
ORIGINAL ARTICLE

An evolutionary algorithm for supply chain network design
with assembly line balancing

Çağrı Koç1

Received: 24 July 2015 / Accepted: 16 February 2016 / Published online: 2 March 2016

� The Natural Computing Applications Forum 2016

Abstract This paper investigates the combined impact of

assembly line balancing decisions within a supply chain

network design. The aim of the problem is to design a

supply chain network between manufacturers, assemblers,

and customers for specific periods, as well as balancing the

assembly lines in assemblers. The main objective is to

minimize the sum of transportation costs and fixed costs of

stations in assemblers. Solving this problem poses several

methodological challenges. To this end, the paper devel-

oped a powerful evolutionary algorithm (EA) which was

successfully applied to a large pool of benchmark instan-

ces. The EA solved instances with up to 140 manufacturers

and customers, and with up to 130 assemblers. Computa-

tional analyses are performed to empirically calculate the

effect of various problem parameters, such as total cost,

transportation cost and number of stations. The EA is

validated on benchmark instances where it provides com-

petitive solutions. Several managerial insights are also

presented.

Keywords Supply chain network design � Assembly line

balancing � Evolutionary metaheuristic

1 Introduction

A classical supply chain refers to a broad set of activities

associated with the transformation and flow of goods,

services and information from the main source to

customers (see [18]). Supply chain management includes

the design of networks while determining positions of

actors, optimizing amount of product flows between ech-

elons and decreasing transportation costs. Network design

process includes the location of facilities such as plants,

distribution centers and retailers, design of the network

configuration and satisfaction of customer demands (see [1,

11, 14, 32, 34]). There exists a rich scientific literature on

the supply chain network design problem (SCND). Many

mathematical models and heuristic algorithms have been

developed to solve the SCND. These have gradually

evolved from simple interchange schemes to more

sophisticated metaheuristics, sometimes combining exact

methods. Several survey articles have comprehensively

reviewed and classified this rich literature from different

perspectives. For a wealth of information on this topic, the

reader is referred to the survey articles of [2, 19, 20, 24, 25,

28, 35] and the recent book of [36].

Assigning tasks to workstations while satisfying prece-

dence relations between tasks and cycle time restrictions to

optimize a performance measure is called as the assembly

line balancing problem (ALB). This problem, in general,

arises in the last stage of production processes. General

performance of entire production systems is affected by the

productivity level of assembly lines. The minimization of

the number of workstation is generally considered as the

performance measure. Three basic constraints of the ALB

are as follows. The first one is the assignment constraints,

i.e., each task must be assigned to one workstation. The

second one is the precedence relations constraints, i.e., all

precedence relations must be satisfied. The final one is the

cycle time constraints, i.e., workstation workload must not

exceed the cycle time. The workload is equal to the sum of

the processing times of tasks in the related workstation. An

assembly line consists of several successive workstations

& Çağrı Koç
cagri.koc@cirrelt.ca

1 CIRRELT, Canada Research Chair in Distribution

Management and HEC Montréal, Montréal H3T 2A7, Canada

123

Neural Comput & Applic (2017) 28:3183–3195

DOI 10.1007/s00521-016-2238-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2238-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2238-3&domain=pdf

where assembly operations are performed for a particular

product. The smallest portion of an assembly operation is

called as task. Completion time, i.e., cycle time, of tasks in

the workstations constitutes the largest work content of

assembly lines. Cycle time depends on the product demand

during a planning horizon. The objective is to assign all

given tasks with respect to precedence and cycle time

constraints while minimizing the number of workstations

required. The first known formulation of the ALB has been

made by Salveson [31]. This problem was later referred as

the simple ALB by Baybars [7] which considers a single

straight assembly line for only one type of product. Similar

to the SCND, this problem has also been intensively

studied in the literature. In recent years, many exact,

heuristic and metaheuristic methods have been applied for

solving the ALB (see [5]). For further details on the ALB

and on its variants, the reader is referred to the survey

articles of [6, 8, 9, 12, 15, 29, 33].

Gen et al. [13] studied the two-stage SCND and devel-

oped a priority-based genetic algorithm. The method

includes several new decoding and encoding procedures,

and a new crossover operator. Paksoy et al. [26] introduced

the SCND with ALB (SCNDALB). The authors simulta-

neously consider both the SCND and the simple ALB first

time in the literature. They formally defined the problem

and proposed a mixed-integer nonlinear programming

formulation to solve it. The objective minimizes the total

cost of supply chain network and assembly operations. The

authors conducted computational experiments on a small-

size instance to demonstrate the effectiveness of the for-

mulation. Paksoy and Özceylan [27] later introduced the

SCND with U-type ALB. The study differs from [26] by

considering U-type assembly line instead of straight one.

The authors developed a nonlinear mixed-integer mathe-

matical model and presented the results conducted on a

small-size numerical example. Several scenarios were also

created to analyze the problem and to provide several

insights. Hamta et al. [16] considered the SCNDALB with

demand uncertainty. The authors proposed a two-stage

mixed-integer stochastic programming formulation which

primarily based on two levels: strategic location decisions,

as well as optimizing the SCNDALB with demand uncer-

tainty. They combined a sample average approximation

and several sampling procedures within the method. The

results on new generated instances showed that the

stochastic model yields better solutions than the deter-

ministic model. The authors indicated that uncertainty is an

important part of the formulation which can improve the

quality of solutions. Yolmeh and Salehi [37] studied the

SCNDALB under demand uncertainty. The authors

developed a mixed-integer nonlinear programming for-

mulation based on two-stage stochastic programming

method and an outer approximation method. Their results

showed the efficiency of the proposed method. Hamta

et al. [17] later proposed a bi-level programming model to

solve the SCNDALB with push-pull strategy where deci-

sions such as production amount and inventory level of

each component in manufacturers are made. The authors

first tested the performance of the method on a numerical

example and then conducted computational experiments on

several problem instances.

To our knowledge, this brief review shows that the

SCNDALB has already been solved only by Paksoy

et al. [26] on a small-size instance. We believe there exists

merit for the development of a metaheuristic capable of

efficiently solving the problem for larger-size instances

within short computation times. This paper studies and

analyzes the joint impact of assembly line balancing in a

two-echelon supply chain. It makes three main scientific

contributions. Our first contribution is to develop an evo-

lutionary algorithm (EA). Our second contribution is to

carry out computational experiments on generated instan-

ces ranges from small to large sizes. Our third contribution

is to provide managerial insights in order to gain a deep

understanding into the interactions between the compo-

nents of the problem.

The remainder of this paper is structured as follows.

Section 2 provides a general description of the problem

and the mathematical formulation. Section 3 contains a

detailed description of the metaheuristic. Computational

experiments and analyses are presented in Sect. 4, fol-

lowed by conclusions and managerial insights in Sect. 5.

2 Problem definition and modeling

In the SCNDALB, one considers a multi-echelon supply

chain with multiple manufacturers, components, assem-

blers, customers, multiple period time horizons and with a

set of products to be manufactured or assembled, as well as

assembly lines with stations. The problem consists of

designing a network to minimize the total transportation

costs between echelons for each period and the total fixed

costs of stations in assemblers while determining the

assignments of tasks to assembly lines. The supply chain

network design and assembly line balancing problems are

integrated through using cycle times which is the required

time to complete a given process. Figure 1 illustrates the

problem.

The main assumptions of the problem are as follows.

The first four assumptions are commonly used for the

SCND in the literature, while the others are the general

assumptions of the ALB.

• Each customer has a positive demand which must be

fully satisfied, i.e., shortages are not allowed.

3184 Neural Comput & Applic (2017) 28:3183–3195

123

• Customer demands and transported materials are

divisible such as in the case of gas or liquid

products.

• The material flow is only allowed between two

sequential echelons, i.e., from manufacturers to assem-

blers or from assemblers to customers.

• Each manufacturer and assembler have a limited

capacity.

• Assembly lines produce one type of product which

consists of several components.

• Each assembler has a variable cycle time.

• Operators travel times are considered zero.

• Work-in-process inventory is not allowed.

• A task cannot be split, and all tasks must be processed.

• The precedence relations of the problem are known.

• Any task can be processed at any station.

• Each process of the tasks has same costs.

• The task process time is independent of the station, and

they are not sequence dependent.

• Serial lines are considered which have no feeder or

parallel subassembly lines.

• Process times are additive at any station.

• Each model of a single product is processed on a

specifically designed line.

2.1 Notations

We now present the indices, sets, parameters and decision

variable of the formulation as follows.

Indices:

m: index of manufacturers.

a: index of assemblers.

c: index of customers.

p: index of periods.

i, r, s: index of tasks.

j: index of workstations.

(a)

(b)

Fig. 1 An illustration of the

SCNDALB. a Supply chain

network. b A straight and single

assembly line

Neural Comput & Applic (2017) 28:3183–3195 3185

123

Sets:

M: number of manufacturers.

A: number of assemblers.

C: number of customers.

P: number of periods.

K: number of components.

J: number of stations.

N: number of tasks.

L: set of tasks that precedes from a task.

ðr; sÞ 2 L: a precedence relationship; r is an immediate

predecessor of s.

Parameters:

ti: completion time of task i (time units).

Wtime: working time in period p (time units).

amkp: capacity of manufacturer m for component k in

period p (units).

bap: capacity of assembler a in period p (units).

ucp: demand of customer c in period p (units).

Cmap: unit cost of shipping from manufacturer m to

assembler a in period p (monetary units (MU)).

Cacp: unit cost of shipping from assembler a to customer

c in period p (MU).

Dma: distance between manufacturer m and assembler

a (distance units).

Dac: distance between assembler a and customer c (dis-

tance units).

O: fixed cost to open a station in the assembly line in all

periods (MU).

Variables:

Xmakp: amount shipped from manufacturer m to assem-

bler a for component k in period p.

Yacp: amount shipped from assembler a to customer c in

period p.

Vaijp: if task i is assigned to workstation j for assembler

a in period p be equal to 1, and to 0 otherwise.

Zajp if a task assigned to workstation j for assembler a in

period p be equal to 1, and to 0 otherwise.

CTap: cycle time for assembler a in period p.

2.2 Mathematical formulation

A nonlinear mixed-integer programming formulation of

[26] for the SCNDALB is shown below:

(SCNDALB) Minimize
X

m2M

X

a2A

X

k2K

X

p2P
XmakpDmaCmap

þ
X

a2A

X

c2C

X

p2P
YacpDacCacp ð1Þ

þ
X

a2A

X

j2J

X

p2P
ZajpO ð2Þ

subject to
X

a2A
Xmakp � amkp m 2 M; k 2 K; p 2 P ð3Þ

X

c2C
Yacp � bap a 2 A; p 2 P ð4Þ

X

a2A
Yacp � ucp c 2 C; p 2 P ð5Þ

X

m2M
Xmakp �

X

c2C
Yacp ¼ 0 a 2 A; k 2 K; p 2 P ð6Þ

X

j2J
Vaijp ¼ 1 a 2 A; i 2 N; p 2 P ð7Þ

X

j2J
Varjp �

X

j2J
Vasjp � 0 a 2 A; ðr; sÞ 2 L; p 2 P ð8Þ

X

i2N
tiVaijp �CTap a 2 A; j 2 J; p 2 P ð9Þ

CTap ¼ Wtime=
X

c2C
Yacp a 2 A; p 2 P ð10Þ

X

i2N
Vaijp � JZajp � 0 a 2 A; j 2 J; p 2 P ð11Þ

Xmakp;Yacp;CTap�0 m2M;a2A;k2K;c2C;p2P ð12Þ

Vaijp; Zajp 2 f0; 1g a 2 A; i 2 N; j 2 J; p 2 P: ð13Þ

The first term of the objective function (1) represents the

total transportation costs of the first and second echelons

for each period. The second term of the objective func-

tion (2) reflects the total fixed operating costs of stations in

assemblers for each period.

Constraints (3) limit the total quantity of components

shipped from manufacturers to assemblers. Con-

straints (4) enforce that the total quantity of product

shipped from assemblers to customers cannot exceed the

capacity of assemblers for each period. Constraints (5)

satisfy the customer demand for all products for each

period. Constraints (6) state that the total quantity of

components shipped from manufacturers to assemblers

must be equal to the total quantity of shipped products

from assemblers to customers for each period. Con-

straints (7) ensure that each task is assigned to exactly one

station in all assemblers for each period. Constraints (8)

state the precedence relationship by assigning task r as an

immediate predecessor of task s in all assemblers for each

period. Constraints (9) guarantee that cycle time for a

station cannot be exceeded for each period. Con-

straints (10) ensure that for all periods the cycle time is

equal to the total working time which is divided by the

total quantity of products. Constraints (11) state that if

any task assigns to station j, it is in use for each assembler

and for each period. Constraints (12) and (13) define the

domains of the decision variables.

3186 Neural Comput & Applic (2017) 28:3183–3195

123

3 Description of the evolutionary algorithm

This section describes the EA to solve the SCNDALB. The

EA builds on several powerful evolutionary-based meta-

heuristic algorithms (see [3, 4, 10, 13, 21–23]).

The general structure of the EA is sketched in Algorithm

1. Initialization procedure generates the initial population

(line 1). Two parents are selected (line 3) through a binary

tournament process, and a crossover operation creates a

new offspring C (line 4). The mutation procedure is applied

to offspring C (Line 5). Each task is then assigned to

assembly lines (line 6). Offspring C is then inserted into the

population (line 7). As new offsprings are added, the

population size na which is limited by np þ no, changes

over the iterations. The constant np denotes the size of the

population initialized at the beginning of the algorithm, and

the constant no denotes the maximum allowable number of

offsprings that can be inserted into the population. If the

population size na reaches np þ no at any iteration, then a

survivor selection mechanism is applied (line 8). When the

number of - iterations without improvement in the

incumbent solution is reached, the EA terminates (line 9).

The remainder of this section introduces the main

components of the EA. Representation and evaluation of

the solution are given in Sect. 3.1. Section 3.2 presents the

initialization of the population, the selections of parent

solutions, a segment-based crossover operator and muta-

tion procedure. Finally, the assembly line balancing pro-

cedure is described in Sect. 3.3.

3.1 Representation and evaluation

We adapted the priority-based encoding of [13] for the

SCNDALB to represent our solutions within the popu-

lation. A solution consists of priorities of first echelon

including manufacturers and assemblers, and second

echelon including assemblers and customers. A solution

is a single-dimensional array, and numbers in there

represent the priority of each node. The length of this

array is equal to the total number of echelons. We

generate the transportation tree on a given solution by

sequential arc appending between levels. Assemblers are

first opened to satisfy customer demands where each

tasks are assigned to stations. Manufacturers are then

shipped required components to assemblers. The fitness

value of each solution is calculated by using Eqs. (1)

and (2). These fitness values are used to select survivors

during the algorithmic iterations. An illustration of the

priority-based encoding is given in Fig. 2. In priority-

based encoding, each chromosome in the population

consists of two parts. The first part represents trans-

portation tree between manufacturers and assemblers,

and the second part represents transportation tree

between assemblers and customers. In Fig. 2, we con-

sider the problem that has four feasible manufacturers,

three feasible assemblers and four customers. As it can

be seen in Fig. 2, the first and second parts of chromo-

some consist of seven digits. We first decode the second

part of chromosome since the total demand of customers

has to be satisfied by assemblers. We simultaneously

obtain transportation tree on this stage and decision

related with which assemblers will be opened. We then

obtain transportation tree on the first stage considering

assemblers which were opened in the second stage. To

satisfy the demand of assemblers, required numbers of

manufacturers opened in this stage. For further imple-

mentation details on representation and evaluation, the

reader is referred to [13].

Fig. 2 An illustration of the priority-based encoding

Algorithm 1 The general framework of the EA
1: Initialization: Initialize a population with size np

2: while the maximum number of iterations is reached = do
3: Parent selection: select parent solutions P1 and P2

4: Crossover: generate offspring C from P1 and P2

5: Mutation: diversify the offspring C
6: Assembly line balancing: assign the tasks of offspring C to assembly lines
7: Add offspring C into the population
8: Survivor selection: if the population size na reaches np + no, then select survivors
9: end while
10: Return best feasible solution

Neural Comput & Applic (2017) 28:3183–3195 3187

123

3.2 Genetic operators

TheEA randomlygenerates the initial population. It randomly

selects two parents from the population through a binary

tournament to yield offspringC and keeps a parent having the

best fitness value. Two parents then undergo to the segment-

based crossover operator which aims to preserve good gene

segments of both parents. Each echelon of offspring C is

randomly selectedwith equal chanceover echelons of parents.

These crossover operators use a binary mask where its length

is equal to the total number of echelons. To transfer the genetic

materials fromparents to offspringC, binary variables 0 and 1

are used, while 0 implies the first parent and 1 implies the

second parent will transfer its genetic materials to the off-

spring C. An illustration of the segment-based crossover

operator is given in Fig. 3a.

Population diversity plays a significant role in the

efficient management of solutions. A segment-based

mutation procedure is applied to offspring C where the

priorities of two nodes are replaced to diversify the

solution. The mutation operator first randomly selects an

echelon using a binary mask as in the crossover operator,

then randomly selects two nodes from this echelon, and

finally exchanges their priorities with using swap method.

An illustration of the segment-based mutation operator is

given in Fig. 3b.

The EA uses the survivor selection method (see [21–

23]) to ensure the diversity of the population and to

preserve the best solutions. The EA starts with an initial

population of size np, and after each iteration an offspring

is added to the population. When the current population

size na reaches the maximum allowable size np þ no, the

survivor selection mechanism is put in place. This

mechanism then selects np and discards no individuals

from the population. The removal of no individuals is

based on their fitness value where the best individuals are

protected.

3.3 Assembly line balancing

When the cycle time for each period is determined, each

task must be assigned to the stations in assemblers. We

used a similar procedure to [30] to allocate tasks which

includes two steps. In step 1 (Fig. 4a), we first randomly

order each task and then transform it into a feasible solu-

tion according to a precedence relationship. In step 2

(Fig. 4b), we divide and assign the tasks to stations con-

sidering the cycle time.

(a) (b)

Fig. 3 An illustration of the crossover and mutation operators. a Crossover b Mutation

(a) (b)

Fig. 4 An illustration of assembly line balancing. a Ordering procedure. b Division procedure

3188 Neural Comput & Applic (2017) 28:3183–3195

123

4 Computational experiments and analyses

This section presents the results of computational experi-

ments. All computational experiments are conducted on a

server with Intel Xeon 2.6 GHz processor. The EA is coded

in C??.

4.1 Data sets and experimental settings

Evolutionary algorithms use a set of correlated parameters.

We have conducted several experiments to further fine-

tune these parameters. Following these tests, the following

parameter values were used in our experiments: Since one

offspring is generated by crossover and mutation operators

at each generation, the crossover rate is set to 1, and the

segment-based mutation is applied to offspring with the

probability of 0.5. An initial population of size np ¼ 50,

and the maximum number of allowable offsprings in the

population no ¼ 50.

Benchmark data sets for the SCNDALB were generated

by considering a similar procedure to [26]. In total, we

generated 20 benchmark instances which consist of sup-

pliers, assemblers and customers. In assemblers, we con-

sider a single-model eight-task assembly line of [26] and

the precedence diagram is shown in Fig. 5 where the task

times range from two to six minutes.

Manufacturers produce seven different components and

transport them to assemblers to produce end-products.

When the assemble process is finished in assemblers, end-

products are transported to customers. For each period,

the distances between suppliers to assemblers and

assemblers to customers, and unit transportation costs

were randomly generated in the range [250, 600] and [0.1,

0.3], respectively. Components capacities of manufactur-

ers for each period and for each component were ran-

domly generated in the range [6000, 8000]. Capacities of

assemblers and demand of customers were randomly

generated in the range [4000, 7000] and [1200, 1600],

respectively. Fixed cost to open a station in the assembly

line in all periods is fixed to 100 (MU). Total number of

periods, components, stations and tasks are two, seven,

eight and eight, respectively.

4.2 Validation tests

We have conducted preliminary experiments on bench-

mark instances which are generated by Paksoy et al. [26]

to assess the accuracy and the quality of the EA. To this

end, we have compared the solution values of the EA with

the optimal values obtained by Paksoy et al. [26]. The

authors considered a single-model eight-task assembly line

balancing problem (see Fig. 5) and the following data

M ¼ 4;C ¼ 4;P ¼ 2;K ¼ 7; J ¼ 6;N ¼ 8;O ¼ 0:3 MU, a

period is 3 months or 12 weeks, and 5 working days in a

week with 8 working hours in 1 day. In total, Wtime = 12

9 5 9 8 9 60 = 28,000 min.

We first solved the base instance of POG12 ([26]) and

present its results in Table 1. These results clearly indicate

that the EA yields optimal solution on this instance within

short computation time.

We have conducted additional validation tests on Sce-

nario A of POG12. In this scenario, the authors five times

decreased and five times increased the customer demand

ranges between 5 and 25 %. The results are presented in

Table 2. As in the base case, the EA is able to find optimal

solutions on most of the instances within short computation

time. The results of validation tests clearly show that the

EA is highly effective on the SCNDALB.

4.3 Results obtained on the test instances

This section presents the results obtained by the EA on 20

new generated benchmark instances. Table 3 presents the

results for each instance where the columns display the

number of manufacturers (|M|), number of assemblers (|A|),

number of customers (|C|), total number of opened stations in

periods 1 and 2, total transportation costs in periods 1 and 2,

total cost and time (s). In these instances, for manufacturers,

assemblers and customers, |M|, |A| and |C| range from four to

140, two to 130 and four to 140, respectively. Table 3 indi-

cates that total number of opened stations, total transporta-

tion costs and total costs increases from instance 1 to instance

20. Solution times also follow similar magnitude which

ranges from 1.97 seconds to 217.32 seconds.

Fig. 5 Precedence diagram [26]

Table 1 Results of validation test on the base instance

POG12 EA Dev (%)

Opened stations 12 12 0.00

Transportation cost (MU) 40,65,360.40 40,65,360.40 0.00

Total cost (MU) 40,65,364.00 40,65,364.00 0.00

Time (s) 140.00 8.45

Neural Comput & Applic (2017) 28:3183–3195 3189

123

4.4 Comparison of classical and integrated

approaches

This section comparatively analyzes the classical approach

in the literature and our integrated approach for solving the

problem. In the classical approach, we first solve the SCND

and yield a result about the amount shipped from a man-

ufacturer to an assembler. We then determine the cycle

time value of the assembly line in related assembler

depending on this amount, i.e., the outputs of the SCND are

used as inputs for the ALB. Integrated approach means the

SCNDALB. We conduct experiments on five instances,

SCNDALB-1, SCNDALB-2, SCNDALB-3, SCNDALB-4

and SCNDALB-5. Table 4 presents the results of this

comparative analysis. It can be clearly seen from Table 4

that the SCNDALB, i.e., integrated approach, has cost

advantage over the classical approach. On average, the

total cost is decreased by �4.88 %. The computation times

are similar magnitude.

4.5 The effect of variations in customer demand

In this section, we analyze the effect of variations in cus-

tomer demand. To this end, we have conducted experi-

ments using four different versions of the customer

demand. In these tests, we decrease the customer demand

by 30 and 15 %, and increase it by 15 and 30 %. The

experiments were conducted on selected five instances

SCNDALB-1, SCNDALB-5, SCNDALB-10, SCNDALB-

15 and SCNDALB-20. DevTC (%) and DevOS (%) show the

percentage deviation, between no-change case and change

case, in total cost and in number of opened stations,

respectively.

Looking at the results in Table 5, it is clear that total

cost is decreased when the customer demand is decreased,

and total cost increased when the customer demand

increased. When we decrease the demand by 30 and 15%,

the average decrease in total cost is �28.38 and

�14.80 %, respectively. When we increase the demand

by 15 and 30 %, the average increases in total cost are

16.44 and 37.22 %, respectively. These results indicate

that demand increase results in transportation of more

products from manufacturers to customers via assemblers.

Reversely, demand decrease results in transportation of

less products to customers. We observe a similar situation

in the total number of opened stations. Increase in

demand decreases the cycle time in each assembler and

results in opening new assembly stations for to satisfy this

additional customer demand. When we increase the

demand by 15 and 30 %, the average number of opened

stations is increased by 6.96 and 12.80 %, respectively.

When we decrease the demand by 30 and 15 %, the

average opened stations decreased by �20.26 andT
a

b
le

2
R
es
u
lt
s
o
f
v
al
id
at
io
n
te
st
s
o
n
S
ce
n
ar
io

A
o
f
[2
6
]

P
O
G
1
2

E
A

D
ev

(%
)

P
O
G
1
2

E
A

D
ev

(%
)

P
O
G
1
2

E
A

D
ev

(%
)

P
O
G
1
2

E
A

D
ev

(%
)

P
O
G
1
2

E
A

D
ev

(%
)

C
h
an
g
e
in

d
em

an
d
(%

)

�
2
5

�
2
0

�
1
5

�
1
0

�
5

O
p
en
ed

st
at
io
n
s

1
1

1
1

0
.0
0

1
2

1
2

0
.0
0

1
2

1
2

0
.0
0

1
2

1
2

0
.0
0

1
2

1
2

0
.0
0

T
o
ta
l
co
st

(M
U
)

3
0
,4
9
,0
1
9
.7
0

3
0
,4
9
,0
1
9
.7
0

0
.0
0

3
2
,5
2
,2
8
8
.4
0

3
2
,5
2
,2
8
8
.4
0

0
.0
0

3
4
,9
0
,3
5
6
.4
0

3
4
,9
0
,3
5
6
.4
0

0
.0
0

3
6
,5
8
,8
2
4
.4
0

3
6
,5
8
,8
2
4
.4
0

0
.0
0

3
8
,6
2
,0
9
2
.4
0

3
8
,6
2
,0
9
2
.4
0

0
.0
0

T
im

e
(s
)

1
1
.0
0

1
0
.0
0

1
0
.0
0

9
.0
0

1
1
.0
0

1
0
.0
0

4
1
.0
0

2
8
.0
0

6
2
.0
0

3
0
.0
0

C
h
an
g
e
in

d
em

an
d
(%

)

?
5

?
1
0

?
1
5

?
2
0

?
2
5

O
p
en
ed

st
at
io
n
s

1
3

1
3

0
.0
0

1
4

1
4

0
.0
0

1
4

1
4

0
.0
0

1
5

1
5

0
.0
0

1
6

1
6

0
.0
0

T
o
ta
l
co
st

(M
U
)

4
2
,6
8
,6
2
8
.1
0

4
2
,6
8
,6
2
8
.1
0

0
.0
0

4
4
,7
1
,8
9
5
.8
0

4
4
,7
1
,8
9
5
.8
0

0
.0
0

4
6
,7
5
,1
6
3
.8
0

4
6
,7
5
,1
6
3
.8
0

0
.0
0

4
8
,7
8
,4
3
1
.5
0

4
8
,8
4
,9
3
1
.5
0

0
.1
3

5
0
,8
1
,7
0
0
.2
0

5
0
,9
7
,0
9
0
.2
0

0
.3
0

T
im

e
(s
)

5
5
.0
0

4
1
.0
0

7
8
8
.0
0

1
2
8
.0
0

3
7
.0
0

3
2
.0
0

1
5
5
7
6
.0
0

2
5
6
.0
0

2
9
4
0
3
.0
0

4
2
1
.0
0

3190 Neural Comput & Applic (2017) 28:3183–3195

123

�8.11 %, respectively. Again, these results show that

variations in customer demand directly affect the number

of opened stations in assemblers and transportation costs

between manufacturers, assemblers and customers.

4.6 The effect of variations in manufacturer

capacity

We now investigate the effect of variations in manufacturer

capacity. To do so, we have conducted experiments using

four different versions of the manufacturer capacity. We

decrease them by 30 and 15 %, and increase them by 15

and 30 %. As in Sect 4.5, the experiments were conducted

on the same five instances.

Table 6 presents the results of this experiment. When we

decreased manufacturers capacity by 30 %, on average the

total cost is decreased by 2.07 %. However, on average the

total cost is increased by 1.93 % when we decreased

manufacturers capacity by 15 %. Similarly, on average the

total cost increased by 1.50 and 4.20 %, when we increased

manufacturers capacity by 15 and 30 %, respectively.

These results indicate that change in the total cost ranges

from �2:07 to 4.20 %, which is not as high as Table 5. We

can conclude that variations in manufacturer capacity do

not have the same effect on total cost as variations in

customer demand. Our results also show that when we

decrease the capacity by 30 and 15 %, on average the

number of opened stations in assemblers are decreased by

Table 3 Results on the benchmark instances

Instance |M| |A| |C| EA

Opened stations

in period 1

Opened stations

in period 2

Transportation

cost in period 1

Transportation

cost in period 2

Total cost Time (s)

SCNDALB-1 4 2 4 4 6 24,22,946.25 17,27,137.83 41,50,584.08 1.97

SCNDALB-2 8 4 8 10 13 38,85,176.90 42,93,458.09 81,80,134.99 3.84

SCNDALB-3 10 5 10 18 9 65,97,169.41 51,00,652.48 11,69,9921.89 4.73

SCNDALB-4 15 10 15 43 46 88,07,235.71 65,69,943.77 15,38,5579.48 9.80

SCNDALB-5 20 15 20 54 62 90,32,299.33 10,33,5854.84 19,37,7854.17 16.43

SCNDALB-6 25 20 25 67 65 10,87,5407.81 11,12,7577.43 22,01,5485.24 17.22

SCNDALB-7 30 25 30 81 86 12,45,1294.90 13,64,5703.50 26,11,2498.40 21.57

SCNDALB-8 35 30 35 93 74 15,48,5708.81 16,43,8901.75 31,93,9510.56 31.37

SCNDALB-9 40 35 40 111 104 17,18,2788.13 18,03,7687.67 35,24,0675.80 38.09

SCNDALB-10 45 40 45 113 124 20,53,9814.01 19,68,1690.96 40,24,3004.97 36.12

SCNDALB-11 50 45 50 149 163 22,07,4999.92 23,31,0393.96 45,41,5693.88 41.64

SCNDALB-12 60 50 60 169 143 27,62,7825.00 26,21,9022.86 53,87,6647.86 46.51

SCNDALB-13 70 60 70 183 186 29,25,4669.20 29,81,8327.20 59,10,8196.40 59.09

SCNDALB-14 80 70 80 235 254 33,91,9170.30 35,53,1889.53 69,49,8059.83 72.34

SCNDALB-15 90 80 90 282 248 42,69,2605.61 40,22,1551.18 82,96,4756.79 78.71

SCNDALB-16 100 90 100 298 273 44,88,5534.49 43,16,5672.30 88,10,4506.79 92.68

SCNDALB-17 110 100 110 338 327 47,07,0133.22 48,47,4415.06 95,60,8648.28 133.70

SCNDALB-18 120 110 120 340 350 50,08,1490.70 47,45,3099.39 97,60,1190.09 132.61

SCNDALB-19 130 120 130 392 349 57,31,7583.46 51,94,4364.73 10,93,38248.19 202.23

SCNDALB-20 140 130 140 395 448 60,97,6722.93 60,28,4797.08 12,13,47120.01 217.32

Table 4 Results of comparative

analysis
Instance |M| |A| |C| Classical approach SCNDALB Dev (%)

Total cost Time (s) Total cost Time (s)

SCNDALB-1 4 2 4 43,89,780.08 2.01 41,50,584.08 1.97 �5.76

SCNDALB-2 8 4 8 83,69,934.99 3.81 81,80,134.99 3.84 �2.32

SCNDALB-3 10 5 10 12,69,9921.89 4.68 11,69,9921.89 4.73 �8.55

SCNDALB-4 15 10 15 16,18,5579.48 9.85 15,38,5579.48 9.80 �5.20

SCNDALB-5 20 15 20 19,87,7854.17 17.45 19,37,7854.17 16.43 �2.58

Avg 7.56 7.35 �4.88

Neural Comput & Applic (2017) 28:3183–3195 3191

123

6.19 and 1.97 %, respectively. On the other hand, when we

increase the capacity by 15 and 30 %, on average opened

stations are increased by 3.93 and 5.71 %, respectively.

These results indicate that the number of opened stations in

assemblers follows a similar pattern to the variations in

manufacturer capacity.

4.7 The effect of variations in assembler capacity

This section analyzes the effect of variations in assembler

capacity. To this end, we have conducted experiments on

selected five instances using four different versions of the

assembler capacity. We decrease their capacity by 30 and

15 %, and increase by 15 and 30 %.

Table 7 shows the effect of decreasing and increasing

assembler capacity. When we look at the percentage

deviation in the total cost, it is clear that we reach similar

results as in Table 6. When we decrease the assemblers

capacity by 30 %, on average the total cost is increased by

6.53 %. On the other hand, the total cost is decreased by

1.05, 0.43 and 2.12 %, when we decrease the capacity by

15 %, increase by 15 and 30 %, respectively. As in

Table 6, variations in assembler capacity do not have the

same effect on total cost as variations in customer demand.

Table 7 shows that when we decrease the capacity by

30 %, on average number of opened stations in assemblers

are decreased by 5.23 %. On the other hand, when we

decrease the capacity by 15 % and increase by 15 and

30 %, on average opened stations are increased by 1.61,

9.53 and 11.37 %, respectively. These results indicate that

the number of opened stations decrease, when we decrease

the assembler capacity by 30 %. However, it does not

follow the same pattern for 15 % decrease.

5 Conclusions and managerial insights

We have studied, analyzed and investigated the joint

impact of assembly line balancing in a two-echelon supply

chain network. We have developed an evolutionary algo-

rithm (EA) to solve the problem. We have carried out

computational experiments and analyses in order to gain a

Table 5 The effect of decreasing and increasing customer demand

Instance |M| |A| |C| Change in

demand (%)

EA

Opened

stations

Transportation

cost

Total cost Time

(s)

DevTC
(%)

DevOS
(%)

SCNDALB-1 4 2 4 �30 8 28,83,853.37 28,84,653.37 1.72 �30.50 �20.00

SCNDALB-5 20 15 20 �30 90 14,34,8685.14 14,35,7685.14 12.07 �25.91 �22.41

SCNDALB-10 45 40 45 �30 190 29,86,0041.53 29,87,9041.53 28.54 �25.75 �19.83

SCNDALB-15 90 80 90 �30 401 60,10,2642.75 60,14,2742.75 69.1 �27.51 �24.34

SCNDALB-20 140 130 140 �30 719 82,15,7852.32 82,22,9752.32 177.65 �32.24 �14.71

Average 281.60 57.82 �28.38 �20.26

SCNDALB-1 4 2 4 �15 9 35,01,821.95 35,02,721.95 1.56 �15.61 �10.00

SCNDALB-5 20 15 20 �15 110 17,75,9542.21 17,77,0542.21 11.65 �8.29 �5.17

SCNDALB-10 45 40 45 �15 221 35,32,0514.35 35,34,2614.35 36.03 �12.18 �6.75

SCNDALB-15 90 80 90 �15 445 67,12,9117.83 67173617.83 71.57 �19.03 �16.04

SCNDALB-20 140 130 140 �15 821 98,37,5181.44 98,45,7281.44 208.26 �18.86 �2.61

Average 321.20 65.81 �14.80 �8.11

SCNDALB-1 4 2 4 þ15 11 49,06,757.11 49,07,857.11 2.45 18.24 10.00

SCNDALB-5 20 15 20 þ15 126 23,09,0512.23 23,10,3112.23 12.29 19.22 8.62

SCNDALB-10 45 40 45 þ15 249 46,60,3286.04 46,62,8186.04 33.95 15.87 5.06

SCNDALB-15 90 80 90 þ15 560 91,02,1627.96 91,07,7627.96 80.6 9.78 5.66

SCNDALB-20 140 130 140 þ15 889 14,44,12090.6 14,45,00990.6 183.14 19.08 5.46

Average 367.00 62.49 16.44 6.96

SCNDALB-1 4 2 4 þ30 12 60,16,690.71 60,17,890.71 2.31 44.99 20.00

SCNDALB-5 20 15 20 þ30 135 26,35,2532.21 26,36,6032.21 12.74 36.06 16.38

SCNDALB-10 45 40 45 þ30 255 52,36,5579.56 52,39,1079.56 73.92 30.19 7.59

SCNDALB-15 90 80 90 þ30 587 11,34,38961.1 11,34,97661.1 140.33 36.80 10.75

SCNDALB-20 140 130 140 þ30 921 16,74,12090.6 16,75,04190.6 193.98 38.04 9.25

Average 382 84.66 37.22 12.80

3192 Neural Comput & Applic (2017) 28:3183–3195

123

deep understanding into the interactions between the

components of the problem. We have derived managerial

insights by investigating the effect of various problem

components on total cost and number of opened stations in

assemblers. In what follows, we summarize our main

conclusions.

Our algorithm is able to solve small- to large-size

instances, with up to 140 manufacturers and customers, and

with up to 130 assemblers, within reasonable computation

times. The EA yields the highly competitive solutions on

benchmark instances of [26] within short computation

time. Our comparison between the classical and integrated

approaches clearly shows that the SCNDALB has cost

advantage over the classical approach. The analyses

quantify the benefits of using the integrated approach.

In supply chain network, as expected, our experimental

results indicate that customer demand increase results in

transportation of more products from manufacturers to

customers via assemblers and customer demand decrease

results in transportation of less products to customers. We

have also shown that variations in manufacturer capacity

and in assembler capacity do not have the same effect on

total cost as variations in customer demand.

We have demonstrated that increase in customer

demand decreases the cycle time in each assembler and

results in opening new assembly stations for to satisfy

this customer demand. Our results shows that the num-

ber of opened stations in assemblers follows a similar

pattern to the variations in manufacturer capacity.

However, when we decrease the assembler capacity by

30 %, the number of opened stations decreases, but it

does not follow the same pattern for 15 % decrease.

These analyzes show that variations in customer

demand, in assembler capacity or in manufacturer

capacity, directly affect the number of opened stations in

assemblers and transportation costs between manufac-

turers, assemblers and customers.

Our results depend on the parameter values used in the

experimental design. Beyond our computational experi-

ments, we indicate the importance of the availability of our

method which is capable of analyzing the trade-offs

between assembly line balancing and two-echelon supply

Table 6 The effect of decreasing and increasing manufacturer capacity

Instance |M| |A| |C| Change in

capacity (%)

EA

Opened

stations

Transportation

cost

Total cost Time

(s)

DevTC
(%)

DevOS
(%)

SCNDALB-1 4 2 4 �30 9 42,53,020.84 42,54,020.84 2.57 2.49 �10.00

SCNDALB-5 20 15 20 �30 110 19,06,0247.09 19,07,1047.09 13.79 �1.58 �5.17

SCNDALB-10 45 40 45 �30 220 38,25,7711.81 38,27,8911.8 38.99 �4.88 �7.17

SCNDALB-15 90 80 90 �30 509 77,91,0285.21 77,95,5185.21 109.58 �6.04 �3.96

SCNDALB-20 140 130 140 �30 804 12,08,77158.7 12,09,38258.7 210.24 �0.34 �4.63

Average 330.40 75.03 �2.07 �6.19

SCNDALB-1 4 2 4 �15 10 41,50,084.08 41,50,984.08 2.47 0.01 0.00

SCNDALB-5 20 15 20 �15 112 19,13,2940.85 19,14,2140.85 18.27 �1.22 �3.45

SCNDALB-10 45 40 45 �15 229 40,55,1714.65 40,57,3714.65 45.44 0.82 �3.38

SCNDALB-15 90 80 90 �15 521 85,31,4494.65 85,36,3694.66 109.99 2.89 �1.70

SCNDALB-20 140 130 140 �15 832 12,99,36628.5 13,00,11428.5 210.55 7.14 �1.30

Average 340.80 77.34 1.93 �1.97

SCNDALB-1 4 2 4 þ15 11 41,50,084.08 41,50,984.08 2.35 0.01 10.00

SCNDALB-5 20 15 20 þ15 119 19,61,6259 19,62,6059 21.55 1.28 2.59

SCNDALB-10 45 40 45 þ15 241 41,09,5158.14 41,11,6358.15 53.33 2.17 1.69

SCNDALB-15 90 80 90 þ15 539 81,52,7638.12 81,57,6538.11 126.04 �1.67 1.70

SCNDALB-20 140 130 140 þ15 874 12,81,98950.9 12,82,80050.9 176.93 5.71 3.68

Average 356.80 76.04 1.50 3.93

SCNDALB-1 4 2 4 þ30 11 41,50,084.08 41,50,584.08 2.45 0.00 10.00

SCNDALB-5 20 15 20 þ30 123 20,20,0635.55 20,21,0035.56 19.27 4.29 6.03

SCNDALB-10 45 40 45 þ30 248 42,43,0161.42 42,44,9461.42 56.79 5.48 4.64

SCNDALB-15 90 80 90 þ30 544 82,04,2093.97 82,09,1893.96 117.28 �1.05 2.64

SCNDALB-20 140 130 140 þ30 887 13,61,63755.7 13,62,44455.7 236.98 12.28 5.22

Average 362.6 86.55 4.20 5.71

Neural Comput & Applic (2017) 28:3183–3195 3193

123

chain network design. Further studies should focus on to

improve the assembly line balancing process of the meta-

heuristic algorithm by using new and effective heuristic

procedures to gain some cost benefits.

Acknowledgments Thanks are due to the referees for their valuable

comments.

References

1. Aburto L, Weber R (2007) Improved supply chain management

based on hybrid demand forecasts. Appl Soft Comput 7:136–144

2. Akyuz GA, Erkan TE (2010) Supply chain performance mea-

surement: a literature review. Int J Prod Res 48:5137–5155

3. Altiparmak F, Gen M, Lin L, Paksoy T (2006) A genetic algo-

rithm for multi-objective optimization of supply chain networks.

Comput Ind Eng 51:197–216

4. Altiparmak F, Gen M, Lin L, Karaoglan I (2009) A steady-state

genetic algorithm for multi-product supply chain network design.

Comput Ind Eng 56:521–537

5. Atasagun Y, Kara Y (2014) Bacterial foraging optimization algo-

rithm for assembly line balancing. Neural ComputAppl 25:237–250

6. Battaı̈a O, Dolgui A (2013) A taxonomy of line balancing

problems and their solution approaches. Int J Prod Econ

142:259–277

7. Baybars İ (1986) A survey of exact algorithms for the simple line

balancing problem. Manag Sci 32:909–932

8. Becker C, Scholl A (2006) A survey on problems and methods in

generalized assembly line balancing. Eur J Oper Res

168:694–715

9. Boysen N, Fliedner M, Scholl A (2007) A classification of

assembly line balancing problems. Eur J Oper Res 183:674–693

10. Demirel N, Özceylan E, Paksoy T, Gökçen H (2014) A genetic

algorithm approach for optimising a closed-loop supply chain

network with crisp and fuzzy objectives. Int J Prod Res

52:3637–3664

11. Deshpande U, Gupta A, Basu A (2004) Task assignment with

imprecise information for real-time operation in a supply chain.

Appl Soft Comput 5:101–117

12. Gagnon R, Ghosh S (1991) Assembly line research: historical

roots, research life cycles and future directions. OMEGA

19:381–399

13. Gen M, Altiparmak F, Lin L (2006) A genetic algorithm for two-

stage transportation problem using priority-based encoding. OR

Spectr 28:337–354

14. Ghiani G, Laporte G, Musmanno R (2013) Introduction to

logistics systems management. Wiley, Chichester

Table 7 The effect of decreasing and increasing assembler capacity

Instance |M| |A| |C| Change in

capacity (%)

EA

Opened

stations

Transportation

cost

Total cost Time

(s)

DevTC
(%)

DevOS
(%)

SCNDALB-1 4 2 4 �30 9 45,73,223.82 45,74,923.82 2.75 10.22 �10.00

SCNDALB-5 20 15 20 �30 112 19,32,5437.65 19,34,0237.65 13.83 �0.19 �3.45

SCNDALB-10 45 40 45 �30 225 43,64,9556.68 43,68,2356.68 40.78 8.55 �5.06

SCNDALB-15 90 80 90 �30 511 86,81,1424.22 86,88,2624.23 102.81 4.72 �3.58

SCNDALB-20 140 130 140 �30 809 13,25,72881.6 13,26,86981.6 221.85 9.34 �4.03

Average 333.20 76.40 6.53 �5.23

SCNDALB-1 4 2 4 �15 11 42,87,550.95 42,89,250.95 2.43 3.34 10.00

SCNDALB-5 20 15 20 �15 116 18,43,6764.83 18,44,8464.83 13.18 �4.80 0.00

SCNDALB-10 45 40 45 �15 232 39,72,9734.25 39,75,5334.25 35.77 �1.21 �2.11

SCNDALB-15 90 80 90 �15 536 81,77,9391.81 81,83,1591.81 118.51 �1.37 1.13

SCNDALB-20 140 130 140 �15 835 11,97,94370 11,98,85170 163.32 �1.20 �0.95

Average 346.00 66.64 �1.05 1.61

SCNDALB-1 4 2 4 þ15 12 41,19,790.53 41,20,390.53 1.63 �0.73 20.00

SCNDALB-5 20 15 20 þ15 136 19,62,9445.98 19,63,6645.98 11.84 1.34 17.24

SCNDALB-10 45 40 45 þ15 245 40,58,7266.81 40,60,1766.81 31.22 0.89 3.38

SCNDALB-15 90 80 90 þ15 541 77,67,1962.84 77,69,9262.84 78.84 �6.35 2.08

SCNDALB-20 140 130 140 þ15 885 12,45,56875.3 12,46,00775.3 177.88 2.68 4.98

Average 363.80 60.28 �0.43 9.53

SCNDALB-1 4 2 4 þ30 12 43,29,962.94 43,31,062.94 2.04 4.35 20.00

SCNDALB-5 20 15 20 þ30 139 17,85,4661.52 17,86,0161.52 9.72 �7.83 19.83

SCNDALB-10 45 40 45 þ30 254 39,35,3021.36 39,36,2621.36 28.56 �2.19 7.17

SCNDALB-15 90 80 90 þ30 552 79,04,7976.97 79,06,6876.96 78.01 �4.70 4.15

SCNDALB-20 140 130 140 þ30 891 12,10,07683.4 12,10,45483.4 164.13 �0.25 5.69

Average 369.6 56.49 �2.12 11.37

3194 Neural Comput & Applic (2017) 28:3183–3195

123

15. Ghosh S, Gagnon R (1989) A comprehensive literature review

and analysis of the design, balancing and scheduling of assembly

lines. Int J Prod Res 27:637–670

16. Hamta N, Shirazi MA, Fatemi Ghomi SMTF, Behdad S (2014)

Supply chain network optimization considering assembly line

balancing and demand uncertainty. Int J Prod Res 53:2970–2994

17. Hamta N, Shirazi MA, Ghomi SF (2015) A bi-level programming

model for supply chain network optimization with assembly line

balancing and pushpull strategy. In: Proceedings of the institution

of mechanical engineers, Part B: J Eng Manuf, 1–17

18. Kesen SE (2014) Capacity-constrained supplier selection model

with lost sales under stochastic demand behaviour. Neural

Comput Appl 24:347–356

19. Klibi W, Martel A, Guitouni A (2010) The design of robust

value-creating supply chain networks: a critical review. Eur J

Oper Res 203:283–293

20. Ko M, Tiwari A, Mehnen J (2010) A review of soft computing

applications in supply chain management. Appl Soft Comput

10:661–674

21. Koç Ç, Bektaş T, Jabali O, Laporte G (2014) The fleet size and

mix pollution-routing problem. Trans Res Part B Methodol

70:239–254

22. Koç Ç, Bektaş T, Jabali O, Laporte G (2015) A hybrid evolu-

tionary algorithm for heterogeneous fleet vehicle routing prob-

lems. Comput Oper Res 64:11–27

23. Koç Ç, Bektaş T, Jabali O, Laporte G (2016) The fleet size and

mix location-routing problem with time windows: formulations

and a heuristic algorithm. Eur J Oper Res 248:33–51

24. Meixell MJ, Gargeya VB (2005) Global supply chain design: a

literature review and critique. Trans Res Part E Logis Trans Rev

41:531–550

25. Melo MT, Nickel S, Saldanha-da-Gama F (2009) Facility loca-

tion and supply chain management: a review. Eur J Oper Res

196:401–412

26. Paksoy T, Özceylan E, Gökçen H (2012) Supply chain optimi-

sation with assembly line balancing. Int J Prod Res 50:3115–3136

27. Paksoy T, Özceylan E (2012) Supply chain optimisation with

U-type assembly line balancing. Int J Prod Res 50:5085–5105

28. Pishvaee MS, Zanjirani Farahani R, Dullaert W (2010) A

memetic algorithm for bi-objective integrated forward/reverse

logistics network design. Comput Oper Res 37:1100–1112

29. Rekiek B, Dolgui A, Delchambre A, Bratcu A (2002) State of art

of assembly lines design optimisation. Annu Rev Control

26:163–174

30. Rubinovitz J, Levitin G (1995) Genetic algorithm for assembly

line balancing. Int J Prod Econ 41:343–354

31. Salveson M (1955) The assembly line balancing problem. J Ind

Eng 6:18–25

32. Simchi-Levi D, Kaminsky P, Simchi-Levi E (2004) Managing the

supply chain: the definitive guide for the business professional.

McGraw-Hill, New York

33. Scholl A, Becker C (2006) State-of-the-art exact and heuristic

solution procedures for simple assembly line balancing. Eur J

Oper Res 168:666–693

34. Smirnov AV, Sheremetov LB, Chilov N, Cortes JR (2004) Soft-

computing technologies for configuration of cooperative supply

chain. Appl Soft Comput 4:87–107

35. Stadtler H (2005) Supply chain management and advanced

planning-basics, overview and challenges. Eur J Oper Res

163:575–588

36. Stadtler H, Kilger C, Meyr H (eds) (2015) Supply chain man-

agement and advanced planning. Springer, Berlin

37. Yolmeh A, Salehi N (2015) An outer approximation method for

an integration of supply chain network designing and assembly

line balancing under uncertainty. Comput Ind Eng 83:297–306

Neural Comput & Applic (2017) 28:3183–3195 3195

123

	An evolutionary algorithm for supply chain network design with assembly line balancing
	Abstract
	Introduction
	Problem definition and modeling
	Notations
	Mathematical formulation

	Description of the evolutionary algorithm
	Representation and evaluation
	Genetic operators
	Assembly line balancing

	Computational experiments and analyses
	Data sets and experimental settings
	Validation tests
	Results obtained on the test instances
	Comparison of classical and integrated approaches
	The effect of variations in customer demand
	The effect of variations in manufacturer capacity
	The effect of variations in assembler capacity

	Conclusions and managerial insights
	Acknowledgments
	References

