
ORIGINAL ARTICLE

Biological complexity: ant colony meta-heuristic optimization
algorithm for protein folding

Aman Chandra Kaushik1 • Shakti Sahi1

Received: 19 June 2015 / Accepted: 19 February 2016 / Published online: 7 March 2016

� The Natural Computing Applications Forum 2016

Abstract Ant colony meta-heuristic optimization (ACO)

is one of the few algorithms that can help to gain an atomic

level insight into the conformation of protein folding states,

intermediate weights and pheromones present along the

protein folding pathway. These are analysed by nodes

(amino acids), and these nodes depend upon the probability

of next optimized node (amino acids). Nodes have con-

formational degrees of freedom as well as depend upon the

natural factors and collective behaviour of biologically

important molecules like temperature, volume, pressure

and other ensembles. This biological quantum complexity

can be resolved using ACO algorithm. Ants are visually

blind and important behaviour of communication among

individuals or colony of ant environment is based on

chemicals (pheromones) deposited by the ants. Just like

ants, proteins are also a group of colony; amino acids are

node (amino acid) attached to each others with the help of

bonds. This paper is aimed to determine the factors

affecting protein folding pattern using ant colony algo-

rithm. Protein occurs structurally in a compact form and

determining the ways of protein folding is called NP hard

(non-deterministic polynomial-time hard) problem. Using

the ACO, we have developed an algorithm for protein

folding. It is interesting to note that based on ants ability to

find new shorter path between the nest and the food, pro-

teins can also be optimized for shorter path between one

node to another node and the folding pattern can be pre-

dicted for an unknown protein (ab initio). We have

developed an application based on ACO in Perl language

(PFEBRT) for determining optimized folding path of

proteins.

Keywords ACO � Node � Heuristics � Pheromones � NP
hard problems � GAFF

1 Introduction

Various kinds of optimization algorithms have been

implemented to tackle folding in homology modelling,

threading and ab initio based on artificial intelligence and

hybrid approaches. Protein folding is non-deterministic

polynomial-time hard problem for identifying protein

conformation and folding process. Ant colony optimization

(ACO) is used in various problems like routing vehicles,

dynamic problems, stochastic problems, multi-target

implementation, multi-target parallel implementations,

software testing, travelling salesman problem and protein

folding. Ant colony meta-heuristic optimization is one of

the few algorithms that can help to gain an atomic level

insight into the conformation of protein folding states and

its intermediate weights and pheromone present along the

protein folding. This ant colony optimization algorithm is

inspired by research on the behaviour of real ant colonies.

Ant colonies are distributed systems which perform com-

plex tasks for finding food in an optimized way. Ant

algorithms are derived from the observation of real ant’s

behaviour and optimized for distributed control problems

[1]. The different aspects of the behaviour of ant colonies

are useful in solving computational protein folding prob-

lems. The main logic behind ant colony algorithms is to
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solve the NP hard problem of protein folding mechanism

[2]. The ants exhibit a complex behavioural pattern which

helps them to find optimized shorter path between the nest

and the food. Ants are visually impaired and an important

aspect of their communication is based on chemicals

released and deposited (pheromones) by them [3]. They

tend to choose paths marked by strong pheromone con-

centration (pheromone trail) for food. Proteins may also be

considered as a colony where amino acids are nodes

attached to each other with the help of peptide bonds.

Protein structure folds in a compact form. Using ACO

behaviour, researchers can identify the folding pattern of

proteins [4]. Similar to the behavioural pattern exhibited

by ants, proteins can also be optimized to have a shorter

connecting path between one amino acid to another amino

acid [5]. An interesting experiment was conducted on ants

involving a double bridge connecting the ant nest to food

source to study the pheromone trail laying and following

behaviour. Initially, only the long branch was opened to

ants and later the short branch was also offered. Since the

starting pheromone concentration was high on the long

branch with slow evaporation of pheromone, so majority of

ants always chose the long branch even after the appear-

ance of shorter branch [6, 7]. Similarly, in protein structure

starting amino acid bonding is very strong on the long

branch with standard distance factors using general

AMBER force field (GAFF), and other factors like tem-

perature, pressure, volume, degree of freedom and total

time of protein folding. With these ensembles, proteins are

also dependent on standard distance factors; when distance

factors are changed in proteins, it causes random or

specific mutation in proteins resulting in diseases.

1.1 Monte Carlo simulation

The Monte Carlo simulation (MC) algorithms is based on

the energy distribution for a given protein temperature and

executes temperature simulation for protein folding pattern

[8–10]. MC algorithms are based on conformational states

and their searching efficiency has been enhanced in the

Basin Hopping approach, which couples large step Monte

Carlo jumps with gradient-driven local minimization [11,

12]. After searching the final energy distribution, it mod-

ifies the transition probability to accelerate the transition

between different states [13]. Monte Carlo minimization

has been successfully applied to the conformational

searching in protein folding pattern [2] by executing the

local energy minimization of each trajectory of protein

folding pattern [14]. Monte Carlo approach allows effi-

cient exploration of protein conformation and is compa-

rable with genetic algorithm and other heuristic

approaches.

1.2 Molecular dynamics

Molecular dynamics (MD) simulation is based on New-

ton’s equations of motion. It monitors atom movements

during protein folding pattern [15] and is one of the most

useful methods for known biological complexity of protein

folding problem [16, 17]. The long MD simulation is a

major limiting factor as the incremental timescale is in the

order of femtoseconds, while the fastest protein folding

pattern timing of a small protein less than 100 residues is in

the millisecond range [18–22]. There are many softwares

for MD simulation which are also used for the structure

refinements of low-resolution model [23, 24]. Number of

parameters like implemented torsions, ensembles and

coarse-grained energy functions are used for refinement

[25, 26]. Molecular dynamics simulation is based on

Newton’s equations of motion to all atoms concurrently

over a small time step to conclude new atomic positions

and velocities. In cases of Monte Carlo (MC) and molec-

ular dynamics (MD), the force field controls the total

energy, which concludes the evolution of the systems.

Molecular dynamics simulation is proven to be a powerful

approach for studying protein dynamics.

1.3 Genetic algorithm

Conformational space annealing is based on one of the

genetic algorithms (GAs) for protein folding pattern. Using

GA folding pattern of the proteins can be identified [27,

28]. The MC algorithms are based on local minima, sear-

ches whole conformation of the protein and generate low-

energy conformation, while conformational space anneal-

ing applies various global optimizations, searches whole

conformation of the protein and generates low energy for

folding pattern of the protein [29, 30]. Conformational

space annealing has been successfully applied to ab initio

modelling of the protein.

2 Materials and methods

The flow chart (Fig. 1) represents the movement of ant

(protein) based on two parameters A (heuristics as a force

fields of amino acid to other amino acids) and B (pher-

omones as a distance of amino acid to other amino acids).

2.1 Ant colony algorithms

1. Implementation The methodology for ant colony

optimization algorithm implementation for the protein

folding pattern, which is NP hard problem [31], and

generation of various conformational states using ACO

[32–37] is shown in Fig. 1. A and B are two
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parameters where A (heuristics as a force fields of

amino acid to other amino acids) and B (pheromones

as a distance of amino acid to other amino acids)

determine the relative influence of the force fields

(taken from the GAFF) or distance factors (taken from

the GAFF) [38]. These factors are responsible for the

trail of amino acids and the heuristic information on

the path traversed by amino acids. Initialization (I) is

initial distance factor and heuristic value deposited on

each amino acid in proteins, respectively. Initially,

(I) is set equal to the depth of proteins and I is set equal

to the number of decision node (amino acid). This

variable specifies the count status of node (amino acid)

by the amino acids k, initially set to 0. Ni
k is the feasible

neighbourhood of amino acids k when being at node i,

initially set to zero. Key = End node in proteins,

Pframe = [Total no of node (amino acids in the pro-

tein)]. Pframe = [1, 2, 3, 4, 5…EndAA], NC = total

node sequence covered up to now, calculation of depth

of proteins using algorithm ACO_ DEPTH.

Select shortest path & 
continue

Visit each nodes of amino acids

Exchange amino acid to shortest nodes

Found optimized path using 
minimum energy & force fields and 

other than outermost constraint

Init variables

Search is complete & generates 
output in form of PDB coordinate

Check it against GAFF & distance and continue

Check all the parameters and update the pheromone

Perform local search for amino acid placements

Yes

Use limit as the choice

True

True

False

False

Create local folding pattern in X, Y, Z coordinates

If amino acid search all the local minima than go 
for global minima

Start

Start

Fig. 1 Flow

chart representation of ACO

algorithm, movement of ant

(protein) based on two

parameters
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Initialization Init accordingly and determination of

number of decision node in proteins and setting up the

initial value. When expanded a fractional conformation

Ik…Ii to Ii?1 during the edifice phase of ant colony

optimization algorithms, next to kin direction d of Ii?1

to Ii-1 is resolved based on heuristic (force fields Kij)

and pheromone (distance of amino acids rij) values

according to following probabilities Pid ¼ Ta
xy

� �

gbxy

� �
=
P

y 2 allowedy Ta
xy

� �
gbxy

� �
:

2. Application development We developed Perl appli-

cation, for validation of proposed algorithm and also

to find out protein folding pattern of the protein

using ACO algorithm. In this application by select-

ing PFP button of the application, the desired protein

in PDB format can be selected. This would generate

coordinates of given PDB file and save it into

analysis file folder. This output can be used to

investigate the optimized folding pattern of the given

PDB file.

3 Results and discussion

We report ACO algorithm for protein (including membrane

protein) folding prediction. We have designed new algo-

rithm for protein conformation and protein folding. The

algorithm traverses each node and prioritizes the path

according to the path strength. Paths having the standard

distance factors strength are given the highest priority for

testing followed by next lower standard distance factors

strength. This algorithm finds optimized path for protein

folding (native conformations) within nanoseconds of

CPU. The protein with the PDB code: 4BEY (night

blindness causing G90D rhodopsin) was used as an

example (Fig. 1) to prioritize the various conformation

states using ant colony optimization algorithms. The

algorithm was applied as follows.

GAFF (general AMBER force field) is well matched to

the AMBER force fields, GAFF is appropriate to study

range of molecules, and generally, all the organic mole-

cules are made of C, H, S, O, N, P, F, Br, Cl and I. The

interaction force fields (Kij) parameter between one

molecule to another molecule and interaction distance (rij)

parameter between one molecule to another molecule are

described in supplementary Table 1. AMBER and GAFF

force fields have been reported to work well in case of

drug designing, biological molecules and organic mole-

cules. GAFF is more compatible for rational drug

designing and applies harmonic function form as

following

EPair ¼
X
Bonds

Kr r � req
� �2þ

X
Angles

Kh h� heq
� �2

þ
X

Dihedrals

Vn=2 1þ COS nu� �ð Þ½ �

þ
X
i\j

Aij=R
12
ij � Bij=R

6
ij þ qiqj=Rij

h i
:

3.1 ACO algorithms implementation for identification

of protein folding pattern using standard

distance and generalized AMBER force fields

(GAFF) parameters

1. Firstly, the amino acids starting node A and its

neighbourhood Ns
k = 1 was defined. Heuristic was

known from the generalized AMBER force fields. One

per cent distance factors is evaporated from the node

covered up to now, i.e. node A - 1 initially has

approximately 1 distance factor value which after

evaporation is left to 0.082. Optimized path covered

after finding each next node to be visited upon is cal-

culated and thus its length, i.e. A - 1 the optimized

path is A - 1 where length is equal to 1. The next

node to be moved upon is node 1.

2. As the next node G to be moved upon is not equal to

key node (i.e. end node), the amino acids starting node

are now node 1 and the above steps are again followed.

3. Applied random proportional rule to decide the next

node of ant, probabilities of visiting the ant from node

to node, the process is repeated till the ant reaches the

destination node END_AA.

4. As node covered up to now = i which is not equal to

Pframe = {M, C, G, T, E), the amino acid again starts

from the start node i.

5. As node covered up to now = (M, C, G, T, E). The ant

had now covered one full path starting from node 1 to

node END_AA. The amount of distance factors

deposited on each edge in the traversed path up to

now is calculated, and the net pheromone is updated on

each edge in the path equal to amount left after

evaporation of distance factors ? amount deposited

after path traversed.

6. The change in heuristic (GAFF) is calculated, i.e. D
ni
j = nij/Ci

k.

7. As node covered until now = (M, C, G, T, E) which is

not equal to Pframe = (M, C, G, T, E), the ant again

starts from the start node i.

8. The process is continued till all nodes are covered.

9. When node covered = Pframe, the strength of each

path was calculated, for example, for the path (M, C,

G, T, E), and the strength is calculated as I - 1 =

(final pheromone value) 9 (final heuristic value).

Similarly, for the others edges in the path we calculate
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edge strengths. Finally, adding all edge’s strength in

the path gives the final value for the path strength

(Table 1)

Further, the algorithm using was compared and validated

using PDB:4BEY protein. There was a good correlation in

the results of observed and the experimental results. Fig-

ure 2a represents the folding pattern priority on the basis of

nearest distance and favourable force fields using ant col-

ony optimization (ACO) where different colours represent

amino acids of small peptide (PDB:4BEY) and their M to E

movement. The Fig. 2b represents the folding pattern of

PDB:4BEY on the basis of nearest distance and favourable

force fields using ant colony optimization (ACO) as in 2a

in graphical form, where blue colour represents MET (node

1), cyan colour represents CYS (node 2), green colour

represents GLY (node 3), orange colour represents THR

(node 4), and red colour represents GLU (node 5) amino

acids. The best optimized and prioritized folding paths are

given in Table 2 covering all the residues of PDB:4BEY.

The final path according to the total path strength and

priority is shown in Table 2. The path having the maximum

combined strength of pheromone and heuristic has been

given the highest priority.

A Perl-based application protein folding energy-based

recognition tool (PFEBRT) was developed as shown in

Fig. 3a, b to determine the protein folding pattern of the

protein using ant colony optimization algorithms. With

this, users can easily select desired protein in PDB format

Table 1 Probability-based result summary of different moves of an ant path, here we use PDB:4BEY [39] PDB file (night blindness causing

G90D rhodopsin) for calculation of protein folding pattern using ant colony optimization algorithms

Move no. NC

Node covered

t0
Initial pheromone

te / (1 - q)* t0
Evaporation

Ci
k

Length of tour

D tij = 1/Ci
k no D nij / no/Ci

k

Left heuristic

First M–C 0.738 0.730 0.25 0.980 4.661 1.165

C–G 0.738 0.730 0.25 0.980 4.661 1.165

G–T 0.738 0.730 0.25 0.980 4.661 1.165

T–E 0.738 0.730 0.25 0.980 4.661 1.165

Second M–G 0.738 0.730 0.5 1.230 4.661 2.330

G–E 0.738 0.730 0.5 1.230 4.661 2.330

Third M–T 0.738 0.730 0.5 1.230 4.661 2.330

T–E 0.980 0.970 0.5 1.470 1.165 0.615

Fourth M–E 0.738 0.730 1 1.730 4.661 4.661

Fifth M–T 1.230 1.210 0.5 1.710 2.330 1.165

T–E 1.455 1.455 0.5 1.955 0.615 0.307

Sixth M–G 1.230 1.210 0.5 1.710 2.330 1.165

G–E 1.230 1.210 0.5 1.710 2.330 1.165

Seventh M–T 1.710 1.539 0.5 2.039 1.165 0.582

T–E 1.955 1.759 0.5 2.259 0.307 0.153

Eighth M–G 1.710 1.539 0.5 2.039 1.165 0.582

G–E 1.710 1.539 0.5 2.039 1.165 0.582

Ninth M–C 0.980 0.970 0.33 1.300 1.165 0.388

C–T 0.738 0.730 0.33 1.060 4.661 1.553

T–E 2.259 2.236 0.33 2.566 0.153 0.051

Tenth M–T 2.039 2.018 0.5 2.518 0.582 0.291

T–E 2.566 2.540 0.5 3.040 0.512 0.256

Eleventh M–G 2.039 2.018 0.5 2.518 0.582 0.291

G–E 2.039 2.018 0.5 2.518 0.582 0.291

Twelfth M–T 2.518 2.493 0.5 2.993 0.291 0.145

T–E 3.040 3.009 0.5 3.509 0.256 0.128

Thirteenth M–G 2.518 2.493 0.33 2.823 0.291 0.097

G–T 0.980 0.970 0.33 1.300 1.165 0.388

T–E 3.509 3.474 0.33 3.804 0.128 0.042

Fourteenth M–C 1.300 1.287 0.5 1.787 0.388 0.194

C–E 0.738 0.730 0.5 1.238 4.661 2.330

Neural Comput & Applic (2017) 28:3385–3391 3389

123



and generate coordinates of given PDB file and save it into

analysed file folder. In this work, a crucial role is played by

CPU time. The maximum number of local minima search

of sequences using ant colony algorithm is improved with

respect to time and minimum number of CPU usage.

4 Conclusion

We have developed an ant colony-based algorithm and

implemented in Perl language for protein folding. Using

this application, the conformation of protein folding

states, intermediates weights and pheromone present

along the protein folding can be determined using amino

acids interaction, ensembles and force fields. Protein

folding is non-deterministic polynomial-time hard (NP

hard) problem, using PDB files identification of protein

conformation and folding process can be done. The ant

colony meta-heuristic optimization is one of the few

Fig. 2 Panel a represents the PDB:4BEY protein folding pattern using ant colony optimization. Panel b represents the small peptide folding

pattern of PDB:4BEY

Table 2 Independent path’s strength versus priority

S. no. All independent paths Strength Priority

1 M, C, G, T, E 2.150 4

2 M, E 1.#INF 1

3 M, C, T, E 2.148 5

4 M, C, E 3.230 2

5 M, C, G, E 2.219 3

6 M, G, E 1.005 6

7 M, G, T, E 0.936 7

8 M, T, E 0.592 8

Fig. 3 a Represents the front panel view of protein folding energy-based recognition tool, and b represents the performance of protein folding

energy-based recognition tool, where x axis represents different GPCRs at different length and y axis represents the CPU timing in femtoseconds
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algorithms that can help to gain an atomic level insight

into the conformation of protein folding states and inter-

mediates weights and pheromone present along the pro-

tein folding. It finds a more optimized path of folding

states. Development of ACO algorithms is more realistic

and CPU-based models for protein structure folding pat-

tern, i.e. NP hard problem.
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25. Hoos HH, Stützle T (2004) Stochastic local search: foundations

and applications. Elsevier, Amsterdam, pp 1–156

26. Krasnogor N, Pelta D, Lopez PM, Mocciola P, de la Canal E

(1998) Genetic algorithms for the protein folding problem: a

critical view. In: Proceedings of engineering of intelligent sys-

tems. ICSC Academic Press, pp 353–360

27. Patton AWP, Goldman E (1995) A standard GA approach to

native protein conformation prediction. In: Proceedings of the 6th

international conference in genetic algorithms Morgan Kaufmann

Publishers, pp 574–581

28. Unger R, Moult J (1993) Genetic algorithms for protein folding

simulations. J Mol Biol 231:75–81

29. Unger R, Moult J (1993) A genetic algorithm for three dimen-

sional protein folding simulations. In: Proceedings of the 5th

international conference on genetic algorithms Morgan Kauf-

mann Publishers, pp 581–588

30. Hsu HP, Mehra V, Nadler W, Grassberger P (2003) Growth

algorithm for lattice heteropolymers at low temperatures. J Chem

Phys 51:118–444

31. Bin W, Zhongzhi S (2011) An ant colony algorithm based par-

tition algorithm for TSP. Chin J Comput 24:1328–1333

32. Gambardella LM, Dorigo M (1999) Ant colonies for the quad-

ratic assignment problem. J Oper Res Soc 50:167–176

33. Shmygelska A, Hernandez R, Hoos H H (2002): An ant colony

optimization algorithm for the 2d hp protein folding problem. In:

Proceedings of the 3rd international workshop on ant algorithms,

pp 40–52

34. Shmygelska A, Hoos HH (2005) An ant colony optimization

algorithm for the 2d and 3d hydrophobic polar protein folding

problem. BMC Bioinform 30:97–112

35. He LL, Shi F, Zhou HB (2011) Application of improved ant

colony optimization algorithm to the 2D HP model. Wuhan Univ

J (Nat Sci Edn) 51:33–38

36. Xudong Wu (2012) A two-stage ant colony optimization algo-

rithm for the vehicle routing problem with time windows. IJACT

4:485–491

37. Liu Fang (2012) A dual population parallel ant colony opti-

mization algorithm for solving the travelling salesman problem.

JCIT 7:66–74

38. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004)

Development and testing of a general amber force field. J Comput

Chem 25:1157–1174

39. Singhal A, Ostermaier MK, Vishnivetskiy SA, Panneels V,

Homan KT, Tesmer JJ, Veprintsev D, Deupi X, Gurevich VV,

Schertler GF, Standfuss J (2013) Insights into congenital sta-

tionary night blindness based on the structure of G90D rhodopsin.

EMBO Rep 14:520–526

Neural Comput & Applic (2017) 28:3385–3391 3391

123


	Biological complexity: ant colony meta-heuristic optimization algorithm for protein folding
	Abstract
	Introduction
	Monte Carlo simulation
	Molecular dynamics
	Genetic algorithm

	Materials and methods
	Ant colony algorithms

	Results and discussion
	ACO algorithms implementation for identification of protein folding pattern using standard distance and generalized AMBER force fields (GAFF) parameters

	Conclusion
	References




