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Abstract In this paper, an adaptive robust finite-time

neural control scheme is proposed for uncertain permanent

magnet synchronous motor servo system with nonlinear

dead-zone input. According to the differential mean value

theorem, the dead zone is represented as a linear time-

varying system, and the model uncertainty including the

dead zone is approximated by using a simple neural net-

work. Then, an adaptive finite-time controller is designed

based on a fast terminal sliding mode control principle, and

the singularity problem in the initial TSMC is circum-

vented by modifying the terminal sliding manifold. Com-

parative experiments are conducted to validate the

effectiveness and superior performance of the proposed

method.

Keywords Adaptive control � Finite-time control � Dead
zone � Servo system � Neural network

1 Introduction

Over the past decades, permanent magnet synchronous

motor (PMSM) has been widely studied in motion-control

applications [1–3]. The mechanical connection between

servo motors and mechanical devices produces nonsmooth

nonlinear characteristics such as dead zone, friction,

backlash and hysteresis [4–7]. As one of the most impor-

tant nonsmooth nonlinearities in motor servo systems, the

dead zone may lead to severe control deterioration or even

instability [8]. To handle the systems with unknown dead

zones, much research has been carried out for the com-

pensation of the dead zones [9–15].

Sliding mode control (SMC) is regarded as one of the

robust control techniques to deal with system uncertainties

and bounded disturbances. By introducing a nonlinear term

into the SMC design, a terminal sliding mode control

(TSMC) scheme was developed and the finite-time stability

could be achieved [16–18]. Compared with SMC, TSMC

has some superior properties, such as better tracking pre-

cision, fast convergence, insensitivity to system uncer-

tainties and external disturbances. However, the singularity

may exist in the TSMC scheme due to the use of negative

fractional power in the designs of both sliding mode sur-

face and controller. To avoid the singularity problem,

nonsingular terminal sliding mode control methods were

proposed in [19, 20], and a fast TSMC, which combined

the advantages of the TSMC and the traditional linear

SMC, was proposed in [21].

In those approaches aforementioned, the system models

are required to be known or partially known, which will

block the direct application for the PMSM servo control

system since both model uncertainties and nonlinear dead

zones are usually unavoidable. In this regard, neural net-

works (NNs) have been successfully employed to handle

system uncertainties and unknown nonlinearities [12–15,

22–24]. Recently, Wang et al. [25] presented an indirect

TSMC scheme with NN approximation to control robotic

manipulators with model uncertainties, and the finite-time

stability was ultimately guaranteed. However, the impact

of nonsmooth nonlinearities, e.g., dead zone, was not
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considered in the controller design. In [26], a similar

control scheme was developed for the finite-time attitude

tracking control of spacecrafts with control input con-

straints, where only simulation results were given in the

paper.

This paper focuses on an adaptive robust finite-time

neural-network control (ARFTNC) for PMSM servo sys-

tem with model uncertainties and unknown nonlinear dead-

zone input. The main contribution of this paper is to

develop an alternative fast terminal sliding mode control

(FTSMC), and the singularity problem in the TSMC

approach [16, 17] is avoided by modifying the terminal

sliding manifold. Moreover, finite-time stability in both the

reaching phase and the sliding phase is guaranteed, and

comparative experiments are conducted to validate the

effectiveness and superior performance of the proposed

method.

The rest of this paper is organized as follows. The

problem formulation and some preliminaries are briefly

described in Sect. 2. Section 3 proposes an adaptive robust

finite-time neural control based on a fast terminal sliding

mode principle and NN approximation. The finite-time

stability analysis is given in Sect. 4, followed by the

comparative experiments in Sect. 5, and conclusions are

provided in Sect. 6.

2 Problem formulation and preliminaries

The mechanical dynamics of PMSM servo system can be

described as [8]:

m€xþ f �ð�x; tÞ þ d�ð�x; tÞ ¼ k�0uðtÞ
y ¼ x

ð1Þ

where �x ¼ ½x; _x�T 2 R2, uðtÞ 2 R, y 2 R are state variables,

the control input to the motor and the output from the

motor, respectively; x is the position, m is the inertia, k�0 is a

positive control gain (the force constant), f �ð�x; tÞ is the

friction force; d�ð�x; tÞ represents a bounded disturbance

generated by coupling and protective covers, measurement

noises, power electronics disturbances and other

uncertainties.

For notational convenience, system (1) is normalized as:

€x ¼ �hð�x; tÞ þ k0uðtÞ
y ¼ x

ð2Þ

where k0 is a positive but unknown parameter satisfying

k0 ¼ k�0=m; hð�x; tÞ ¼ f ð�x; tÞ þ dð�x; tÞ with f ð�x; tÞ ¼
f �ð�x; tÞ=m and dð�x; tÞ ¼ d�ð�x; tÞ=m being uncertain func-

tions; the control input uðtÞ 2 R is the output of the fol-

lowing nonlinear dead zone shown in Fig. 1:

uðtÞ ¼ GðvðtÞÞ ¼
grðvðtÞÞ; vðtÞ� br

0; bl\vðtÞ\br

glðvðtÞÞ; vðtÞ� bl

8
><

>:
ð3Þ

where vðtÞ 2 R is the input of the dead zone (practical

control signal), glðvðtÞÞ, grðvðtÞÞ are unknown nonlinear

smooth functions and bl, br are unknown width parameters

of the dead zone. Without loss of generality, we assume

bl\0 and br [ 0.

Remark 1 Although the dead-zone dynamics can be

compensated in terms of its inverse model, the precise

dead-zone model should be identified a priori. However,

the maximum and minimum slope values of the dead zone

are difficult to obtain practically, so the nonlinear dead

zone (3) cannot be efficiently compensated by using

identification techniques. In this paper, a model-indepen-

dent compensation method is developed, in which the

functions glðvðtÞÞ, grðvðtÞÞ and characteristic parameters bl,

br are not necessarily known in prior.

To facilitate the controller design, the following

assumption is needed.

Assumption 1 [13–15]: The functions glðvðtÞÞ and

grðvðtÞÞ are smooth, and there exist unknown positive

constants gl0, gl1, gr0 and gr1 such that

0\gl0 � gl
0ðvðtÞÞ� gl1 8vðtÞ 2 ð�1; blÞ ð4Þ

0\gr0 � gr
0ðvðtÞÞ� gr1 8vðtÞ 2 ðbr;þ1Þ ð5Þ

where grðbrÞ ¼ glðblÞ ¼ 0; gl
0ðvðtÞÞ ¼ dglðzÞ=dzjz¼vðtÞ and

gr
0ðvðtÞÞ ¼ dgrðzÞ=dzjz¼vðtÞ.

According to the differential mean value theorem and

following the idea of [15], (3) can be rewritten as:

uðtÞ ¼ uðvðtÞÞvðtÞ þ qðvðtÞÞ 8t� 0 ð6Þ

and

uðvðtÞÞ ¼ urðvðtÞÞ þ ulðvðtÞÞ ð7Þ

( )rg v

( )lg v

( )v t

( )u t

lb
rb

Fig. 1 Nonlinear dead-zone model
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where

urðvðtÞÞ ¼
gr
0ðnrÞ; vðtÞ[ br

0; vðtÞ� br

�

ð8Þ

ulðvðtÞÞ ¼
gl
0ðnlÞ; vðtÞ\bl

0; vðtÞ� bl

�

ð9Þ

qðvðtÞÞ ¼
�gr

0ðnrÞbr; vðtÞ� br

�½gl0ðnlÞ þ gr
0ðnrÞ�vðtÞ; bl\vðtÞ\br

�gl
0ðnlÞbl; vðtÞ� bl

8
><

>:
ð10Þ

with nl 2 ðbl; vðtÞÞ and nr 2 ðvðtÞ; brÞ.
Substituting (6) in (2), we have

€x ¼ �hð�x; tÞ þ k0ðuðvðtÞÞvðtÞ þ qðvðtÞÞÞ
y ¼ x:

ð11Þ

From Assumption 1, we can verify that uðvðtÞÞ 2
½u0;u1� � ð0;þ1Þ with u0 ¼ minðgl0; gr0Þ and

u1 ¼ gl1 þ gr1, jqðvðtÞÞj � qN with qN ¼ ðgl1 þ
gr1Þmaxfbr;�blg being a positive constant.

Remark 2 The reformulation of dead-zone dynamics was

inspired by [14, 15]. However, the tracking error is proved

to be semiglobally uniformly ultimately bounded in the

former works and only simulation results are provided. In

this paper, the tracking error e can be controlled to con-

verge to the equilibrium point within a finite time, which

leads to improved experiment results.

Let yd be a given twice differentiable desired trajectory

and then the tracking error e is defined as

e ¼ yd � y: ð12Þ

The control objective is to design an adaptive robust finite-

time controller v(t) for the system (11) such that the

tracking error e converges to the equilibrium point within a

finite time, while all signals in the closed-loop system are

bounded.

3 Adaptive robust finite-time control

In this section, an adaptive robust finite-time control

scheme is designed for the PMSM servo system (11).

3.1 Fast terminal sliding manifold

The linear sliding mode (LSM) and terminal sliding mode

(TSM) can be formulated by the following differential

equations [25, 27]:

LSM:

s ¼ _eþ k0e ð13Þ

TSM:

s ¼ _eþ k0jejcsgnðeÞ: ð14Þ

where k0 [ 0, and c ¼ q=p, p; q[ 0 are positive odd

numbers satisfying q\p.

Remark 3 Once the sliding mode manifold s ¼ 0 is

reached, the expressions of LSM and TSM become _e ¼
�k0e and _e ¼ �k0jejcsgnðeÞ, respectively. Since 0\c\1,

jejc\jej if jej[ 1, which implies that TSM has a slower

convergence speed than LSM when the system position is

far away from the desired trajectory. Otherwise, when the

system position is close to the desired trajectory, TSM has

a faster convergence speed than LSM due to jejc [ jej if
jej\1.

By introducing the linear term of (13) into the TSM

design (14), a fast terminal sliding mode (FTSM) is defined

as:

s ¼ _eþ k1eþ k2jejcsgnðeÞ
¼ xr � _x

ð15Þ

with

xr ¼ _yd þ k1eþ k2jejcsgnðeÞ ð16Þ

where e 2 R, k1; k2 [ 0, c ¼ q=p, p; q[ 0 are positive odd

numbers satisfying q\p.

Then, the derivative of s is

_s ¼ _xr � €x ð17Þ

with

_xr ¼ €yd þ k1 _eþ k2cjejc�1 _e: ð18Þ

Remark 4 Compared with the term xp=q used in [25, 26],

we employ the term jejcsgnðeÞ in this paper to design the

sliding mode and the controller. This modification is sig-

nificant for the practical experiment because the fractional

power c ¼ q=p may result in the term ec 62 R and thus _e 62
R for e\0. In that case, the control signal v 62 R will

contain the imaginary part and may lead to control dete-

rioration or even trigger instability.

On the sliding mode surface s ¼ 0, (15) can be rewritten

as

_e ¼ �k1e� k2jejcsgnðeÞ ð19Þ

According to the finite-time stability theory [28], the

equilibrium point e ¼ 0 of differential equation (19) is

finite-time stable; i.e., the tracking error can converge to

the equilibrium point within a finite settling time

T ¼ 1

k1ð1� cÞ ln
k1je0j1�c þ k2

k2
: ð20Þ
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Substituting (19) in (18), we have

_xr ¼ €yd þ k1 _eþ k2cjejc�1 _e

¼ €yd � k21e� k1k2ðcþ 1ÞjejcsgnðeÞ � k22cjej
2c�1

sgnðeÞ:
ð21Þ

It should be noted that if c[ 1=2, the singularity of (21)

will not occur since there is no negative fractional power in

€xr. However, in case that s 6¼ 0 and e ¼ 0, the singularity

still exists. Motivated by the work of [25, 26], the singu-

larity problem is avoided by modifying the definition of xr
as

xr ¼ _yd þ k1eþ k2bðeÞ ð22Þ

where

bðeÞ ¼
jejcsgnðeÞ s ¼ 0 or s 6¼ 0; jej[ l

l1eþ l2jej2sgnðeÞ s 6¼ 0; jej � l

�

ð23Þ

with l1 ¼ ð2� cÞlc�1, l2 ¼ ðc� 1Þlc�2; l[ 0 being a

small positive constant.

Then, the derivative of xr is obtained as

_xr ¼
€yd þ k1 _eþ k2cjejc�1 _e; s ¼ 0 or s 6¼ 0; jej � l

€yd þ k1 _eþ k2l1 _eþ 2k2l2jej _e; s 6¼ 0; jej � l

(

ð24Þ

which is a continuous function. Therefore, compared with

(21), there exists no singularity problem in Eq. (24).

From (14), (22) and (23), the modified terminal sliding

manifold as shown in Fig. 2 is expressed as

s ¼ _eþ k1eþ k2bðeÞ: ð25Þ

From (11) and (24), the derivative of s is obtained as:

_s ¼ �k0uðvðtÞÞvðtÞ þ jðtÞ ð26Þ

where jðtÞ is a nonlinear function and expressed as

jðtÞ ¼ _xr þ hð�x; tÞ � k0qðvðtÞÞ: ð27Þ

Since k0, uðvðtÞÞ and jðtÞ are unknown, the neural

network (NN) in [15] is employed to approximate a non-

linear function H ¼ jðtÞ=ðk0uðvðtÞÞÞ due to its inherent

approximation capabilities. Then, the function H can be

expressed as

H ¼ W�T/ðXÞ þ e ð28Þ

where X ¼ ½xT ; _xT ; yTd ; _yTd ; €yTd �
T 2 R5 is the input vector;

W� ¼ ½w1;w2; . . .;w5�T 2 R5 is the ideal bounded weight

matrix and e is the bounded approximation error, which

satisfy kW�k�WN and jej � eN with WN and eN being

positive constants, respectively; /ðXÞ represents the NN

basis function.

Remark 5 The employed neural network is one of the

linearly parameterized approximation methods and can be

replaced by any other approximation approaches, such as

RBF neural network, fuzzy systems. However, the struc-

ture of the employed neural network in this paper is simpler

than the other neural networks. In the employed neural

network, there is no hidden layer, but only five inputs and

one output are included, such that the corresponding weight

matrix is 5	1. Consequently, although consuming a little

more time than PID approach, the proposed method is still

easy to run in the DSP (TMS3202812)-based practical

system.

Remark 6 From Assumption 1, we can obtain uðvðtÞÞ 2
½u0;u1� with k0, u0 ¼ minðgl0; gr0Þ and u1 ¼ gl1 þ gr1
being positive constants, so k0uðvðtÞÞ 6¼ 0 is always guar-

anteed, and the function H can be approximated by NN

without any singularity problem.

3.2 Controller design

In the following, an adaptive robust finite-time neural

controller is developed for tracking control of the system

(11).

The controller is designed as:

vðtÞ ¼ ŴT/ðXÞ þ k1sþ k2jsjrsgnðsÞ þ ðd1 þ d2ÞsgnðsÞ
ð29Þ

where Ŵ is the estimate of the ideal weight W�, ŴT/ðXÞ is
the NN uncertainty estimator, k1sþ k2jsjrsgnðsÞ is a feed-

back control to guarantee the finite-time convergence of

sliding mode s, ðd1 þ d2ÞsgnðsÞ is a robust term which is

designed to provide robustness in the presence of the NN

approximation and weight estimation errors. Here, k1 [ 0

and k2 [ 0 are the designed control parameters, r ¼ r1=r2
with r1; r2 [ 0 being positive odd numbers satisfying

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

e

ė

Modified terminal sliding manifold
Fast terminal sliding manifold

Fig. 2 Modified terminal sliding manifold
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r1\r2, d1 [ eN , and d2 is a positive constant satisfying

d2 [ k ~WT/ðXÞkF .
The weight update law is given by

_̂
W ¼ C/ðXÞs ð30Þ

where C is a positive-definite and diagonal matrix; /ðXÞ is
chosen as the following sigmoid function

/ðXÞ ¼ a

bþ eð�X=cÞ þ d ð31Þ

with a, b, c and d being appropriate parameters.

Substituting the proposed controller (29) in (26), we have

_s ¼ k0uðvðtÞÞ½ ~WT/ðXÞ � k1s� k2jsjrsgnðsÞ þ e

� ðd1 þ d2ÞsgnðsÞ� ð32Þ

where ~W ¼ W� � Ŵ is the NN weight estimation error.

Remark 7 Since the discontinuous switching function

sgnð�Þ shown in (29) and (32) may result in the chattering

phenomenon, the following continuous function gð�Þ is

employed instead in the experiment section:

gðsÞ ¼
sgnðsÞ jsj � f
2s

jsj þ f
jsj\f

8
<

:
ð33Þ

where f[ 0 is a small positive number which represents

the boundary layer thickness.

4 Stability analysis

In this section, a lemma and a theorem are provided to

show the boundedness of all signals and the finite-time

stability of system (11) in both the reaching phase and the

sliding phase.

Lemma 1 [20] Suppose that there exists a continuous,

positive-definite function V(t) satisfying the following

differential inequality:

_VðtÞ þ aVðtÞ þ bVcðtÞ� 0; 8t� t0; Vðt0Þ� 0 ð34Þ

where a; b[ 0, 0\c\1 are constants. Then, for any given

t0, V(t) satisfies the following inequality:

V1�cðtÞ� ðaV1�cðt0Þ þ bÞe�að1�cÞðt�t0Þ � b; t0 � t� ts

ð35Þ

and

VðtÞ 
 0; 8t� ts ð36Þ

with ts given by

ts ¼ t0 þ
1

að1� cÞ ln
aV1�cðt0Þ þ b

b
: ð37Þ

Theorem 1 Consider the PMSM servo system (11) with

unknown nonlinear dead zone (3), terminal sliding mani-

fold (25), control law (29) and weight update law (30), then

1. All the signals of the closed-loop system are semiglob-

ally uniformly ultimately bounded (SGUUB).

2. The terminal sliding manifold s can converge to the

equilibrium point within a finite time if the design

parameters d1 and d2 are chosen as d1 � eN and

d2 �k ~WT/ðXÞkF .
3. The tracking error e will converge to the equilibrium

point within a finite time.

Proof

1. Choose the following Lyapunov function:

VðtÞ ¼ 1

2k0u0

s2 þ 1

2
~WTC�1 ~W : ð38Þ

Differentiating (38) with respect to time and using

(32) yield

_VðtÞ ¼ 1

k0u0

s _sþ ~WTC�1 _~W

� ~WT/ðXÞs� ðd1 þ d2Þjsj � k1s
2 � k2jsjrþ1 þ jsje

� ~WTC�1 _̂
W

¼ � ~WTC�1½ _̂W � C/ðXÞs� � ðd1 þ d2Þjsj þ jsje
� k1s

2 � k2jsjrþ1:

ð39Þ

Substituting (30) in (39), we have

_VðtÞ� � k1s
2 � k2jsjrþ1 � d2jsj � 0: ð40Þ

Because the NN approximation is feasible in a

compact set, the resulting stability will be proved in

semiglobal sense. From (38) to (40), we can con-

clude that both s and ~W are semiglobally uniformly

ultimately bounded. Considering (15) and the

boundedness of W�, it can be obtained that both e, _e

and Ŵ are also semiglobally uniformly ultimately

bounded, and thus, v(t) is bounded according to (29).

Since yd, _yd and €yd are bounded, the boundedness of

xr and _xr is guaranteed by (16) and (18). From (32), it

can be concluded that _s is semiglobally uniformly

ultimately bounded due to the boundedness of

uðvðtÞÞ. Therefore, all signals of the closed-loop

system are semiglobally uniformly ultimately

bounded.

2. From (31), we can conclude that the sigmoid function

/iðXÞ is bounded by 0\/iðXÞ\L0, i ¼ 1; . . .; L1, with
L0 ¼ maxfj a

b
þ dj; j a

bþ1
þ djg. Therefore, /ðXÞ is

bounded by

Neural Comput & Applic (2017) 28:3725–3736 3729
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k/ðXÞk� L0
ffiffiffiffiffi
L1

p
ð41Þ

where k�k denotes the Euclidean norm of a vector,

/ðXÞ ¼ ½/1ðXÞ; . . .;/LðXÞ�T .
According to the property of Frobenius norm, we can

obtain

k ~WT/ðXÞkF �k ~WkFk/ðXÞk: ð42Þ

Select a Lyapunov function candidate

V1 ¼
1

2k0u0

s2: ð43Þ

Differentiating (43) and using (32), we have

_V1 ¼
1

k0u0

sk0uðvðtÞÞ½ ~WT/ðXÞþ e� k1s� k2jsjrsgnðsÞ

� ðd1 þ d2ÞsgnðsÞ�
� � k1s

2 � k2jsjrþ1 þk ~WT/ðXÞkFjsj þ jsje
�ðd1 þ d2Þjsj:

ð44Þ

Since d1 � eN and d2 �k ~WT/ðXÞkF , (44) is rewritten
as

_V1 � � k1s
2 � k2jsjrþ1

� � 2k1k0u0

1

2

1

k0u0

s2
� �

� k2ð2k0u0Þ
rþ1
2

1

2

1

k0uðvðtÞÞ
s2

� �rþ1
2

¼ ��k1V1 � �k2V
�k3
1 :

ð45Þ

Then, we can obtain

_V1 þ �k1V1 þ �k2V
�k3
1 � 0 ð46Þ

where �k1 ¼ 2k1k0u0,
�k2 ¼ k1ð2k0u0Þ

rþ1
2 and �k3 ¼ rþ1

2
.

According to Lemma 1, it can be concluded that the

fast terminal sliding manifold s can converge to the

equilibrium point within a finite time t1 given by

t1 ¼
1

�k1ð1� �k3Þ
ln

�k1V
1��k3
1 ðt0Þ þ �k2

�k2
: ð47Þ

From (47), we can see that the reaching time t1 is

independent of the error dynamics of system (11) but

depends on the constant k0, k1 and u0 only.

3. Once the sliding surface s ¼ 0 is achieved, the states of

system (11) will remain on it and the system has the

invariant properties. On the sliding surface s ¼ 0, we

can obtain

_e ¼ �k1e� k2jejcsgnðeÞ: ð48Þ

Constructing the following Lyapunov candidate

V2 ¼
1

2
e2 ð49Þ

and differentiating V2 along (48) yields:

_V2 ¼ �k1e
2 � k2jejcþ1

¼ �2k1V2 � k22
cþ1
2 V

cþ1
2

2 :
ð50Þ

Setting b1 ¼ 2k1, b2 ¼ k22
cþ1
2 and b3 ¼ cþ1

2
, it can be

obtained from (50) as

_V2 þ b1V2 þ b2V
b3
2 � 0: ð51Þ

According to Lemma 1, we can conclude that the

tracking error e will converge to the equilibrium point

within a finite time t2 given by

t2 ¼
1

b1ð1� b3Þ
ln
b1V

1�b3
2 ðt0Þ þ b2

b2
: ð52Þ

h

Remark 8 The nonsingular terminal sliding mode control

(NTSMC) scheme in Ref. [20] is a kind of discontinuous

boundary layer approach to deal with the singularity

problem, and the time taken to reach the terminal sliding

mode depends on the error dynamics of the mechanical

system. But in this paper, we present a continuous non-

singular terminal sliding mode control, and according to

(47) and (52), we can see that the reaching time t1 and t2
are both independent of the error dynamics, but only

related to the constant parameters, i.e., �ki and bi,
respectively.

Remark 9 From (47) and (52), it can be concluded that in

order to reduce the reaching time t1 and t2, we need to

increase the value of parameters k1, k1, r and c. However,
too large k1 and k1 may lead to a high gain of the con-

troller (29). Consequently, we should choose the proper

value of parameters k1 and k1, and sufficiently large value

of r and c.

5 Experimental results

5.1 Description of the experimental test-rig

As shown in Fig. 3, a turntable servo system with one

degree of freedom (DOF) is used as the test-rig to val-

idate the proposed control, which comprises a permanent

magnet synchronous motor (PMSM, HC-UFS13), an

encoder and pulse width modulation (PWM) amplifiers

in the motor drive card (MR-J2S-10A), a digital signal

processing unit (DSP, TMS3202812) performing as the

controller and a Pentium 2.8-GHz PC operating for

display. The proposed tracking control algorithm is

implemented by a C-program in CCS3.0 programming
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environment. The total run time is 20 s with the sam-

pling time selected as 0.01 s. The schematic diagram of

the proposed control system is depicted by Fig. 4. The

PMSM is driven by a PWM voltage source inverter, and

the id and iq control loops are controlled by two identical

PI controllers which make the current transients negli-

gible with respect to the mechanical dynamics (i.e., i�d ¼
id ¼ 0 and i�q ¼ iq ¼ uðtÞ where superscript ‘*’ denotes

reference signals and u indicates controller output).

5.2 Design of controllers

In this section, extensive experiments are conducted on

the turntable PMSM servo system. In order to show the

superior tracking performance of the proposed scheme,

four different control schemes, including adaptive robust

finite-time neural control (ARFTNC), NN-based terminal

sliding mode control (NNTSMC) [25], NN-based linear

sliding mode control (NNLSMC) [27] and PID control,

Fig. 3 Turntable PMSM servo system
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are performed in the experiments. It should be noted that

in NNTSMC and NNLSMC, NN is employed to

approximate the unknown nonlinearities, while the

compensation for the dead-zone dynamics is not con-

sidered. For fair comparison, the initial states of the

system and NN parameters are set the same, i.e.,

ðxð0Þ; _xð0ÞÞ ¼ ð0; 0Þ, C ¼ 0:05, a ¼ 2, b ¼ 10, c ¼ 1 and

d ¼ �10.

5.2.1 Adaptive robust finite-time neural control (ARFTNC)

In the proposed control scheme, the fast terminal sliding

manifold is selected as (25), where the parameters are set

as c ¼ 9=11, k1 ¼ 5 and k2 ¼ 1. The designed controller is

given by (29), and the control parameters are k1 ¼ 0:5,

k2 ¼ 0:1, r ¼ 9=11, d1 ¼ d2 ¼ 0:01 and f ¼ 0:001.

5.2.2 NN-based terminal sliding mode control (NNTSMC)

In this scheme, the terminal sliding manifold is defined as

(14), where c ¼ 9=11, k0 ¼ 6. The controller is addressed

as

vðtÞ ¼ ŴT/ðXÞ þ k0jsjrsgnðsÞ þ ðd1 þ d2ÞsgnðsÞ ð53Þ

where k0 ¼ 0:6, r ¼ 9=11, d1 ¼ d2 ¼ 0:01 and f ¼ 0:001.

5.2.3 NN-based linear sliding mode control (NNLSMC)

In this scheme, the linear sliding manifold is chosen as

(13), where k0 ¼ 6. The controller is expressed as

vðtÞ ¼ ŴT/ðXÞ þ k0sþ ðd1 þ d2ÞsgnðsÞ ð54Þ

where k0 ¼ 0:6, d1 ¼ d2 ¼ 0:01 and f ¼ 0:001.

5.2.4 PID control

In the PID controller, the control parameters kP ¼ 40, kD ¼
40 and kI ¼ 0:05 are determined by using a heuristic tuning

approach for a given reference signal, e.g.,

yd ¼ 0:6 sinð2pt=5Þ.

5.3 Comparative results

The following four indices are adopted to compare the

tracking performance of each control algorithm.

1. IAE =
R
jeðtÞjdt, which is the integrated absolute error

to measure the system tracking performance.

2. ISDE =
R
ðeðtÞ � e0Þ2dt, which is the integrated square

error and used to demonstrate the smoothness of the

profile.

3. IAU =
R
juðtÞjdt, which is the integrated absolute

control and taken as a measurement of the overall

amount of control effort.

4. ISDU =
R
ðuðtÞ � u0Þ2dt, which is the integrated square

control and used as a measurement of the fluctuations

of control signal around its mean value.

Then, three experimental examples are performed for the

fair comparison of four different controllers. It is noted that

in the practical tests, there are unavoidable disturbances

and unknown dynamics. Hence, the robustness and dis-

turbance rejection of the controllers can be evaluated in

terms of above indices.

5.3.1 Example I: Tracking control of a specified sinusoidal

wave

In the first experimental example, the reference trajectory

is specified as yd ¼ 0:6 sinð2pt=5Þ, and the comparative

tracking control performances of four different controllers

are shown in Fig. 5. Figure 5a depicts the whole tracking

performance of the different control schemes, while

Fig. 5b, c provides the corresponding tracking errors and

control signals, respectively. From Fig. 5, we can see that

the proposed ARFTNC method can provide better tracking

performance than that of other three controllers (i.e., con-

vergence speed, steady-state errors). In particular, the

proposed ARFTNC can obtain faster convergence speed

than NNTSMC because of the linear term k1s in the sliding

manifold, and ARFTNC can achieve smaller tracking error

than NNLSMC due to the terminal sliding mode term

k2jsjrsgnðsÞ.
In order to compare the control performance, the

experimental results in terms of performance indices are

given by Table 1. From the table, we can obtain that the

proposed ARFTNC scheme has the smallest IAE, ISDE

and ISDU, which means it performs best among four

controllers. PID controller gives the largest IAE, ISDE and

IAU, which implies the poorest tracking performance

among four controllers. The NNLSMC and NNTSMC

achieve similar ultimate tracking performance in terms of

IAE and ISDE. However, NNLSMC requires a relatively

greater control effort (i.e., IAU), while NNTSMC provides

a relatively larger fluctuations (i.e., ISDU).

5.3.2 Example II: Tracking control of sinusoidal waves

with varying amplitudes

In order to demonstrate better tracking performance of the

proposed method among wide operation conditions, we

choose a sinusoidal signal yd ¼ A sinð2pt=5Þ with a fixed

period T ¼ 5 s and varying amplitudes A ¼ 0:4� 1:2 rad as
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the reference trajectory. The comparative results of the

integrated absolute errors (IAE) are shown in Table 2. We

can see from the table that the proposed ARFTNC method

has the smallest IAE among all four control schemes.

Compared with the NNLSMC, the NNTSMC achieves

better tracking performance when A ¼ 0:4� 1:0, but for

A ¼ 1:2, its performance is deteriorated. PID controller

gives the largest IAE in the all selected amplitude range

(e.g., A ¼ 0:4� 1:2).

To display the comparison performance of tracking

errors more intuitively, a reference example of yd ¼
1:0 sinð2p=5Þ is shown in Fig. 6. Figure 6a, b depicts the

tracking errors and control signals, respectively. From

Fig. 6, we can see that the proposed ARFTNC method

performs better than other control schemes, which is con-

sistent with the result given by Table 2.

5.3.3 Example III: Tracking control of sinusoidal waves

with varying frequencies

In the following, we adopt a sinusoidal signal yd ¼
0:6 sinð2p=TÞ with a fixed amplitude but varying periods

T ¼ 3:5� 5:5 s as the reference signal. Similar to the

analysis of the second example, the tracking error perfor-

mance in terms of IAE is provided by Table 3, and the

comparative tracking errors and control signals for the

reference yd ¼ 0:6 sinð2p=4Þ are shown in Fig. 7a, b. From

Table 3 and Fig. 7, we can see that the proposed ARFTNC

can obtain faster convergence speed than NNTSMC and

smaller tracking error than NNLSMC.
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Fig. 5 Tracking control performance for yd ¼ 0:6 sinð2p=5Þ. a Track-
ing trajectories of four different controllers. b Tracking errors of four

different controllers. c Control signals of four different controllers

Table 1 Comparison for sinusoid reference for yd ¼ 0:6 sinð2pt=5Þ

PID NNLSMC NNTSMC ARFTNC

IAE 0.3837 0.1393 0.1341 0.1228

ISDE 0.0072 0.0020 0.0020 0.0015

IAU 14.2714 14.1097 13.6765 13.8337

ISDU 11.9107 11.3043 11.9163 11.1005

Table 2 Tracking control performance IAE for yd ¼ A sinð2pt=5Þ

Amplitude (rad) A ¼ 0:4 A ¼ 0:6 A ¼ 0:8 A ¼ 1:0 A ¼ 1:2

PID 0.3377 0.3837 0.4317 0.4387 0.5870

NNLSMC 0.1231 0.1393 0.1491 0.2195 0.3302

NNTSMC 0.1145 0.1341 0.1393 0.1941 0.3700

ARFTNC 0.1094 0.1228 0.1318 0.1644 0.3288
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5.3.4 Example IV: Tracking control of sinusoidal waves

with manual dead zone

In order to further show the effect of dead zone and the

control performance, we conduct extra experiments and

compared their performance. For this purpose, a nonlinear

dead zone is manually introduced before the control input

u(t) in the test-rig as shown in Fig. 4, and the expression is

given as

u ¼ uðvÞ ¼
ð1� 0:3 sinðvÞÞðv� 0:5Þ u� � 0:25

0 � 0:25\v\0:5

ð0:8� 0:2 cosðvÞÞðvþ 0:25Þ v� 0:5:

8
><

>:

ð55Þ

Then, three case studies are compared for the given sinu-

soidal signal yd ¼ 0:6 sinð2pt=TÞ:

Case 1: without dead zone (55)

Case 2: with dead zone (55) but no NN compensation

Case 3: with dead zone (55) and NN compensation

The tracking error comparison of the proposed ARFTNC

for different cases is shown in Fig. 8. From Fig. 8, the

following observations are obtained:
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Fig. 6 Tracking control performance for yd ¼ 1:0 sinð2p=5Þ. a Track-
ing errors of four different controllers. b Control signals of four

different controllers

Table 3 Tracking control performance IAE for yd ¼ 0:6 sinð2pt=TÞ

Period (s) T ¼ 3:5 T ¼ 4 T ¼ 4:5 T ¼ 5 T ¼ 5:5

PID 0.4133 0.4181 0.4001 0.3837 0.3570

NNLSMC 0.2019 0.1942 0.1453 0.1393 0.1338

NNTSMC 0.1727 0.1503 0.1323 0.1341 0.1199

ARFTNC 0.1614 0.1429 0.1256 0.1228 0.1169
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Fig. 7 Tracking control performance for yd ¼ 0:6 sinð2p=4Þ. a Track-
ing errors of four different controllers. b Control signals of four

different controllers
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(a) When the nonlinear dead zone (55) is introduced into

test-rig, the tracking performance will be signifi-

cantly deteriorated without any particular

compensation.

(b) When the proposed adaptive NN compensation

element is active, the tracking performance of

ARFTNC scheme can be improved in the presence

of the nonlinear dead zone perturbed in the system

input.

This comparison exactly illustrates how the addition of the

adaptive element allows for compensation of possible time-

varying dynamics including the dead zone into the control

design.

6 Conclusion

In this paper, we present an adaptive robust finite-time

neural control scheme for uncertain PMSM servo system

with nonlinear dead zone. The inverse compensation

approach is avoided by representing the dead zone as a

linear time-varying system. Based on a fast terminal sliding

mode principle, the adaptive controller is designed by using

a neural network as the nonlinearity estimator. In the

proposed approach, the singularity problem is eliminated

by modifying the TSMC manifold and the NN approxi-

mation error is compensated by employing a robust term.

The boundedness of all signals and the finite-time stability

of the closed-loop system are guaranteed based on the

Lyapunov synthesis. Experimental results validate the

improved tracking performance of the proposed method in

comparison with several other controllers.
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