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Abstract As the engine behind many life phenomena,

motor information generated by the central nervous system

plays a critical role in the activities of all animals. In this

work, a novel, macroscopic and model-independent

approach is presented for creating different patterns of

coupled neural oscillations observed in biological central

pattern generators (CPG) during the control of legged

locomotion. Based on a simple distributed state machine,

which consists of two nodes sharing pre-defined number of

resources, the concept of oscillatory building blocks (OBBs)

is summarised for the production of elaborated rhythmic

patterns. Various types of OBBs can be designed to con-

struct a motion joint of one degree of freedom with

adjustable oscillatory frequencies and duty cycles. An OBB

network can thus be potentially built to generate a full range

of locomotion patterns of a legged animal with controlled

transitions between different rhythmic patterns. It is shown

that gait pattern transition can be achieved by simply

changing a single parameter of an OBB module. Essentially,

this simple mechanism allows for the consolidation of a

methodology for the construction of artificial CPG archi-

tectures behaving as an asymmetric Hopfield neural net-

work. Moreover, the proposed CPG model introduced here

is amenable to analogue and/or digital circuit integration.

Keywords Central pattern generator � Oscillatory
building blocks � Legged locomotion � Parallel processing
systems

1 Introduction

Animal locomotion is generated and controlled, arguably,

by central pattern generators (CPGs), which are networks

of neurons in the central nervous system (CNS) capable of

producing rhythmic outputs, usually as a result of inter-

actions between CNS and external stimulation via a range

of bio-sensors [1–5]. Although current neurophysiological

techniques have difficulties in clearly isolating such cir-

cuits from the intricate neural connections of animals, the

indirect experimental evidence for their existence is strong

[6–16]. The CPGs have been studied and modelled in

details in terms of their biological significance [17–25],

stringent mathematical forms [26–34], and different animal

species [35–45]. Furthermore, CPGs mechanisms have

already been implemented in mixed-signal circuit chips

and applied to build autonomous robots [46–60]. In these

studies, the locomotion patterns are supposed to be the

outputs of musculoskeletal systems driven by CPGs, whose

parameters and functions are adjusted by neuro-modulators

or tonic inputs [61]. Although the CNS mechanism

underlying CPGs is not entirely clear, artificial models

have been widely applied to map the possible functional

organisation of the CPGs network onto the motor system

responsible for driving locomotion.

A motor system is usually modelled by coupled oscil-

lators, which represent the activity of neurophysiologically

simplified motor neurons. Different types of oscillators can

be chosen and connected, usually with a topological shape

to simulate a specific animal species [63–65]. The
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connection strength in the oscillator network is usually

adaptive based on the external inputs or internal, CNS

instructions. The nature of the parallel and distributed

processing is a prominent characteristic of the circuit that

can be canonically described by a group of ordinary dif-

ferential equations, which usually reflect an autonomous

system.

So far many coupled, nonlinear oscillator models have

been suggested on CPG mechanisms for vertebrate and

invertebrate animals, for instance, the biped [62, 65–67],

quadruped [68–71], and hexapod models [74, 75]. Most of

them use one or more units of CPGs for generating and

switching among gait patterns. For instance, Schöner and

colleagues [68] used a synergetic approach to study the

quadrupedal locomotion. Synergy deals with cooperative

phenomena. In synergy, the macroscopic behaviour of a

complex system can be characterised by a small number of

collective variables which in turn govern the qualitative

behaviour of the system elements [72]. In [68], a network

model, which consists of four coupled oscillators, is anal-

ysed. Each oscillator represents a limb of a quadruped

model. The phase difference among limbs is used as col-

lective variables to characterise the inter-limb coordinating

patterns of this discrete system. Gait transitions are simply

modelled as phase transitions, which can also be inter-

preted as bifurcations in a dynamical system. This

approach is significant in the sense that it relates the system

parameter changes and stability issues to gait transitions.

CPG models with the similar synergetic operations have

also been proposed and implemented in circuits [53, 54].

Inspired by the synergetic CPGs models, a novel,

structural approach to the modelling of the complex, leg-

ged locomotion is presented based on a graph dynamics. In

this approach, a concept, namely the oscillatory building

blocks (OBBs) [73–75], is updated and its generalised

version presented. By selecting and building with pre-

configured OBBs modules, different gait patterns can be

achieved for producing coordinated gait patterns, con-

structing locomotion prototypes and facilitating the circuit

synthesis in an efficient, uniform, and systematic frame-

work. Built upon our previous study on OBB modules, this

work generalises it by introducing a mathematical CPGs

framework for both gait pattern generation and transition

between different patterns. The transitions can be realised

by simply changing a few of system parameters. A similar

prototype of the proposed OBB modules has already been

implemented in an integrated circuit [57, 58], in which one

control signal is used to change the gait patterns.

The work is organised in four sections. The following

section presents a detailed model description, including the

graph dynamics, the generalised concept of OBB modules,

their architecture, and biological significance. Section 3

provides a simple computer simulation of gait pattern

generation and transition as a case study using the proposed

OBB modules, which is followed by a conclusion.

2 Method

This section presents the graph dynamics, namely

Scheduling by Edge Reversal (SER) [76, 77], and its

generalisation, namely Scheduling by Multiple Edge Rev-

ersal (SMER) [78, 79]. The dynamics of the discrete and

analogue OBB modules are then introduced. It is shown

that the discrete OBB module can be used to simulate the

envelope shape of the relaxation oscillation of two coupled

neurons in an intuitive way. A more elaborate method to

simulate the oscillatory patterns and their transitions is to

use analogue OBB modules and networks, as introduced in

this section.

2.1 Graph dynamics

The SER graph dynamics considers a neighbourhood-

constrained system represented by a set of nodes (or neu-

rons) and by a set of directed edges with one edge for a pair

of connected nodes, i.e. a directed graph G ¼ ðN;EÞ where
N is the set of nodes, E is the set of edges defining the inter-

connected topology. In SER, each pair of nodes has at most

one edge connecting them.

In order to produce a periodic behaviour, the SER

dynamics assume that G is acyclic, i.e. that node i cannot

be reached by following any directed path starting from

itself. The stage transition occurs through the reversal of

the direction of all the edges of every node having all of

edges directed to it. This node is thus referred to as a sink.

After edge reversal every sink node becomes a source

node, which has all of its edges directed away from it. The

resulting directed graph is also acyclic. The edge reversal

operation will continue until a repetition of an acyclic stage

is reached. This periodic behaviour can be seen as a

dynamic attractor. SER is simple and is fully distributed

graph dynamics. A very interesting property of this algo-

rithm is that any acyclic stage on any graph topology will

have its own set of possible dynamics, like described in

[76, 77]. Figure 1 illustrates a case of the SER dynamics.

The SMER, Scheduling by Multiple Edge Reversal, is a

generalisation of SER where nodes can become sinks more

than once inside a periodic cycle. In SMER, any node can

have more than one directed edges attached to it (see Fig. 2

for a very simple example of SMER graph dynamics). Also

any node is assigned a parameter referred to as its

reversibility. Let’s randomly take a node, namely node i, or

ni, as an example. The reversibility ri of node ni is defined

as the number of the edges directed to ni that, when node ni
is a sink, will be released to each of its coupled neighbours
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at the end of ni sinking by reversing the direction of ri
edges to all of its neighbours. Immediately after this

reversing operation ni becomes a source. The definition of

reversibility also implies that any node, ni, in a SMER

dynamics requires at least the number of ri edges directed

to it in order to become a sink from a source. In the SER

dynamics, all nodes are supposed to have reversibility

equal to one. This is because any two neighbours only

share one directed edge.

In a mathematically formal description, suppose we

have two nodes ni and nj, where ni, nj [ N, and they are

connected with each other. The reversibilities of nodes ni
and nj are ri and rj, respectively. We have the following

rules to choose the number of edges and their directions to

ensure the correct operation of SMER [78, 79].

1. maxfri; rjg� eij � ri þ rj � 1, where eij is the number

of edges between node ni and nj;

2. fij ¼ ri þ rj � gcdðri; rjÞ: where gcd stands for greatest

common divisor, and fij is the sum of the greatest

multiples of gcdðri; rjÞ that do not exceed the number

of edges directed from ni to nj, and from nj to ni,

respectively, at the initial stage of the graph dynamics.

The first rule stipulates a range for the number of the

edges between two coupled nodes, while the second further

decides the exact number of edges in the range and their

directions. Based on the two rules a dynamic attractor can

be made with a flexible control of its active patterns and be

immune of the system halt due to deadlock or starvation

[77, 78]. Figure 2 illustrates an instance of the generalised

dynamics.

In the next section, the SMER graph dynamics will be

used to build the artificial CPGs by designing and imple-

menting OBB models. It will be shown that an OBB can be

designed as either a digital or an analogue circuit

depending on different applications. In both types of OBBs

composed of pairs of coupled nodes, a node which has

possessed required resources is firing, and meanwhile

inhibits its coupled counterpart from becoming a sink. In

this case the sinks can be seen as firing neurons in an

inhibitorily coupled neuronal network.

2.2 Discrete OBB modules and properties

Of long-standing interest are questions about rhythm gen-

eration in networks of non-oscillatory neurons, where the

Fig. 1 Example of the SER

graph dynamics. Black nodes

indicate the sink (active) nodes.

Notice that inside the periodic

cycle (Stages 1, 2 and 3), each

node becomes a sink exactly

once

Fig. 2 Example of SMER, the generalised graph dynamics. Nodes ni
and nj have reversibility values 3 and 1, respectively. Grey colour

indicates sink nodes. It is clear that the period of this graph dynamics

system has four stages. Node ni becomes a sink exactly once, and

node nj becomes a sink three times inside the period
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driving force is not provided by endogenous pacemaking

cells. A simple mechanism for this is based on reciprocal

inhibition between neurons, if they exhibit the property of

post-inhibitory rebound [26]. The post-inhibitory rebound

mechanism [80] is an intrinsic property of many neurons in

the central nervous system, which refers to a period of

increased neuronal excitability following the cessation of

inhibition. It is often included as an element in computa-

tional models of neural networks involving mutual inhibi-

tion [81, 82]. The mutually exclusive activity between any

two nodes coupled under the aforementioned graph

dynamics suggests a scheduling scheme that resembles

anti-correlated firing activity between inhibitory neurons

exhibiting post-inhibitory rebound. The discrete and the

analogue versions of the graph dynamics based OBBs can

thus be customised for different rhythmic patterns. The

discrete OBB modules are built by directly adopting the

generalised graph dynamics, and an asymmetric Hopfield-

like neuronal network [83–85] is employed for imple-

menting the analogue OBB modules.

Instead of modelling electrophysiological activities of

interconnected neurons based on membrane potential

functions, an artificial CPGs network with state machine-

based OBBs models the collective behaviour of a neuron

set. A simple, discrete OBB module is defined to have an

ri-sink node, namely a node with a reversibility of ri, and

an rj-sink node (the same meaning of the ri-sink), sharing

the number of eij edges (edges will also be referred to as

resources in the subsequent text). Two nodes work as two

coupled motor neurons (the nerve cells locate in the spinal

cord), respectively, with the shared resources signifying the

interactive relationship between the two motor neurons that

are interconnected. The exchange of the amount of ri (or rj)

of resources between two nodes results in pre-defined firing

frequencies of two motor neurons.

There is clearly a time relation between the pair of

coupled nodes. The larger the reversibility value of a node

is, the shorter the firing time of that node will be in a cycle

(see the example in Fig. 2). A short firing time of a node

means a small duty cycle (a fraction of the active time in

the whole period). Therefore, the duty cycle of a node in an

OBB module is easily adjustable by setting the reversibility

values for the coupled nodes. Meanwhile, the firing phase

between two coupled nodes is also configurable by setting

an appropriate value for fij in the graph dynamics at the

start stage.

The state transition of each leg, e.g. from stance to

swing, and the corresponding phase relations among dif-

ferent legs are important to simulate the gait model [86].

The phase circulation can be represented by the circulation

of the discrete OBB modules. A simple example of how a

possible scheme of firing pattern circulation of OBBs

modules can simulate the activity envelope of a pair of

flexor and extensor motor neurons is shown in Fig. 3.

After an OBB module is constructed and configured for

a coupled pair of flexor and extensor neurons, the envelope

of each neuron with a pre-defined duty cycle is formed. For

the binary activity in a digital circuit, only a few of sam-

pling time instants are needed in one leg’s locomotion

period representing the firing of the flexor and extensor

neurons, respectively. For a more complex locomotion

model, it is the individual OBB modules rather than the

integrated OBB network that is governed by the gener-

alised SMER graph dynamics. Therefore, the methodology

of constructing a complex locomotion model with the

discrete OBB module is fairly straightforward and useful

for implementing a modular circuit for the asynchronous

operations of a gait model.

2.3 Analogue OBB modules and properties

The aforementioned two sorts of graph dynamics have the

potential to provide the greatest concurrency among

scheduling schemes on resource-sharing systems [76, 79].

The mutually exclusive characteristic between any two

coupled nodes makes the scheduling scheme suitably tai-

lored for simulating post-inhibitory rebound, a mechanism

widely employed for locomotion and other rhythmic

Fig. 3 Mimicking rhythmic patterns generated by CPGs with the

SMER dynamics. a Activity of simplified flexor (node nj) and

extensor (node ni) motor neurons during walking of a cockroach and

the graph dynamics simulation of its envelope. Here two directed

edges are equivalently replaced by two small, black circles on an

undirected link. The attaching of a small circle to a node represents its

direction. b The biological signals are reproduced by courtesy of

Getting [87]
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activities [82, 88]. The generalised SMER graph dynamics

depends on the initial allocation of shared resources. Dif-

ferent configurations of shared resources lead to different

cyclic behaviours, and even to system deadlock or node

starvation if shared resources are not allocated properly.

This motivates investigation on how to mimic CPGs with

the graph dynamics to simulate numerous rhythmic pat-

terns while avoiding undesirable situations.

It is clear that using graph dynamics for simulating

different rhythmic patterns is essentially intuitive due lar-

gely to the discrete nature of the dynamics. However,

analogue behaviours are ubiquitous in the real world. They

are continuous rather than discrete in the time domain,

better described by analogue circuitry rather than digital

one. Following the digital version, we present a novel

continuous time OBB structure that is similar to asym-

metric Hopfield networks [83, 84] but governed by the

graph dynamics. This structure has been classified into two

major categories, namely simple OBB and composite

OBB, depending on the network complexity. The work also

provides a general mathematical framework for describing

the dynamic properties of analogue OBB modules.

Like the dynamics of cellular neural networks [89, 90],

the input and output voltages of each node in an OBB

module are normalised to the digital low or high level,

while the internal potential is continuous within the nor-

malised interval [0, 1]. The simple OBB modules consist of

two interconnected nodes with pre-specified reversibilities.

The composite OBBs can have an arbitrary number of cells

interconnected in any topology. Both types of OBB mod-

ules operate under the mechanism of the generalised

SMER graph dynamics in which the initial resources

configuration is important to avoid possible abnormal sit-

uations like deadlock or starvation during operation.

2.4 The simple OBB module

Suppose we have a graph represented by G(N,E), where N

is a set of nodes and E the set of edges connecting these

nodes in the graph G, now consider a subgraph of G(N,E),

namely Gij, having a pair of coupled nodes ni and nj with ri
and rj as their reversibility, respectively. This simple net-

work can be translated into a simple OBB module, with the

nodes being mapped to the neurons (hence in this work we

use nodes or neurons for the same meaning), and the

resources being mapped to the synapses and associated

weights. The membrane potential of neuron ni at time t,

MiðtÞ, is supposed to depend on three factors, i.e. the

potential at last instant Miðt � 1Þ, the impact of its coupled

neuron nj output vjðt � 1Þ, and the negative feedback of

neuron ni itself viðt � 1Þ, without considering the external

impulses. Figure 4 shows the circuit representation of the

module. The selection of system parameters, such as the

neuron thresholds and synapse weights, are crucial for

modelling the OBB module. In the model, let r0 ¼ hðrÞ,
where h is a function of getting the highest integer scale in

(ri,rj), and then multiplying it by 10, e.g. if ri ¼ 77 and

rj ¼ 463, the highest integer scale is 100 from rj, and then

multiplying it by 10 we have 1000.

So hðrÞ ¼ hðmaxð77; 463ÞÞ ¼ hð463Þ ¼ 103. The neu-

rons’ membrane thresholds hi and hj and their synaptic

weights can be designed as follows,

hi ¼
ri

fij
hj ¼ 1� hi
wij ¼

ri

r0

wji ¼
rj

r0

8
>>>>>><

>>>>>>:

ð1Þ

The system parameters can be arranged by comparing the

two nodes’ reversibilities. If ri [ rj, then we have hi [ hj
and wij [wji (i.e. asymmetric coupling), that means a node

with smaller reversibility, corresponding to a neuron with

lower threshold in an OBB module, will oscillate at a

higher frequency than its companion does. It will also

weakly stimulate its coupled neuron by contributing with a

smaller weight change. fij has the same meaning as in the

SMER algorithm, and we have hj ¼ fij�ri
fij

¼ 1� ri
fij
¼ 1� hi.

This arrangement of model parameters ensures that the

behaviour of the SMER-based, analogue OBB modules is

isomorphic with the behaviour of the original SMER

algorithm. The difference equation in the discrete time

domain of this system can be formulated as follows: Each

neuron’s self-feedback strength is wii ¼ �wij, wjj ¼ �wji,

respectively, and the activation function, which reflects the

neuron’s output in relation of its model parameters, is a

sigmoidal Heaviside type. Thus ,we have,

MiðtÞ
MjðtÞ

� �

¼
Miðt� 1Þ
Mjðt� 1Þ

� �

þ 1

r0
�

�ri rj

ri �rj

� �

W|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�
viðt� 1Þ
vjðt� 1Þ

� �

ð2Þ

where W is the weight matrix. We have the outputs of

neurons as,

viðtÞ ¼ maxð0; sgnðMiðtÞ � hiÞÞ
vjðtÞ ¼ maxð0; sgnðMjðtÞ � hjÞÞ

�

ð3Þ

The designed circuit can be considered as a conservative

dynamical system in an ideal case, i.e. the total energy is

constant. The sum of two neurons’ membrane potentials at

any given time is normalised to one. It will be shown that

the system is able to develop from an arbitrary initial state

into a limit cycle (for an oscillatory period), with the firing

rate of each neuron adjustable based on its reversibility.
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However, like most dynamic systems, this model has a

limitation in its dynamic range. There exists a singular

point when each neuron’s membrane potential equals to its

threshold. In this case, Eq. (3) becomes viðnÞ ¼ vjðnÞ ¼ 0,

hence Eq. (2) accordingly becomes: MiðnÞ ¼ Miðn� 1Þ
and MjðnÞ ¼ Mjðn� 1Þ. The system behaviour can be

unpredictable: It may transit to a different oscillatory pat-

tern due to small external perturbations, or halt with no

perturbations. When designing an oscillatory neural net-

work using OBB modules, it is possible to avoid the

occurrence of any singular point state by presetting the

initial membrane potential Mið0Þ to an appropriate value so

that Mið0Þ 6¼ hi. Within the normal dynamic range except

for the singular point, the circuit of the OBB module rep-

resents a starvation- and deadlock-free dynamic system,

and it is a stable and periodically oscillating system no

matter what initial potentials its neurons may have [75].

The combination of the duty cycles, the oscillation fre-

quencies, and the phase difference of a coupled pair of

neurons is the key set of parameters for modelling a joint of

one degree of freedom (DOF). The oscillatory pattern

transition, which is another important concept in addition

to the pattern generation, can thus be understood as a

transition from an old to a new set of the joint parameters.

It is clear that the duty cycle of an extensor motor neuron

plays an important role in deciding the locomotion speed of

a legged animal [91–93]. In our model, the duty cycle of a

neuron in a coupled, two-neuron system is dependent on

the model parameters shown in Eq. (1). The choice of

reversibilities of two coupled nodes thus dictates the tran-

sition between different patterns as it decides the system

parameters, and hence the duty cycles. Therefore, in our

study the design of transition between patterns is simplified

to the selection among different reversibility values of two

coupled nodes. On the other hand, the proposed pattern

generation model has a linear internal dynamics, i.e. the

membrane potential is a linear function of three input

variables, and a nonlinear, Heaviside-type dynamics in the

output of a neuron as a function of the membrane potential

and the threshold of that neuron.

Suppose both coupled nodes have their reversibility

changed in an amount of rdi and rdj , respectively, we can re-

write formula (1) to obtain the model parameters for the

new pattern, as shown below.

hnewi ¼ ri þ rdi
f newij

hnewj ¼
rj þ rdj

f newij

wnew
ij ¼ ri þ rdi

r0

wnew
ji ¼

rj þ rdj

r0

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð4Þ

where f newij ¼ ri þ rdi þ rj þ rdj � gcd ri þ rdi ; rj þ rdj

� �
.

Here we make a reasonable assumption that r0 is unchanged

as the amount of rdi or rdj is in the similar scale of its old

Fig. 4 Diagram of a simple

OBB module as the basic

oscillation unit
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value, respectively. This ensures that the originally linear

membrane potential dynamics of a neuron is still linear

after pattern transition. We further assume that, according

to SMER, a firing neuron will releases some shared

resources in the amount equal to its new reversibility to its

coupled neuron, which receives them passively and will

possibly become able to fire in one of the subsequent

stages. The firing neuron in the dynamic model will thus

decrease in its membrane potential by an amount equal to

the new strength of its output synapse, while the coupled

neuron will have the same amount added to its membrane

potential. We can rewrite Eq. (2) for the membrane

dynamics in a more general format involving pattern

transition mechanism as follows.

MiðnÞ
MjðnÞ

� �

¼
Miðn� 1Þ
Mjðn� 1Þ

� �

þ W þ si

r0
�rdi 0

rdi 0

" #

þ sj

r0

0 rdj

0 �rdj

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DW

0

B
B
B
@

1

C
C
C
A

�
viðn� 1Þ
vjðn� 1Þ

� �

ð5Þ

where,

sk ¼
1; if rk changed

0; if rk not changed

�

ð6Þ

is a control signal for pattern transition, here k 2 ði; jÞ. This
equation indicates that, in theory, the pattern transition can

be induced by the reversibility change of any one of the

two coupled neurons.

2.5 The composite OBB module

A composite OBB module is a generalisation of the simple

OBB module which consists of an arbitrary number of

simple OBB modules. A composite OBB can have more

than two neurons and therefore, a more complex topology.

Suppose a graph M(N,E) containing a set of m neurons in a

set N ¼ fn1; n2; . . .; nmg, and a set of connections

E ¼ 0 j 1h iij, where 8i; j 2 N, which defines the connection

topology of this graph by using 1h iij and 0h iij to indicate

the presence or absence of a connection between nodes i

and j, respectively. Node i has its reversibility ri. There are

eij shared resources on the corresponding connection 1h iij,
with their number and configuration stipulated by the rules

set in the SMER section.

Different from a simple OBB module composed by

exactly two coupled neurons, a composite OBB module has

at least one neuron connected to at least two other neurons.

Figure 5 shows that a neuron i has connections to a total

number of N neurons. The composite OBB module can be

dissected into various simple OBB modules. For instance,

in Fig. 5, neuron i can be split into N - 1 copies, which

share the same local clock of their maternal neuron i, to

connect to the N input neurons. Here, a copy of neuron i,

plus the corresponding input neuron and their connection,

forms a simple OBB module. We terminologically regard

the output neuron (like neuron i in Fig. 5) in a composite

OBB module as a macroneuron and macroneuron’s copies

as its clones.

According to SMER, a macroneuron of the composite

OBB module operates in a ‘‘whole-or-none’’ mechanism in

terms of the activity of its clones. The macroneuron is

active if and only if all of its clones are active. Funda-

mentally, a composite OBB module operates based on its

constituent simple OBB modules. A schematic diagram of

an exemplar composite OBB module and its equivalent

representation is shown in Fig. 6.

As a generalised version, a composite OBB module can

represent a more complex oscillatory neuronal network and

flexibly reproduce more complex cycles of rhythmic pat-

terns than a simple OBB module. A composite OBB

module is formed based on any prescribed oscillatory

functionality in a specific application, so it does not have a

fixed form in terms of the number of constituent clones, the

connection structure, etc. Different applications will spec-

ify different macroneurons and their topology, and subse-

quently use them as the oscillatory building blocks. Due to

the fact that a composite OBB module is dependent on

specific applications and impossible to know beforehand, a

rule of thumb to analyse this kind of modules is to dissect

them into the subsystems of simple OBB modules where

Eqs. (1)–(6) apply.

Since the output of a macroneuron i is determined by all

its clones, we have,

Fig. 5 Diagram of one macroneuron (represented by the right

triangle) and its clones (represented by a column of the left triangles)

in a composite OBB module
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ViðkÞ ¼
Yn

j¼1

v
j
i ðkÞ ð7Þ

where 8i 2 N, i 6¼ j and v
j
i is the output of clone j of the

macroneuron i, which is linked to a corresponding clone of

another macroneuron j via the connection 1h iij. The

superscript sequence j ¼ 1; 2; . . .; n is the clone number of

a macroneuron ni, which also represents for the other

macroneurons to which macroneuron i connects.

It is also noticeable about how to choose the initial

membrane potential values for the clones which are parts

of the simple OBB modules. Different choices will lead

to different initial self-organisation process of a com-

posite OBB module. To avoid system halt, no clone

should be inactive if its macroneuron is designed to be

active by Eq. (7). Within an appropriate parameter range

(i.e. a neuron’s membrane potential is not equal to its

threshold), a random selection of initial membrane

potential values is allowed. After a possible initial

duration whose length is determined by the choice of

initial membrane potentials, the system will oscillate

periodically.

3 Primer of computer simulation

In this section, the operations of the OBB modules are

preliminarily demonstrated through several computer sim-

ulated works. Since a composite OBB module is funda-

mentally composed by some simple OBB modules (see

Fig. 6), it will have the collective behaviours of the simple

OBB modules. Therefore, the experiments focus on the

operations of the simple OBB modules by showing some

case studies of their dynamics in terms of the oscillatory

patterns generation and transition.

3.1 Pattern generation

Let us suppose that a simple OBB module has two coupled

neurons i and j with the reversibility values ri ¼ 3 and

rj ¼ 12. According to the theory, we have the module

parameters as follows.

hi ¼ 0:25
hj ¼ 0:75
wij ¼ 0:03
wji ¼ 0:12

8
>><

>>:

If we further assume that the initial membrane potentials

of two neurons are Mið0Þ ¼ 0:66 and Mjð0Þ ¼ 0:34,

respectively, we can obtain the oscillatory dynamics of this

simple OBB system by using MATLAB–Simulink, as

shown in Fig. 7.

It is noticeable that the coupled neurons start with a self-

organised period with the given initial membrane poten-

tials. Then the system undergoes a stable periodic oscilla-

tion. The duty cycle of a neuron is decided by the model

parameters, and thus indirectly related with the reversibil-

ities of two coupled neurons. The state space plot of this

example is shown in Fig. 8.

Given the initial membrane potentials of two coupled

neurons in the model as Mið0Þ ¼ 0:66, Mjð0Þ ¼ 0:34, the

state of the model develops through an initial stage into a

limit cycle (as shown in Fig. 8 in thick and grey line),

which corresponds to a stable periodic oscillation in the

time domain (as shown in Fig. 7). Another example of

choice of the initial membrane potentials of the coupled

neurons, e.g. Mið0Þ ¼ 0:12, Mjð0Þ ¼ 0:88, results in a

shorter journey before converging to the limit cycle (see

Fig. 8).

It is clear that neuron j is active for a much shorter time

duration than neuron i, which becomes active in the rest of

Fig. 6 Two equivalent architectures to illustrate the SMER algorithm

in an exemplar composite OBB. Here the reversibility values

ri ¼ rm ¼ rn ¼ 1; rj ¼ 2; rk ¼ 3. a One operation stage of SMER in

a composite OBB module, the node in red is active, those in black are

inactive, the small circles represent resources. b An alternative,

equivalent description for the stage of the composite OBB module

with the macroneurons and their clones, the pink node is active with

all of its clones being active; the grey nodes are inactive with at least

one of its clones being inactive. It is clear that the independent

operations of eight simple OBB modules (represented by eight

connections and their associated clones, and resources) decide the

operation of this composite OBB module (colour figure online)
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the time when neuron j is inactive. The duty cycle of

neuron i is calculated as 4
5
for a period of 15 s (Fig. 7). If

we fix the reversibility value ri ¼ 3, and let rj 2 [1, 3, 6, 9,

12, 15], we can get the duty cycle of neuron i in a corre-

sponding array as
1

4
;

1

2
;

2

3
;

3

4
;

4

5
;

5

6

� �

; and the

period of oscillation in an array [6, 9, 12, 15, 18]. Without

loss of generality we can use frequency-conditioning

techniques to round the period of oscillation of the OBB

module to be as close as possible to a same value (here 12),

while keeping the duty cycle of two neurons unchanged so

that, in applications, we can compare different patterns

generated with a same baseline. A new array of oscillation

periods becomes [10, 12]. A plot of the duty cycle of

neuron i and the period of oscillation of the model is shown

in Fig. 9. Following Pearson’s argument [91] that a faster

gait pattern corresponds to a larger duty cycle for swing

phase and therefore a smaller duty cycle for stance phase, it

is possible to vary the locomotion speed by adjusting the

reversibilities of two coupled neurons (corresponding to the

swing and stance phases, respectively) in a graph dynamics

driven system. When the duty cycles of two coupled neu-

rons are changed by using different reversibilities, the

model period remains largely unchanged. This phe-

nomenon displayed by the model is consistent with that of

our previous study in implementing a nonlinear stepping

pattern generation model with analogue circuitry [58], and

therefore the current model provides an alternative

approach to modelling the CPG mechanism amenable to

circuit realisation, due largely to its characteristics of

modularity and scalability. The OBB circuit is event driven

and made of the discrete building blocks. These features

facilitate its implementation in asynchronous sequential

logic circuits.

Fig. 7 Simulated dynamics of a

simple OBB module in time

domain. Upper panel: neuron

i output; Lower panel: neuron

j output. When the system

becomes stable, the oscillatory

period is 15 s and the duty cycle

of neuron i is 12 s. Note that

here (and in the subsequent

simulations) second is used as

the nominal time unit for

illustrative purpose only. In

practice the time unit is closely

related to the units of the system

clock, and should be

conditioned to any suitable unit

size

Fig. 8 State space plot of the periodic oscillation of two coupled

neurons under the graph dynamics. The two axes on the planar surface

represent the membrane potentials of two neurons, and the vertical

axis is for the firing state of neuron j. From different initial membrane

potentials, the model evolves into a same sequence of periodical

states like a limit cycle
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The continuous-valued version of the SMER algorithm

can be used to design a building block for generating

rhythmic patterns with different duty cycle values for the

activity of a coupled neurons in a flexible and systematic

approach. For instance, if one more duty cycle point is

needed between the values of 1/4 and 1/2, say 2/5, a

composite OBB module can be designed for this additional

state with the new duty cycle (see Fig. 10).

In this design, a composite OBB has three macroneurons

labelled as k, m, and n. Each macroneuron has two clones

inside. It is clear that this composite OBB module is

composed of three simple OBB modules, which are clones

and resources connecting macroneurons k and m, k and n,

m and n, respectively. The clones inside macroneuron k are

referred to as Ck
km and Ck

kn, in which the subscripts repre-

sent the connections between different neuron pairs of k–m

and k–n, the superscripts denote the clones are in

macroneuron k. The reversibility variables of these two

clones are labelled and set as rkkm ¼ 1 and rkkn ¼ 2,

respectively. Similarly, the clones in macroneuron m are

Cm
mk and Cm

mn, their reversibility variables are rmmk ¼ 4 and

rmmn ¼ 1. The clones in macroneuron n are Cn
nk and Cn

nm,

their reversibility variables are rnnk ¼ 3 and rnnm ¼ 1. The

model parameters of the simple OBB modules connecting

macroneuron k, m, and n, respectively, can be derived as

follows.

hkkm ¼ 0:25
hmkm ¼ 0:75
wk
km ¼ 0:1

wm
km ¼ 0:4

8
>><

>>:

hkkn ¼ 0:5
hnkn ¼ 0:5
wk
kn ¼ 0:2

wn
kn ¼ 0:3

8
>><

>>:

hnnm ¼ 0:5
hmnm ¼ 0:5
wn
nm ¼ 0:1

wm
nm ¼ 0:1

8
>><

>>:

After selecting the model parameters by computing

OBB parameters based on SMER, the initial membrane

potentials for the coupled clones in the simple OBB

modules can be chosen randomly with the range [0, 1], as it

is aforementioned that the random selection of the initial

membrane potentials will possibly lead to an initial self-

organisation stage whose length is dependent on the initial

potential values. As long as the singular values of the

membrane potentials are avoided, the OBB will reach a

limit cycle. In this example, macroneuron k is expected to

fire for two consecutive stages in the five-stage cycle for

obtaining the pre-defined duty cycle. According to Eq. (7),

the states of its two clones will be multiplied to have the

target output. Here the initial membrane potentials of the

coupled neurons in three simple OBB modules can be set

as: Mk
kmð0Þ ¼ 0:5, Mm

kmð0Þ ¼ 0:5, Mk
knð0Þ ¼ 0:75,

Mn
knð0Þ ¼ 0:25, Mn

nmð0Þ ¼ 0:75, Mm
nmð0Þ ¼ 0:25. The sim-

ulation outcome of this continuous-valued composite OBB

module using MATLAB–Simulink is shown in Fig. 11.

3.2 Pattern transition

As we have shown in Eq. (5), a change in the reversibility

of any one of two coupled neurons will result in the change

of model parameters, hence the change of oscillatory pat-

terns. Therefore, the pattern transition in the OBB module-

based CPG architecture is straightforward. In a Simulink

simulation, one is able to use one time-related control

signal, corresponding to the control variable in Eq. (6), to

switch between the old and the new model parameters,

derived from the old and the new reversibilities of coupled

neurons. For instance, if one needs to change the

reversibility of a pair of coupled neurons from fri ¼ 3; rj ¼
12g to fri ¼ 3; rj ¼ 3g, the dynamic model parameters are

changed accordingly, like a switch being used to control

this change. A transition between the old and the new

patterns can be achieved with some possible intermediate

self-organisation period (see Fig. 12).

hi ¼ 0:25
hj ¼ 0:75
wij ¼ 0:03
wji ¼ 0:12

8
>><

>>:

)

hi ¼ 1

hj ¼ 0

wij ¼ 0:3
wji ¼ 0:3

8
>><

>>:

Fig. 9 Duty cycle and

oscillation period of a simple

OBB module with a fixed

reversibility ri ¼ 3, and variable

reversibility rj as shown in the

text. The pattern order

corresponds to the normalised

oscillation periods [10, 12]
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It is clear that, if no transition happens, then neuron

i will continue its first pattern, which becomes high at time

instant 39 and lasts for 12 s till 51. The duty cycle for

neuron i is 0.8 (and for neuron j is 0.2 accordingly). As a

command for pattern transition occurs at time instant 40,

ideally the new pattern should start immediately after this

time instant. Practically a self-organisation cycle exists

such that the new pattern starts at the time instant 51. This

is because membrane potentials of the two coupled neurons

are not ready (or, not as close as possible to their thresholds

due to the operation of the old pattern) to make the tran-

sition happen immediately. After a short period, though,

the model will evolve into the new designed pattern with

the duty cycle of neuron i as 0.5 (neuron j as 0.5). It is

suggested that this phenomenon be biologically plausible

as no real creatures will act immediately, i.e. without

latency, upon a command of action.

4 Discussion and conclusion

Although most CPG models proposed so far are mainly

imaginary architectures with no clear neurophysiological

proofs, advances on neuroscience start to reveal the exis-

tence of this widely accepted mechanism behind animal

locomotion. Recently Hückesfeld et al. [94] identified the

distinct clusters of motor neurons responsible for certain

types of motions, and the underlying CPG mechanisms. On

the other hand, the recent applications of CPG models for

controlling robots are still largely following the tradition of

using dynamical system methods to formulate the periodic

oscillations represented by, e.g. limit cycles (for a review

see [95]). Some new trends, however, are to incorporate the

interactions of CPGs and the external world by using

feedback signals from sensors, or to drive different joints

(degrees of freedom) on animal legs rather than the

Fig. 10 Exemplar composite OBB module containing 3 macroneu-

rons to achieve a new duty cycle for a macroneuron k. The rest two

macroneurons are used to support the design. The red colour

represents for active clones while the yellow colour for active

macroneurons. The shared resources are small blue circles (colour

figure online)

Fig. 11 Simulation of a

composite OBB designed to

show a firing duty cycle of 0.4

for a macroneuron. (A1) and

(A2) show the output states of

two clones of macroneuron k,

respectively. (A3) is obtained

through Eq. (7), the output of

the macroneuron k, which meets

the design requirement in duty

cycle
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legendary, more abstract phase relations between legs by

ignoring the control of intra-leg joints [96–98]. Further-

more, apart from the more classic CPG models such as the

van der Pol and Wilson–Cowan oscillators, new oscillators,

e.g. the Morphed oscillator [99] which exhibits arbitrary

limit cycle shapes and can represent first, second or nth

order dynamical systems, are proposed and used to build a

CPG model with the ameliorated performance like pertur-

bation resistance [100]. Despite the mathematical sound-

ness of these works, however, most of their effects on

controlling legged robots are demonstrated by using com-

puter simulations. Much more works remain if these

models are to be implemented in hardware for autonomous

control of a robot.

Recent neuromorphic hardware realisation of the CPG

models has shown great potential in implementing silicon

neurons and their networks to control the robot behaviours

[52–60]. Nevertheless, many of the recent works are still

focused on the basis of building the neural oscillators,

showing their characteristics, rather than using the oscil-

lators to construct a specific CPG architecture [101, 102].

This is possibly due to the lack of a modular and scalable

approach to designing a CPG architecture by using a range

of the available building blocks.

A novel oscillatory building block (OBB) model that is

able to be configured to create a tailor designed architec-

ture for both locomotion rhythmic pattern generation and

transition has been proposed in this work. Since the simple

OBB module is the basis from which a rhythm-producing

model of high complexity can be designed, the top-level

model is highly modular and scalable for design, prototype,

manufacture and test. It is also an asynchronous and self-

clocked system if the reversibility values and initial

membrane potentials are chosen for individual simple

OBBs. Because of the simplicity of the system, a hardware

version of a simple OBB module can be made in such a

way that, it is possible to develop a real-time hardware

implementation of systems with arbitrary complexity.

The resulting continuous, linear and time-invariant

system has its correctness based on the SMER graph

dynamics. Therefore, a smooth operation of the designed

workflow of rhythmic patterns is ensured. An intermediate

self-organisation period may exist but this phenomenon is

not an issue, being compatible with its biological coun-

terparts. Pattern transition is controlled by just one model

parameter, i.e. the reversibility of a neuron, in order to

update the gait pattern according to the environment.

Future works include the design of OBB architectures for a

pre-specified, legged animal species, in order to show the

model’s capability on mimicking a variety of legged

locomotion patterns in a flexible and systematic approach.

Acknowledgments This research has been supported in part by a

British Biotechnology and Biological Sciences Research Council

(BBSRC) Grant BBS/B/07217, an Engineering and Physical Sciences

Research Council (EPSRC) Grant EP/E063322/1, and two Chinese

National Science Foundation (NSFC) Grants 60673102 and

61103185. The MATLAB–Simulink program is available upon

request.

References
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