

whose time derivative along the solution of (19) is

_Vi ¼ _Vi�1 þ zT
i g

�1
i ð�xiÞ _zi �

1

2
zT
i g

�1
i ð�xiÞ _gið�xiÞg�1

i ð�xiÞzi

¼ _Vi�1 þ zT
i ai þ ziþ1 þ g�1

i ð�xiÞ
�

fið�xiÞ �
X

i�1

j¼1

oai�1

oxj
gjð�xjÞxjþ1 þ fjð�xjÞ
� �

þ /i�1

 !" )

� 1

2
zT
i g

�1
i ð�xiÞ _gið�xiÞg�1

i ð�xiÞzi: ð20Þ

Neural Comput & Applic (2017) 28:3801–3813 3805

123



Let

hiðZiÞ :¼ g�1
i ð�xiÞ

fið�xiÞ�
X

i�1

j¼1

oai�1

oxj
gjð�xjÞxjþ1 þ fjð�xjÞ
� �

þ/i�1

 !" #

� 1

2
g�1
i ð�xiÞ _gið�xiÞg�1

i ð�xiÞzi ð21Þ

where

Zi :¼ xT
1 ; . . .; x

T
i ; a

T
i�1;

oaði�1Þ1
ox1

	 
T

;

"

. . .;
oaði�1Þ1
oxi�1

	 
T

; . . .;
oaði�1Þp
ox1

	 
T

;

. . .;
oaði�1Þp
oxi�1

	 
T

;/T
i�1

#T

2 XZi � Rði�1Þp2þðiþ2Þp:

with a compact set XZi : Then, equation (20) can be

rewritten as

_Vi ¼ _Vi�1 þ zT
1 ½ai þ ziþ1 þ hiðZiÞ�: ð22Þ

Design the ith virtual controller as

ai ¼ �zi�1 � kizi

þMðZiÞaani þ ð1 �MðZiÞÞari
ð23Þ

where ki [ 0 is a design parameter, aani ¼ �SiðZiÞT
Ŵi �

�̂i!
zi
-

� �

and ari ¼ �ŝiciðZiÞ!
ciðZiÞzi

-

� �

with the basis function

SiðZiÞ and the function ciðZiÞ to be defined in the following

subsection, !ðzi-Þ :¼ ½tanhðzi1-Þ; . . .; tanhðzip-Þ�
T

and !ðciðZiÞzi- Þ :
¼ ½tanhðciðZiÞzi1- Þ; . . .; tanhðciðZiÞzip- Þ�T.

Substituting (23) into (22) yields

_Vi ¼ _Vi�1 þ zT
i ½�zi�1 � kizi þMðZiÞaani

þ ð1 �MðZiÞÞari þ ziþ1 þ hiðZiÞ�
¼ zT

1 ½�k1z1 þMðZ1Þaan1

þ ð1 �MðZ1ÞÞar1 þ z2 þ h1ðZ1Þ�

þ
X

i

q¼2

zT
q ½�zq�1 � kqzq

þMðZqÞaanq þ ð1 �MðZqÞÞarq
þ zqþ1 þ hqðZqÞ�: ð24Þ

Step n The derivative of zn ¼ xn � an�1 is

_zn ¼ gnð�xnÞuþ fnð�xnÞ � _an�1

¼ gnð�xnÞuþ fnð�xnÞ �
X

n�1

j¼1

oan�1

oxj
gjð�xjÞxjþ1

�

"

þfjð�xjÞ
�

þ /n�1

�

ð25Þ

where

/n�1 ¼ oan�1

oyr
_yr þ

X

n�1

j¼1

oan�1

oy
ðjÞ
r

yðjþ1Þ
r þ

X

n�1

j¼1

oan�1

o�̂j
_̂�j

þ
X

n�1

j¼1

oan�1

oŝj
_̂sj þ

X

n�1

j¼1

oan�1

oŴj

_̂
Wj:

Consider the following Lyapunov function

Vn ¼ Vn�1 þ
1

2
zT
n g

�1
n ð�xnÞzn:

The time derivative of Vn along the solution of (25) is

given by

_Vn ¼ _Vn�1 þ zT
n uþ g�1

n ð�xnÞ fnð�xnÞ½
(

�
X

n�1

j¼1

oan�1

oxj
gjð�xjÞxjþ1 þ fjð�xjÞ
� �

þ /n�1

 !)

� 1

2
zT
n g

�1
n ð�xnÞ _gnð�xnÞg�1

n ð�xnÞzn:

ð26Þ

Let

hnðZnÞ :¼ g�1
n ð�xnÞ fnð�xnÞ

"

�
X

n�1

j¼1

oan�1

oxj
gjð�xjÞxjþ1 þ fjð�xjÞ
� �

þ /n�1

 !#

� 1

2
g�1
n ð�xnÞ _gnð�xnÞg�1

n ð�xnÞzn ð27Þ

where

Zn :¼ xT
1 ; . . .; x

T
n ; a

T
n�1;

oaðn�1Þ1
ox1

	 
T

; . . .;
oaðn�1Þ1
oxn�1

	 
T

; . . .;

"

oaðn�1Þp
ox1

	 
T

; . . .;
oaðn�1Þp
oxn�1

	 
T

;/T
n�1

#T

2 XZn � Rðn�1Þp2þðnþ2Þp

with a compact set XZn :
Design the actual controller as

u ¼ �zn�1 � knzn þMðZnÞaann
þ ð1 �MðZnÞÞarn ð28Þ

where kn [ 0 is a design parameter, the function Mð�Þ is

defined as shown in (5), aann ¼ �SnðZnÞT
Ŵn � �̂n!

zn
-

� �

and

arn ¼ �ŝncnðZnÞ!
cnðZnÞzn

-

� �

with the basis function SnðZnÞ
and the function cnðZnÞ to be defined in the following

subsection, !ðzn-Þ :¼ ½tanhðzn1

- Þ; . . .; tanhðznp- Þ�
T

and !ðcnðZnÞzn- Þ
:¼ ½tanhðcnðZnÞzn1

- Þ; . . .; tanhðcnðZnÞznp- Þ�T.

By substituting (28) into (26), we have
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_Vn ¼ _Vn�1 þ zT
n ½�zn�1 � knzn þMðZnÞaann þ ð1 �MðZnÞÞ

arn þ hnðZnÞ� ¼ zT
1 ½�k1z1 þMðZ1Þaan1

þ ð1 �MðZ1ÞÞar1 þ z2 þ h1ðZ1Þ�

þ
X

n�1

q¼2

zT
q ½�zq�1 � kqzq þMðZqÞaanq þ ð1 �MðZqÞÞ

arq þ zqþ1 þ hqðZqÞ� þ zT
n ½�zn�1 � knzn

þMðZnÞaann þ ð1 �MðZnÞÞarn þ hnðZnÞ�: ð29Þ

Remark 6 The actual control (28) is different from all the

existing results of uncertain MIMO nonlinear systems (e.g.,

see [38–42]). Here, the actual control input (28) includes

two parts, a conventional adaptive neural controller aann
dominating the NNs approximation domain and an extra

robust controller arn to take charge of outside the NNs

approximation domain. The switching terms Mð�Þ appear-

ing in the equations (17), (23), and (28) are to switch off

the control aani once the NNs inputs run out the NNs

approximation domain, and the extra robust controllers ari
begin to work at the same time. Such a switching controller

can guarantee the ultimate closed-loop MIMO system

being GUUB.

3.3 Stability analysis and main results

Theorem 1 Based on Assumptions 1–4, consider the

closed-loop MIMO system consisting of the plant (7), the

reference signal yr, the virtual control laws (17), (23), the

actual control law (28), and the adaptation laws (35). For

the bounded initial states, the following results are

obtained.

1. All the closed-loop signals remain GUUB.

2. The tracking error z1 ¼ y� yr uniformly converges to

a small neighborhood around zero

X
 ¼ z1

�

�

�

�

�

jjz1jj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d


k
kminðg
�1
1 Þ

s

( )

:

Proof Consider the overall Lyapunov function as follows

V ¼ Vn þ
1

2

X

n

i¼1

~W
T

i C
�1
i

~Wi

þ
X

n

i¼1

1

2qi
~H

T

i
~Hi ð30Þ

where Ci ¼ CT
i [ 0 are the adaptation matrices, qi are the

positive design parameters, ~Wi ¼ Ŵi �Wi and ~Hi ¼ Ĥi �
Hi with Ŵi;Wi; Ĥi and Hi to be defined later.

Considering (29), we can obtain the time derivative of

V as

_V¼ _Vnþ
X

n

i¼1

_̂
W

T

i C
�1
i

~Wiþ
X

n

i¼1

1

qi
~H

T

i
_̂Hi

¼ zT
1 ½�k1z1þMðZ1Þaan1 þð1�MðZ1ÞÞar1þz2þh1ðZ1Þ�

þ
X

n�1

q¼2

zT
q ½�zq�1�kqzqþMðZqÞaanq þð1�MðZqÞÞarq

þzqþ1þhqðZqÞ�þzT
n ½�zn�1�knznþMðZnÞaann

þð1�MðZnÞÞarnþhnðZnÞ�þ
X

n

i¼1

_̂
W

T

i C
�1
i

~Wiþ
X

n

i¼1

1

qi
~H

T

i
_̂Hi

¼�
X

n

i¼1

kiz
T
i ziþ

X

n

i¼1

zT
i MðZiÞaani þð1�MðZiÞÞari þhiðZiÞ
 �

þ
X

n

i¼1

_̂
W

T

i C
�1
i

~Wiþ
X

n

i¼1

1

qi
~H

T

i
_̂Hi: ð31Þ

In fact, the functions hiðZiÞ;i¼1;...;n are unknown and

cannot be directly used since they include some uncertain

functions fið�xiÞ;gið�xiÞ. Since it can be verified that the

functions hiðZiÞ are continuous, we can employ RBFNNs to

compensate the unknown functions hiðZiÞ over the compact

sets Zi2XZi as follows

hiðZiÞ ¼ SiðZiÞT
Wi þ �iðZiÞ ð32Þ

where SiðZiÞ :¼ diagfSi1ðZiÞ; . . .; SipðZiÞg; Wi :¼ ½WT
i1; . . .;

WT
ip�

T; and �iðZiÞ :¼ ½�i1ðZiÞ; . . .; �ipðZiÞ�T; respectively,

denote the basis function matrices, the ideal weight vectors,

and the inherent approximation error vectors with

SijðZiÞ;Wij and �ijðZiÞ; j ¼ 1; . . .; p defined as shown in (2),

and jj�iðZiÞjj � �i with unknown constants �i [ 0:

Meanwhile, based on Assumptions 1–3 and the detailed

forms of the functions hiðZiÞ as shown in (15), (21), and

(27), by computation we can determine that there exist the

known positive smooth functions ciðZiÞ and the unknown

constants si [ 0 which are dependent of the unknown

parameters .i and mi such that

jjhiðZiÞjj � siciðZiÞ: ð33Þ

Substituting (32) into (31) yields
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_V ¼�
X

n

i¼1

kiz
T
i ziþ

X

n

i¼1

zT
i ½MðZiÞðaani þ hiðZiÞÞþ ð1�MðZiÞÞðari þ hiðZiÞÞ�

þ
X

n

i¼1

_̂
W

T

i C
�1
i

~Wiþ
X

n

i¼1

1

qi
~H

T

i
_̂Hi ¼�

X

n

i¼1

kiz
T
i ziþ

X

n

i¼1

zT
i

MðZiÞ �SiðZiÞT ~Wi

�h

�ð�iþ ~�iÞ!
zi

-

� �

þ �iðZiÞ
�

þð1�MðZiÞÞ �ðsiþ ~siÞciðZiÞð !
ciðZiÞzi

-

	 


þ hiðZiÞ

�

þ
X

n

i¼1

_̂
W

T

i C
�1
i

~Wiþ
X

n

i¼1

1

qi
~H

T

i
_̂Hi

¼�
X

n

i¼1

kiz
T
i zi�

X

n

i¼1

MðZiÞzT
i SiðZiÞ

T

~Wi�
X

n

i¼i

~H
T

i Uiþ
X

n

i¼i

_̂
W

T

i C
�1
i

~Wiþ
X

n

i¼1

1

qi
~H

T

i
_̂Hi

þ
X

n

i¼1

MðZiÞzT
i ��i!

zi

-

� �

þ �iðZiÞ
h i

þ
X

n

i¼1

ð1�MðZiÞÞzT
i

�siciðZiÞ!
ciðZiÞzi

-

	 


þ hiðZiÞ
� �

ð34Þ

where Ĥ¼ ½�̂i; ŝi�T; H¼ ½�i;si�T and

Ui ¼
MðZiÞzT

i !
zi

-

� �

ð1 �MðZiÞÞzT
i ciðZiÞ!

ciðZiÞzi
-

	 


2

6

6

4

3

7

7

5

:

Based on Eq. (34), design the parameter adaptive laws as

_̂
Wi ¼ CiðMðZiÞSiðZiÞzi � riŴ iÞ
_̂Hi ¼ qiðUi � riĤiÞ

(

ð35Þ

where ri are the positive design parameters.

By substituting (35) into (34), the derivative of

V becomes

_V ¼ �
X

n

i¼1

kiz
T
i zi �

X

n

i¼1

ri ~W
T

i Ŵ i �
X

n

i¼1

ri ~H
T

i Ĥi

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIÞ

þ
X

n

i¼1

MðZiÞzT
i ��i!

zi

-

� �

þ �iðZiÞ
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

þ
X

n

i¼1

ð1 �MðZiÞÞzT
i �siciðZiÞ!

ciðZiÞzi
-

	 


þ hiðZiÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIIÞ

:

ð36Þ

By using Lemma 2 and noticing 0�MðZiÞ� 1, the fol-

lowing inequalities hold

ðIÞ : �
X

n

i¼1

ri ~W
T

i Ŵ i �
X

n

i¼1

ri ~H
T

i Ĥi

� �
X

n

i¼1

rijj ~Wijj2

2
�
X

n

i¼1

rijj ~Hijj2

2

þ
X

n

i¼1

rijjWijj2

2
þ rijjHijj2

2

 !

ð37Þ

ðIIÞ :
X

n

i¼1

MðZiÞzT
i ��i!

zi

-

� �

þ �iðZiÞ
h i

�
X

n

i¼1

MðZiÞpj-�i:
ð38Þ

Using inequality (33), the definition of function !ð�Þ and

Lemma 2, we have

ðIIIÞ :
X

n

i¼1

ð1 �MðZiÞÞzT
i

�siciðZiÞ!
ciðZiÞzi

-

	 


þ hiðZiÞ
� �

�
X

n

i¼1

ð1 �MðZiÞÞ �si
X

p

q¼1

ciðZiÞziq

"

tanh
ciðZiÞziq

-

	 


þ
X

p

q¼1

jziqjsiciðZiÞ
#

�
X

n

i¼1

ð1 �MðZiÞÞpj-si: ð39Þ

Based on (37)–(39), Eq. (36) satisfies the following

inequality

_V � �
X

n

i¼1

kiz
T
i zi �

X

n

i¼1

rijj ~Wijj2

2

�
X

n

i¼1

rijj ~Hijj2

2

þ
X

n

i¼1

rijjWijj2

2
þ rijjHijj2

2

 

þMðZiÞpj-�i þ ð1 �MðZiÞÞpj-si

!

: ð40Þ

Let

d
 ¼
X

n

i¼1

rijjWijj2

2
þ rijjHijj2

2
þMðZiÞ

 

pj-�i þ ð1 �MðZiÞÞpj-si

!

:
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If we choose ki such that ki [ k


2g
0

; i ¼ 1; 2; . . .; n; where k


is a positive constant, and choose ri and Ci such that

ri [ max k
kmaxðC�1
i Þ; k
qi

n o

; i ¼ 1; 2; . . .; n; then from (40)

we have the following inequality

_V � �
X

n

i¼1

k


2
zT
i g

�1
i ð�xiÞzi �

X

n

i¼1

k


2
~W

T

i C
�1
i

~Wi

�
X

n

i¼1

k


2qi
~H

T

i
~Hi þ d
 � � k


X

n

i¼1

1

2
zT
i g

�1
i ð�xiÞzi

"

þ
X

n

i¼1

~W
T

i C
�1
i

~Wi

2
þ
X

n

i¼1

1

2qi
~H

T

i
~Hi

#

þ d
 � � k
V þ d
:

ð41Þ

From (41), we have VðtÞ� ðVð0Þ � d


k
Þ
�k
t þ d


k
, which

implies that all the signals, including zi; ~Wi and ~Hi; i ¼
1; . . .; n; are uniformly bounded. Since Wi and Hi are

bounded, it is easily seen that Ŵi and Ĥi are bounded.

Next, it can be seen that x1 is bounded for z1 ¼ x1 � yr and

yr being bounded. For i ¼ 2; . . .; n; from xi ¼ zi þ ai�1 and

the definitions of virtual control inputs ai�1, it can be

shown that ai�1 and xi are all bounded. Using (28), we can

conclude that the actual control u is also bounded. Con-

sequently, all the signals in the closed-loop system remain

bounded. On the other hand, from inequality (41), it can be

easily shown that

1

2
zT

1g
�1
1 ð�x1Þz1 �

X

n

i¼1

1

2
zT
i g

�1
i ð�xiÞzi

�VðtÞ� Vð0Þ � d


k


	 
�k
t

þ d


k

: ð42Þ

Note that g1ð�x1Þ is a constant matrix, denoted by g
1, that is,

g1ð�x1Þ is independent of x1. Otherwise, it is in contradiction

with condition (11) in Assumption 3. Therefore, we can get

the following inequality

1

2
kminðg
�1

1 Þz2
1 � Vð0Þ � d


k


	 
�k
t

þ d


k


which implies that the tracking error z1 ¼ y� yr will

eventually converge to

X
 ¼ z1

�

�

�

�

�

jjz1jj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d


k
kminðg
�1
1 Þ

s

( )

:

h

4 Simulation example

In order to show the effectiveness of the control scheme pro-

posed in this paper, we consider a double-inverted pendulum

model [20] connected by an unknown device, which is shown

in Fig. 1. For the purpose of simulation, the unknown device is

specified as a spring. The system has the following form

_x1 ¼ f1ð�x1Þ þ g1ð�x1Þx2

_x2 ¼ f2ð�x2Þ þ g2ð�x2Þu
y ¼ x1

8

<

:

ð43Þ

where the system states x1 ¼ ½x11; x12�T; x2 ¼ ½x21; x22�T; the

systems outputs y ¼ ½y1; y2�T and the control inputs u ¼
½u1; u2�T;

f1ð�x1Þ ¼
0

0

	 


; g1ð�x1Þ ¼
1 0

0 1

	 


and

f2ð�x2Þ ¼

m1

J1

gr � kr2

4J1

	 


sinðx11Þ þ
kr

2J1

ðl� bÞ þ kr2

4J1

sinðx12Þ

m2

J2

gr � kr2

4J2

	 


sinðx12Þ þ
kr

2J2

ðl� bÞ þ kr2

4J2

sinðx11Þ

0

B

B

B

@

1

C

C

C

A

;

g2ð�x2Þ ¼

1

J1

0

0
1

J2

0

B

B

@

1

C

C

A

;

the end masses of pendulum are m1 ¼ 2 kg and

m2 ¼ 2:5 kg, the moments of inertia are J1 ¼ 0:5 kg � m2

and J2 ¼ 0:625 kg � m2; the constant of connecting spring is

k ¼ 100 N=m; the pendulum height is r ¼ 0:5 m; the nat-

ural length of the spring is l ¼ 0:5 m; and the gravitational

acceleration is g ¼ 9:81 m=s2: The distance between the

pendulum hinges is b ¼ 0:4 m:

Fig. 1 Two inverted pendulums connected by unknown device [20]
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For the simulation, the known functions in Assump-

tions 1–3 are given as follows

u1ð�x1Þ ¼ 1; b1ð�x1Þ ¼ 1;

�G1ð�x1Þ ¼ 2; �g1ð�x1Þ ¼ 1:5

u2ð�x2Þ ¼ ð441 þ 152x2
11 þ 202x2

12Þ
1
2;

b2ð�x2Þ ¼ 1; �G2ð�x2Þ ¼ 4; �g2ð�x2Þ ¼ 1:

The reference signal is yr ¼ ½yr1; yr2�T ¼ ½sinð2tÞ; sinð t
2
Þ

sinðtÞ þ 1�T: According to the design procedure proposed

in Sect. 3, we can easily obtain the virtual control a1 and

the actual control u(t) which are in the same form as (17)

and (28) but different from where the functions c1ðZ1Þ and

c2ðZ2Þ are given as follows

c1ðZ1Þ ¼ 1 þ 1

2
ðx2

11 þ x2
12 þ 0:2Þ1=2

þ 1

2
ðy2

r1 þ y2
r2 þ 1Þ1=2

þ ð _y2
r1 þ _y2

r2 þ 0:5Þ1=2;

c2ðZ2Þ ¼ u2ð�x2Þ þ
ffiffiffi

2
p oa11

ox1

	 
2
 

þ oa12

ox1

	 
2

þ �G
2

1ð�x1Þ

þx2
2 þ /2

1 þ 1
�1=2

þ 1

2
½ðx2

2 þ 0:1Þ1=2

þ ða2
1 þ 0:1Þ1=2�:

All simulations are run by the Matlab ‘‘ode45’’ method

and the max step size is set to be 0.01. RBFNNs S1ðZ1ÞT
Ŵ1

and S2ðZ2ÞT
Ŵ2 are employed in this simulation, where

S1ðZ1Þ¼ diagfS11ðZ1Þ; S12ðZ1Þg; Ŵ1 ¼ ½ŴT

11; Ŵ
T

12�
T
, S2ðZ2Þ

¼ diagfS21ðZ2Þ; S22ðZ2Þg; Ŵ2 ¼ ½ŴT

21; Ŵ
T

22�
T
. Specifically,

both NNs S11ðZ1ÞT
Ŵ11 and S12ðZ1ÞT

Ŵ12 contain 729 nodes

(i.e., l11 ¼ l12 ¼ 729) with centers l1jqðj ¼ 1; 2; q ¼
1; . . .; l11Þ evenly spaced in ½�1; 1� � ½�1; 2� � ½�1; 1� �
½�1; 2� � ½�2; 2� � ½�1:5; 1:5� and width g1 ¼ 0:34; the

other NNs S21ðZ2ÞT
Ŵ21 and S22ðZ2ÞT

Ŵ22 contain 59049

nodes (i.e., l21 ¼ l22 ¼ 59049) with centers l2jqðj ¼
1; 2; q ¼ 1; . . .; l21Þ evenly spaced in ½�1; 1� � ½�1; 2��
½�1; 1� � ½�1; 3� � ½�3; 7� � ½�3; 7� � ½�20; 40� � ½�20;

10� �½�20; 40� � ½�20; 10� � ½�20; 10� � ½�20; 10� and

width g2 ¼ 0:39: The rest of design parameters used in the

simulation are summarized as: k1 ¼ k2 ¼ 10:0;C1 ¼ C2 ¼
diagf30g; q1 ¼ 10�3; q2 ¼ 1:5 � 10�3; r1 ¼ r2 ¼
10�3; r1j1 ¼ 1:0; r1j2 ¼ 2:0; j ¼ 1; . . .; 6; r2j1 ¼ 1:0; r2j2 ¼
3:0; j ¼ 1; . . .; 12 and - ¼ 10: The initial states are chosen

as ½x11ð0Þ; x12ð0Þ; x21ð0Þ; x22ð0Þ�T ¼ ½5;�2; 2; 3�T also out-

side the NNs approximation domain, Ŵið0Þ ¼ 0 and

Ĥið0Þ ¼ 0; i ¼ 1; 2.

Figures 2, 3, 4, and 5 show the simulation results of

adopting controller (45) to the double-inverted pendulum

model for tracking reference signal yr. From Fig. 2, we can

see that fairly good tracking performance is also obtained.

The boundedness of the system state x2, the control input u,

the adaptive parameters Ŵi and Ĥi; i ¼ 1; 2 are shown in
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Fig. 2 Trajectories of the

outputs yi, the reference signals

yri, and the tracking errors

yi � yri; i ¼ 1; 2
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Figs. 3 and 4, respectively. The switching signals are

depicted in Fig. 5.

To further show the advantage of the control

scheme proposed in this paper, we now present a com-

parison experiment as following. For (17) and (28), let

MðZ1Þ ¼ MðZ2Þ ¼ 1; and then they are reduced to the

conventional controller developed in [38]. The simulation

results are shown in Fig. 6, from which it can be seen that

the tracking performance is very poor. This is because the

conventional adaptive neural controller is valid under the

assumption that the initial condition of the system must be

within a small compact set (generally, such a compact is

much less than the approximation domain of NNs). That is,

the existing control schemes just can guarantee the semi-

global stability of the closed-loop systems. However, our

approach can obtain a global result since we no longer

require the initial condition of the system is within a small

compact set.

Remark 7 From Fig. 5, it can be seen that the function

Mð�Þ takes values between 0 and 1, which is different

from the general switching function taking values 0 or 1.

In fact, the function Mð�Þ proposed in this paper has the

derivatives up to the nth order, which guarantees the

successful design of the ANNC by using the backstep-

ping technique.
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Fig. 3 Trajectories of the states

x2i, the norms
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5 Conclusions

In this paper, it is the first time to develop a globally

stable direct ANNC scheme for a class of uncertain MIMO

nonlinear systems. By constructing a novel nth-order

smoothly switching function, an appropriate switching

controller is designed to ensure the closed-loop MIMO

system being GUUB. In each backstepping design proce-

dure, all the unknown parts are approximated by employing

an RBFNN to reduce the number of adaptive parameters,

so a simplified ANNC strategy is obtained and it is easy to

implement in practice. Finally, it has been shown that all

the signals of the closed-loop MIMO system are GUUB

and a good tracking performance is obtained. It should be

mentioned that this paper has used RBF neural network to

model uncertain dynamical systems. Of course, it is well

known that there are some modeling algorithms reported in

the literature such as fuzzy algorithms [48, 50] and genetic

algorithm [49], which have several advantages. For system

(7), how to design the feasible control scheme based on

these modeling algorithms is an interesting topic.
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