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Abstract This paper considers the exponential synchro-

nization problem for chaotic neural networks with mixed

delays and impulsive effects. The mixed delays include

time-varying delays and unbounded distributed delays.

Some delay-dependent schemes are designed to guarantee

the exponential synchronization of the addressed systems

by constructing suitable Lyapunov–Krasovskii functional

and employing stability theory. The synchronization con-

ditions are given in terms of LMIs, which can be easily

checked via MATLAB LMI toolbox. Moreover, the syn-

chronization conditions obtained are mild and more general

than previously known criteria. Finally, two numerical

examples and their simulations are given to show the

effectiveness of the proposed chaos synchronization

schemes.

Keywords Chaotic neural networks � Exponential

synchronization � Linear matrix inequality � Mixed delays �
Impulsive effects

1 Introduction

During the past several years, dynamics of delayed neural

networks have been extensively studied because of their

important applications in many areas such as associative

memory, pattern recognition and nonlinear optimization

problems, see [1–5]. Many researchers have a lot of con-

tributions to these subjects. However, most previous works

on delayed neural networks have predominantly concen-

trated on stability analysis and periodic oscillations, see [6–

11]. It is well known that chaos synchronization of

dynamics systems has important applications in many

fields including biological systems, parallel image pro-

cessing, neural networks, information science, see [12–16].

Moreover, it has been shown that if the network’s param-

eters and time delays are appropriately chosen, the delayed

neural networks can exhibit some complicated dynamics

and even chaotic behaviors [17, 18]. Hence, it has attracted

many scholars to study the synchronization of chaotic

delayed neural networks and many excellent papers and

monographs dealing with synchronization of chaotic sys-

tems have been published [19–23, 27–33, 38–41]. For

instance, Cheng et al. [20] investigated the exponential

synchronization problem for a class of chaotic neural net-

works with or without constant delays via Lyapunov sta-

bility method and the Halanay inequality. Xia et al. [22]

studied the asymptotical synchronization for a class of

coupled identical Yang–Yang type fuzzy cellular neural

networks with time-varying delays via Lyapunov–Kra-

sovskii functional and linear matrix inequality (LMI)

approach.

It is well known that due to the finite speeds of the

switching and transmission of signals [7, 35], time delays

which can cause instability and oscillations in system do

exist in a working network and thus should be incorporated
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into the models. Most of the existing works on delayed

neural networks have dealt with the neural networks with

discrete delays, see for example Refs. [5, 7, 9, 18] and the

references therein. As we known, neural networks have a

spatial nature due to the presence of parallel pathways with

a variety of axon sizes and lengths [35]. So it is desirable to

model them by introducing unbounded distributed delays.

In other words, unbounded distributed delays should also

be taken into account in the neural networks models as well

as discrete delays [10, 11, 24–26]. Recently, some works

dealing with synchronization phenomena in chaotic neural

networks with discrete delays and distributed delays have

appeared [27–33]. In [29–31], Li et al. investigated the

exponential synchronization of neural networks with time-

varying delays and finite distributed delays by using the

drive–response concept, LMI approach and the Lyapunov

stability theorem. However, the time-varying delays in

[29–31] are continuously differentiable and their deriva-

tives have finite upper bounded. In [32, 33], Song further

obtained the asymptotical and exponential synchronization

LMIs-based schemes for the neural networks with time-

varying delays and finite distributed delays by constructing

proper Lyapunov–Krasovskii functional and inequality

technique, which removed those restrictions on time-

varying delays. However, all the synchronization problems

in [27–33] have dealt with the chaotic neural networks with

time-varying delays or finite distributed delays and cannot

be applied to the models with unbounded distributed

delays.

On the other hand, many evolutionary processes, partic-

ularly some biological systems such as biological neural

networks and bursting rhythm models in pathology, undergo

abrupt changes at certain moments of time due to impulsive

inputs, that is, do exhibit impulsive effects [34, 35]. Neural

networks as artificial electronic systems are often subject to

impulsive perturbations that in turn affect dynamical

behaviors of the systems. According to Haykin [35] and

Arbib [36], when stimuli from the body or the external

environment are received by receptors, the electrical

impulses will be conveyed to the neural net and impulsive

effects arise naturally. Moreover, impulses can also be

introduced as a control mechanism to stabilize some other-

wise unstable neural networks, see [37]. Hence, it is very

important and, in fact, necessary to investigated the

dynamics of neural networks with mixed delays and impul-

sive effects. To date, a large number of results on dynamics

of neural networks with mixed delays and impulsive effects

have been derived in the literatures, see [10, 11], and the

references cited therein. Recently, there are several results on

synchronization problems of chaotic neural networks with

delays and impulsive effects [23, 38–41]. In particular, Yang

and Cao [39] investigated the exponential synchronization

of neural networks with delays and impulsive effects by

employing the Lyapunov stability theory. However, the time

delays addressed are constants. Sheng and Yang [40] further

studied the exponential synchronization for a class of neural

networks with unbounded distributed delays and impulsive

effects by using the Lyapunov functional method. However,

the obtained results in [40] not only ignore the information of

delay kernels for synchronization of chaotic neural networks

but also impose certain unnecessary restrictions on impulses.

In addition, it is widely known that the results based on LMIs

have advantages not only in that they can be easily verified

via MATLAB LMI toolbox, but also in that they take into

consideration the neuron’s inhibitory and excitatory effects

on neural networks [42]. Despite all this, there are some

rigorous drawbacks: (a) The considered neural networks in

[38–41] are not expressed in terms of LMIs; (b) some

restrictive conditions are rigorous; (c) they do not allow the

existence of large-scale impulsive effects. Obviously, these

drawbacks restricted the availability for applications.

The purpose of this paper is to consider a class of

chaotic neural networks with mixed delays and impulsive

effects. By constructing suitable Lyapunov–Krasovskii

functional and employing stability theory, we present some

delay-dependent schemes which contain all the information

in chaotic neural networks to guarantee the exponential

synchronization of the addressed systems. The synchro-

nization conditions are given in terms of LMIs, which can

be easily checked via MATLAB LMI toolbox. Moreover,

we not only essentially drop the requirement of traditional

Lipschitz condition on the activation functions but also

remove the restrictions on differentiability of time-varying

delays and the boundedness of their derivatives.

The rest of the paper is organized as follows. In Sect. 2,

problem formulations and some preliminaries are intro-

duced. In Sect. 3, we present some exponential synchro-

nization schemes for chaotic neural networks with mixed

delays and impulsive effects by constructing different

suitable Lyapunov–Krasovskii functionals. Two numerical

examples are given to illustrate the proposed results in

Sect. 4. Finally, conclusions are given in Sect. 5.

2 Problem formulations

Let R denote the set of real numbers, Zþ denote the set of

positive integers and Rn the n-dimensional real space

equipped with the Euclidean norm jj � jj: A[ 0 or A\0

denotes that the matrix A is a symmetric and positive

definite or negative definite matrix. The notation AT and

A�1 mean the transpose of A and the inverse of a square

matrix. If A;B are symmetric matrices, A[B means

that A�B is positive definite matrix. I denotes the

identity matrix with appropriate dimensions and
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K ¼ f1; 2; . . .; ng. Moreover, the notation H always

denotes the symmetric block in one symmetric matrix.

Denote PC1
bðð�1; 0�;RnÞ ¼ fw : ð�1; 0� ! Rn is

continuously differentiable bounded everywhere except at

finite number of points t, at which wðtþÞ;wðt�Þ;w0 ðtþÞ and

w
0 ðt�Þ exist, wðtþÞ ¼ wðtÞ; w

0 ðtþÞ ¼ w
0 ðtÞ; where w

0

denotes the derivative of w}. Especially, let

PC1
b¼
:
PC1

bðð�1; 0�;RnÞ:
For any w 2 PC1

b; we introduce the following norm:

jjwjj2s ¼ max max
h� 0

Xn

i¼1

w2
i ðhÞ

�� ��; max
�s� h� 0

Xn

i¼1

w
02

i ðhÞ
���

���
( )

:

Consider the following chaotic neural networks with mixed

delays and impulsive effects:

where the impulse times tk satisfy 0 ¼ t0\t1\. . .

\tk\. . .; limk!1 tk ¼ þ1, xðtÞ ¼ ðx1ðtÞ; � � � ; xnðtÞÞT is

the neuron state vector and fiðxð�ÞÞ ¼ ðfi1ðx1ð�ÞÞ;
� � � ; finðxnð�ÞÞÞT , i ¼ 1; 2; 3; represents neuron activation

functions, C ¼ diagðc1; � � � ; cnÞ is a diagonal matrix with

ci [ 0, A, B, W are the connection weight matrix, the

delayed weight matrix and the distributively delayed con-

nection weight matrix, respectively; I(t) is a time-varying

input vector, sðtÞ is the time-varying delay of the neural

networks satisfying 0� sðtÞ� s; hð�Þ ¼ diagðh1ð�Þ;
� � � ; hnð�ÞÞ is the delay kernel and Dk ¼ diagðdð1Þk ; � � � ; dðnÞk Þ
is the impulsive matrix, /ð�Þ 2 C; C is an open set in PC1

b.

We remark that the model formulation given above

implies that the states of neuron x will meet sudden

changes at the discontinuity points tk due to some stimuli

from the internal or external environment, that is, xðtkÞ ¼
ðI � DkÞxðt�k Þ; where xðt�k Þ denotes the state of neuron

x before changes at jump points tk and xðtkÞ ¼ xðtþk Þ the

state after changes.

For the sake of simplicity, we give the following

assumptions:

ðH1Þ The neuron activation functions f1j; f2j; f3j are

bounded and satisfy the following conditions:

r�j �
f1jðuÞ� f1jðvÞ

u� v
�rþj ;

f�j �
f2jðuÞ� f2jðvÞ

u� v
�fþj ;

q�j �
f3jðuÞ� f3jðvÞ

u� v
�qþj ; 8 u;v2R; u 6¼ v; j 2K;

where r�j ; r
þ
j ; f

�
j ; f

þ
j ; q

�
j ; q

þ
j are some real constants.

ðH2Þ The delay kernels hj; j 2 K; are some real value

nonnegative continuous function defined in ½0;1Þ;
and there exists a constant g[ 0 such that
Z 1

0

hjðsÞds¼: hj;
Z 1

0

hjðsÞegsds¼: hHj \1; j2K;

where hj; h
H

j denote some positive constants.

Remark 2.1 It should be noted that as discussed in [4, 43]

in many electronic circuits, the input–output functions of

amplifiers may be neither monotonically increasing nor

continuously differentiable, thus non-monotonic functions

can be more appropriate to describe the neuron activation

in designing and implementing an artificial neural network.

Hence, the constants r�j ; r
þ
j ; f

�
j ; f

þ
j ; q

�
j ;q

þ
j which are

allowed to be positive, negative or zero in assumption ðH1Þ
are more general than the previously used Lipschitz con-

ditions, see, for example, [21, 39, 40]. Assumption ðH2Þ
provides the information on the delay kernels which can be

used in the stability criteria, and therefore more precise

synchronization conditions can be obtained in the follow-

ing section.

Now we consider the system (1) as the master/drive

system, and the slave/response system can be as follows:

_xðtÞ ¼ �CxðtÞ þ Af1ðxðtÞÞ þ Bf2ðxðt � sðtÞÞÞ þW
R t

�1 hðt � sÞf3ðxðsÞÞdsþ IðtÞ; t 6¼ tk;

DxðtkÞ ¼ xðtkÞ � xðt�k Þ ¼ �Dkxðt�k Þ; k 2 Zþ;

xðsÞ ¼ /ðsÞ; s 2 ð�1; 0�;

8
><

>:
ð1Þ

_yðtÞ ¼ �CyðtÞ þ Af1ðyðtÞÞ þ Bf2ðyðt � sðtÞÞÞ þW
R t

�1 hðt � sÞf3ðyðsÞÞdsþ IðtÞ þ uðtÞ; t 6¼ tk;

DyðtkÞ ¼ yðtkÞ � yðt�k Þ ¼ �Dkyðt�k Þ; k 2 Zþ;

yðsÞ ¼ uðsÞ; s 2 ð�1; 0�;

8
><

>:
ð2Þ
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where uð�Þ 2 C; uðtÞ is the appropriate control input that

will be designed in order to obtain the synchronization of

the drive system (1) and the controlled response sys-

tem (2). And the other notations and conditions are the

same as system (1).

For the synchronization scheme, the synchronization

error is defined as

eðtÞ ¼ ðe1ðtÞ; � � � ; enðtÞÞT :¼ yðtÞ � xðtÞ

and the control input in the response system is designed as

(Inspired by the ideas in [29–33])

uðtÞ ¼ K1eðtÞ þ K2eðt � sðtÞÞ;

where K1;K2 are the gain matrices. Then the error

dynamics between (1) and (2) can be expressed by

where giðeð�ÞÞ ¼ fiðeð�Þ þ xð�ÞÞ � fiðxð�ÞÞ: Obviously,

gið0Þ ¼ 0; i ¼ 1; 2; 3: Moreover, by ðH1Þ we note that the

following conditions hold:

r�j � g1jðsÞ
s

� rþj ;

f�j � g2jðsÞ
s

� fþj ;

q�j � g3jðsÞ
s

� qþj ; 8 s 2 R; s 6¼ 0; j 2 K:

In addition, we give the following definitions:

R1 ¼ diagðr�1 rþ1 ; � � � ;r�n rþn Þ;R2 ¼ diag
r�1 þrþ1

2
; � � � ;r

�
n þrþn

2

� �
;

R3 ¼ diagðf�1 f
þ
1 ; � � � ;f

�
n f

þ
n Þ;R4 ¼ diag

f�1 þ fþ1
2

; � � � ;f
�
n þ fþn

2

� �
;

R5 ¼ diagðq�1 qþ1 ; � � � ;q�n qþn Þ;R6 ¼ diag
q�1 þqþ1

2
; � � � ;q

�
n þqþn

2

� �
:

Definition 2.1 ([22]) Systems (1) and (2) are said to be

exponentially synchronized if there exist constants k[ 0

and M� 1 such that jjeðtÞjj �Mjju� /jjse�kt for any

t[ 0: Constant k is said to be the degree of exponential

synchronization.

Definition 2.2 ([23]) Systems (1) and (2) are said to be

globally asymptotically synchronized if the synchroniza-

tion error system (3) is globally asymptotically stable.

3 Synchronization schemes

In the section, we will investigate the exponential syn-

chronization and global asymptotical synchronization of

systems (1) and (2) with or without impulsive effects by

constructing suitable Lyapunov–Krasovskii functionals.

Theorem 3.1 Assume that assumptions ðH1Þ and ðH2Þ
hold. Then systems (1) and (2) are exponentially synchro-

nized if there exist four constants a 2 ð0; gÞ;
c[ 0; d 2 ½0; aÞ;M� 1, an n� n matrix P[ 0; an n� n

inverse matrix Q1, four n� n diagonal matrices

Q2 [ 0;Ui [ 0; i ¼ 1; 2; 3; and an 2n� 2n matrix

T11 T12

H T22

� �
[ 0 such that

_eðtÞ ¼ ð�C þ K1ÞeðtÞ þ K2eðt � sðtÞÞ þ Ag1ðeðtÞÞ þ Bg2ðeðt � sðtÞÞÞ þW
R t

�1 hðt � sÞg3ðeðsÞÞds; t 6¼ tk;

DeðtkÞ ¼ eðtkÞ � eðt�k Þ ¼ �Dkeðt�k Þ; k 2 Zþ;

eðsÞ ¼ uðsÞ � /ðsÞ; h 2 ð�1; 0�;

8
><

>:
ð3Þ

P11 P12 Q1K2 þ cTT
12 Q1Aþ U1R2 Q1B U3R6 Q1W

H P22 Q1K2 Q1A Q1B 0 Q1W

H H P33 0 U2R4 0 0

H H H �U1 0 0 0

H H H H �U2 0 0

H H H H H Q2H� U3 0

H H H H H H Q2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

\0 ð4Þ
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and

Ym

k¼1

max kkmax; 1
� �

�Medtm for all m 2 Zþ holds;

where

P11 ¼ aPþ Q1ðK1 � CÞ þ KT
1 � C

� �
QT

1 � U1R1 � U3R5;

P12 ¼ P� Q1 þ KT
1 � C

� �
QT

1 ;

P22 ¼ �Q1 � QT
1 þ c2 e

as � 1

a
T22;

P33 ¼ sT11 � cT12 � cTT
12 � U2R3;

H ¼ diag h1h
H

1 ; . . .; hnh
H

n

� �
;

kkmax denotes the maximum eigenvalue of matrix

P�1ðI � DkÞPðI � DkÞ; k 2 Zþ.

Proof Consider the following Lyapunov–Krasovskii

functional:

Vðt;eðtÞÞ ¼ V1ðt;eðtÞÞþV2ðt;eðtÞÞþV3ðt;eðtÞÞþV4ðt;eðtÞÞ;

where

V1ðt; eðtÞÞ ¼ eateTðtÞPeðtÞ;

V2ðt; eðtÞÞ ¼
Z t

0

eau
Z u

u�sðuÞ

eðu� sðuÞÞ
c _eðsÞ

� �T
T11 T12

H T22

� �

eðu� sðuÞÞ
c _eðsÞ

� �
dsdu;

V3ðt; eðtÞÞ ¼ c2

Z 0

�s

Z t

tþu

eaðs�uÞ _eTðsÞT22 _eðsÞdsdu;

V4ðt; eðtÞÞ ¼
Xn

j¼1

q
ð2Þ
j hj

Z 1

0

hjðuÞ
Z t

t�u

eaðsþuÞg2
3jðejðsÞÞdsdu:

Calculating the time derivative of V1;V2;V3;V4 along the

solution of (3) at the continuous interval ½tk�1; tkÞ; k 2 Zþ,

we get

DþV1ðt; eðtÞÞ ¼ aeateTðtÞPeðtÞ þ 2eateTðtÞP _eðtÞ
¼ aeateTðtÞPeðtÞ þ 2eateTðtÞP _eðtÞ þ 2eatðeðtÞ
þ _eðtÞÞTQ1 � _eðtÞ þ ð�C þ K1ÞeðtÞ þ K2eðt � sðtÞÞf

þ Ag1ðeðtÞÞ þ Bg2ðeðt � sðtÞÞÞ þW

Z t

�1
hðt � sÞg3ðeðsÞÞdsg

¼ eat eTðtÞ aPþ 2Q1ð�C þ K1Þ½ �eðtÞ þ 2eTðtÞ P� Q1 þ ðKT
1 � CÞQT

1

	 

_eðtÞ

�

þ 2eTðtÞQ1K2eðt � sðtÞÞ þ 2eTðtÞQ1Ag1ðeðtÞÞ þ 2eTðtÞQ1Bg2ðeðt � sðtÞÞÞ

þ 2eTðtÞQ1W

Z t

�1
hðt � sÞg3ðeðsÞÞds� 2 _eTðtÞQ1 _eðtÞ

þ 2 _eTðtÞQ1K2eðt � sðtÞÞ þ 2 _eTðtÞQ1Ag1ðeðtÞÞ

þ 2 _eTðtÞQ1Bg2ðeðt � sðtÞÞÞ þ 2 _eTðtÞQ1W

Z t

�1
hðt � sÞg3ðeðsÞÞdsg;

ð5Þ

DþV2ðt; eðtÞÞ ¼ eat
Z t

t�sðtÞ

eðt � sðtÞÞ
c _eðsÞ

� �T
T11 T12

H T22

� �
eðt � sðtÞÞ

c _eðsÞ

� �
ds

¼ eat sðtÞeTðt � sðtÞÞT11eðt � sðtÞÞ þ 2ceTðtÞTT
12eðt � sðtÞÞ

�

� 2ceTðt � sðtÞÞTT
12eðt � sðtÞÞ þ c2

Z t

t�sðtÞ
_eTðsÞT22 _eðsÞdsg

� eat eTðt � sðtÞÞ½sT11 � 2cTT
12�eðt � sðtÞÞ

�

þ 2ceTðtÞTT
12eðt � sðtÞÞ þ c2

Z t

t�s
_eTðsÞT22 _eðsÞdsg;

ð6Þ
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DþV3ðt;eðtÞÞ¼ c2

Z 0

�s
eaðt�uÞ _eTðtÞT22 _eðtÞdu�c2

Z 0

�s
eat _eTðtþuÞT22 _eðtþuÞdu

¼ c2eat
eas�1

a
_eTðtÞT22 _eðtÞ�

Z t

t�s
_eTðsÞT22 _eðsÞds;

� �

ð7Þ

and

On the other hand, for any n�n diagonal matrices

Ui[0; i¼1;2;3; it follows that

Thus, by (5)–(9), we can obtain

DþV4ðt; eðtÞÞ ¼
Xn

j¼1

q
ð2Þ
j hj

Z 1

0

hjðuÞeaðtþuÞg2
3jðejðtÞÞdu�

Xn

j¼1

q
ð2Þ
j hj

Z 1

0

hjðuÞeatg2
3jðejðt � uÞÞdu

� eat gT3 ðeðtÞÞQ2Hg3ðeðtÞÞ �
Xn

j¼1

q
ð2Þ
j

Z 1

0

hjðuÞdu
Z 1

0

hjðuÞg2
3jðejðt � uÞÞdu

( )

� eat gT3 ðeðtÞÞQ2Hg3ðeðtÞÞ �
Xn

j¼1

q
ð2Þ
j

Z 1

0

hjðuÞg3jðejðt � uÞÞdu
� �2

( )

¼eat gT3 ðeðtÞÞQ2Hg3ðeðtÞÞ �
Z t

�1
hðt � sÞg3ðeðsÞÞds

� �T

Q2

Z t

�1
hðt � sÞg3ðeðsÞÞds

� �( )
:

ð8Þ

eat
eðtÞ

g1ðeðtÞÞ

� �T �U1R1 U1R2

H �U1

� �
eðtÞ

g1ðeðtÞÞ

� �
þ

eðt � sðtÞÞ
g2ðeðt � sðtÞÞÞ

� �T �U2R3 U2R4

H �U2

� �(

�
eðt � sðtÞÞ

g2ðeðt � sðtÞÞÞ

� �
þ

eðtÞ
g3ðeðtÞÞ

� �T �U3R5 U3R6

H �U3

� �
eðtÞ

g3ðeðtÞÞ

� �)
� 0:

ð9Þ
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where

Since (4) holds, we know that matrix N is a negative define

matrix, then

DþV � 0; t 2 ½tk�1; tkÞ; k 2 Zþ: ð10Þ

On the other hand, we note that for any k 2 Zþ

V1ðtk; eðtkÞÞ ¼ eatk eTðtkÞPeðtkÞ ¼ eatk eTðt�k Þ
ðI � DkÞPðI � DkÞeðt�k Þ
� eatkkkmaxe

Tðt�k ÞPeðt�k Þ
¼ kkmaxV1ðt�k ; eðt�k ÞÞ:

ð11Þ

Moreover, we know

V2ðtk;eðtkÞÞ ¼ V2ðt�k ;eðt�k ÞÞ; V3ðtk;eðtkÞÞ ¼ V3ðt�k ;eðt�k ÞÞ;
V4ðtk;eðtkÞÞ ¼ V4ðt�k ;eðt�k ÞÞ:

Together with (11), it follows that for any k 2Zþ

Vðtk; eðtkÞÞ� max kkmax; 1
� �

Vðt�k ; eðt�k ÞÞ: ð12Þ

By simple induction, from (10) and (12) we get for

t 2 ½tm; tmþ1Þ;m 2 Zþ

e�atDþV � eTðtÞ aPþ 2Q1ð�C þ K1Þ½ �eðtÞ þ 2eTðtÞ P� Q1 þ ðKT
1 � CÞQT

1

	 

_eðtÞ

þ 2eTðtÞQ1K2eðt � sðtÞÞ þ 2eTðtÞQ1Ag1ðeðtÞÞ þ 2eTðtÞQ1Bg2ðeðt � sðtÞÞÞ

þ 2eTðtÞQ1W

Z t

�1
hðt � sÞg3ðeðsÞÞds� 2 _eTðtÞQ1 _eðtÞ þ 2 _eTðtÞQ1K2eðt � sðtÞÞ

þ 2 _eTðtÞQ1Ag1ðeðtÞÞ þ 2 _eTðtÞQ1Bg2ðeðt � sðtÞÞÞ

þ 2 _eTðtÞQ1W

Z t

�1
hðt � sÞg3ðeðsÞÞdsþ eTðt � sðtÞÞ½sT11 � 2cTT

12�eðt � sðtÞÞ

þ 2ceTðtÞTT
12eðt � sðtÞÞ þ c2 e

as � 1

a
_eTðtÞT22 _eðtÞ þ gT3 ðeðtÞÞQ2Hg3ðeðtÞÞ

�
Z t

�1
hðt � sÞg3ðeðsÞÞds

� �T

Q2

Z t

�1
hðt � sÞg3ðeðsÞÞds

� �

þ
eðtÞ

g1ðeðtÞÞ

� �T �U1R1 U1R2

H �U1

� �
eðtÞ

g1ðeðtÞÞ

� �

þ
eðt � sðtÞÞ

g2ðeðt � sðtÞÞÞ

� �T

�
�U2R3 U2R4

H �U2

� �
eðt � sðtÞÞ

g2ðeðt � sðtÞÞÞ

� �

þ
eðtÞ

g3ðeðtÞÞ

� �T �U3R5 U3R6

H �U3

� �
�

eðtÞ
g3ðeðtÞÞ

� �

� nTðtÞNnðtÞ;

N ¼

P11 P12 Q1K2 þ cTT
12 Q1Aþ U1R2 Q1B U3R6 Q1W

H P22 Q1K2 Q1A Q1B 0 Q1W

H H P33 0 U2R4 0 0

H H H �U1 0 0 0

H H H H �U2 0 0

H H H H H Q2H� U3 0

H H H H H H �Q2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

;

nðtÞ ¼ eðtÞ; _eðtÞ; eðt � sðtÞÞ; g1ðeðtÞÞ; g2ðeðt � sðtÞÞÞ; g3ðeðtÞÞ;
Z t

�1
hðt � sÞg3ðeðsÞÞds

� �T

:
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eatkmin � jjeðtÞjj2 �Vðt; eðtÞÞ�Vð0; eð0ÞÞ
Ym

k¼1

max kkmax; 1
� �

;

which implies that

jjeðtÞjj2 � M

kmin

Vð0; eð0ÞÞe�atedtm ; t 2 ½tm; tmþ1Þ;m 2 Zþ;

i.e.,

jjeðtÞjj2 � M

kmin

Vð0; eð0ÞÞe�ða�dÞt; t[ 0: ð13Þ

In addition, it can be deduced that

Vð0;eð0ÞÞ ¼ eTð0ÞPeð0Þþ c2

Z 0

�s

Z 0

u

eaðs�uÞ _eTðsÞT22 _eðsÞdsdu

þ
Xn

j¼1

q
ð2Þ
j hj

Z 1

0

hjðuÞ
Z 0

�u

eaðsþuÞg2
3jðejðsÞÞdsdu

�kmaxjju�/jj2 þlmaxc
2 eas� 1� as

a2

� �
jju�/jj2s

þ 1

a

Xn

i¼1

q
ð2Þ
j hjq

2
j ðh

H

j �hjÞjju�/jj2s

� kmax þlmaxc
2 eas� 1� as

a2

� ��

þ1

a

Xn

i¼1

q
ð2Þ
j hjq

2
j hHj �hj


 �)
jju�/jj2s ;

ð14Þ

where qj ¼ maxfjq�j j; jqþj jg; j 2 K; lmax and kmax denote

the maximum eigenvalues of matrix T22 and P,

respectively.

Substituting (14) into (13), we finally obtain

jjeðtÞjj �Mjju� /jjse�
a�d

2
t; t[ 0;

where

M¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

kmin

kmax þlmaxc2
eas� 1� as

a2

� �
þ 1

a

Xn

i¼1

q
ð2Þ
j hjq2

j hHj �hj


 �( )vuut �1:

Hence, the origin of the synchronization error system (3) is

globally exponentially stable, i.e., the networks (1) and (2)

achieve global exponential synchronization. This com-

pletes the proof. h

Remark 3.1 Theorem 3.1 provides some sufficient condi-

tions to ensure the exponential synchronization of systems (1)

and (2). Although the computation process is complex, the

conditions are easy to check, which are given in terms of LMI. In

order to showthe design of the estimate gain matricesK1 andK2;

a simple transformation is made to obtain the following result.

Corollary 3.1 Assume that assumptions ðH1Þ and ðH2Þ
hold. Then systems (1) and (2) are exponentially synchro-

nized if there exist four constants

a 2 ð0; gÞ; c[ 0; d 2 ½0; aÞ;M� 1, three n� n matrices

P[ 0; Y1; Y2, an n� n inverse matrix Q1; four n� n di-

agonal matrices Q2 [ 0;Ui [ 0; i ¼ 1; 2; 3; and an 2n�

2n matrix
T11 T12

H T22

� �
[ 0 such that

P11 P12 Y2 þ cTT
12 Q1Aþ U1R2 Q1B U3R6 Q1W

H P22 Y2 Q1A Q1B 0 Q1W

H H P33 0 U2R4 0 0

H H H �U1 0 0 0

H H H H �U2 0 0

H H H H H Q2H� U3 0

H H H H H H �Q2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

\0
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Ym

k¼1

max kkmax; 1
� �

�Medtm for all m 2 Zþ holds;

where

P11 ¼ aP� Q1C � CQT
1 þ Y1 þ YT

1 � U1R1 � U3R5;

P12 ¼ P� Q1 þ YT
1 � CQT

1 ;

P22 ¼ �Q1 � QT
1 þ c2 e

as � 1

a
T22;

P33 ¼ sT11 � cT12 � cTT
12 � U2R3;

H ¼ diag h1h
H

1 ; . . .; hnh
H

n

� �
;

kkmax denotes the maximum eigenvalue of matrix

P�1ðI � DkÞPðI � DkÞ; k 2 Zþ.

Remark 3.2 Let Ki ¼ Q�1
1 Yi in Theorem 3.1, then we can

obtain above result immediately. In particular, if P is a

positive definite diagonal matrix, then by Theorem 3.1 the

following result can be obtained:

Corollary 3.2 Assume that assumptions ðH1Þ � ðH3Þ
hold. Then systems (1) and (2) are exponentially synchro-

nized if there exist four constants

a 2 ð0; gÞ; c[ 0; d 2 ½0; aÞ;M� 1, an n� n inverse matrix

Q1, five n� n diagonal matrices

P[ 0;Q2 [ 0;Ui [ 0; i ¼ 1; 2; 3; and an 2n� 2n matrix

T11 T12

H T22

� �
[ 0 such that

P11 P12 Q1K2 þ cTT
12 Q1AþU1R2 Q1B U3R6 Q1W

H P22 Q1K2 Q1A Q1B 0 Q1W

H H P33 0 U2R4 0 0

H H H �U1 0 0 0

H H H H �U2 0 0

H H H H H Q2H�U3 0

H H H H H H �Q2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

\0

and

Ym

k¼1

max max
j2K

j1 � d
ðjÞ
k j2; 1

� �
�Medtm for all

m 2 Zþ holds;

where

P11 ¼ aPþ Q1ðK1 � CÞ þ KT
1 � C

� �
QT

1 � U1R1 � U3R5;

P12 ¼ P� Q1 þ KT
1 � C

� �
QT

1 ;

P22 ¼ �Q1 � QT
1 þ c2 e

as � 1

a
T22;

P33 ¼ sT11 � cT12 � cTT
12 � U2R3;

H ¼ diag h1h
H

1 ; . . .; hnh
H

n

� �
:

To compare Corollary 3.2 with some previous results

(e.g., [21, 38–40]), we derive the following remark:

Remark 3.3 In the literature [38–40], the impulsive con-

dition is assumed to be d
ðjÞ
k 2 ½0; 2� (or

(0,2)),j 2 K; k 2 Zþ: Obviously, it is just a special case of

Corollary 3.2. Our results can be applied to neural net-

works with large impulses. In addition, consider a special

case with Dk ¼ 0 and W ¼ 0; that is, systems (1) and (2)

are reduced to chaotic neural networks which have been

studied in [21] with control input uðtÞ ¼ KeðtÞ. They gave

some sufficient conditions that guaranteed the chaotic

synchronization of neural networks under the assumption

that the neuron activation functions are monotonous non-

decreasing and the time-varying delay is differentiable.

This implies that our development results have wider

adaptive range.

Next, we consider the asymptotic synchronization of

systems (1) and (2). First, condition ðH2Þ in Sect. 2 will be

properly relaxed by

ðH 0
2Þ The delay kernels hj; j 2 K; are some real value

nonnegative continuous function defined in ½0;1Þ and

satisfy
Z 1

0

hjðsÞds¼
:
hj\1; j 2 K

where hj denotes a positive constant.

Theorem 3.2 Assume that assumptions ðH1Þ and ðH 0
2Þ

hold. Then systems (1) and (2) are asymptotically syn-

chronized if there exist a constant c[ 0; a n� n matrix

P[ 0, an n� n inverse matrix Q1; four n� n diagonal

matrices Q2 [ 0;Ui [ 0; i ¼ 1; 2; 3; and an 2n� 2n matrix

T11 T12

H T22

� �
[ 0 such that

and
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and

0� d
ðjÞ
k � 2; j 2 K; k 2 Zþ;

where

P11 ¼Q1ðK1 � CÞ þ ðKT
1 � CÞQT

1 � U1R1 � U3R5;

P12 ¼P� Q1 þ ðKT
1 � CÞQT

1 ;

P22 ¼� Q1 � QT
1 þ c2sT22;

P33 ¼sT11 � cT12 � cTT
12 � U2R3;

H ¼ diagðh2
1; � � � ; h

2
nÞ:

Proof Consider the following Lyapunov–Krasovskii

functional:

Vðt;eðtÞÞ ¼ V1ðt;eðtÞÞþV2ðt;eðtÞÞþV3ðt;eðtÞÞþV4ðt;eðtÞÞ;

where

V1ðt;eðtÞÞ ¼ eTðtÞPeðtÞ;

V2ðt;eðtÞÞ ¼
Z t

0

Z u

u�sðuÞ

eðu� sðuÞÞ
c _eðsÞ

� �T
T11 T12

H T22

� �
eðu� sðuÞÞ

c _eðsÞ

� �
dsdu;

V3ðt;eðtÞÞ ¼ c2

Z 0

�s

Z t

tþu

_eTðsÞT22 _eðsÞdsdu;

V4ðt;eðtÞÞ ¼
Xn

j¼1

q
ð2Þ
j hj

Z 1

0

hjðuÞ
Z t

t�u

g2
3jðejðsÞÞdsdu:

The rest of the proof is similar to that of Theorem 3.1. Here

it is omitted.

Remark 3.4 So far, numerous synchronization schemes

for chaotic neural networks have been established in the

literature. We can find the recent papers [19–23, 27–33,

38–41] in this direction. However, the time-varying delays

appearing in [21, 22, 29, 30] are differential and their

derivatives are simultaneously required to be not greater

than 1 or finite and the delay kernels need satisfy (i)—(iii)

in [40]. Obviously, these requirements are relaxed in our

results. Moreover, the sufficient conditions established in

[40] ignore the information of delay kernels for synchro-

nization of chaotic neural networks.

Remark 3.5 In Li and Bohner [23] investigated the

exponential synchronization of chaotic neural networks

with mixed delays and impulsive effects via output cou-

pling with delay feedback. It can be applied to the case that

only output signals can be measured in neural networks. In

the present paper, via state coupling we investigate the

synchronization problem of chaotic neural networks. For

the different coupling strategies, state and output coupling,

different synchronization schemes have been derived and

they are complementary with each other.

4 Numerical examples

In this section, we will give two numerical examples

showing the effectiveness of the results obtained. First, we

consider a simple chaotic neural network with impulses,

see [40].

Example 4.1 Consider a two-dimensional chaotic neural

network with impulses ([40]):

_xðtÞ ¼ �CxðtÞ þ Af1ðxðtÞÞ þ Bf2ðxðt � 0:85ÞÞ þ IðtÞ; t 6¼ tk;

DxðtkÞ ¼ xðtkÞ � xðt�k Þ ¼ �Dkxðt�k Þ; k 2 Zþ;

xðsÞ ¼ /ðsÞ; s 2 ½�0:85; 0�;

8
><

>:

ð15Þ

where the initial condition /ðsÞ ¼ ð�0:5; 0:8ÞT ; s 2
½�0:85; 0�; f1 ¼ f2 ¼ 0:5ðjxþ 1j � jx� 1jÞ; IðtÞ ¼ ð0; 0ÞT ;
Dk ¼diagð0:1; 0:1Þ; tk ¼ 2k; k 2 Zþ, and parameter

matrices C, A and B as follows:

C ¼
1 0

0 1

� �
; A ¼

1 þ p
4

20

0:1 1 þ p
4

0

B@

1

CA;

B ¼
� 1:3p

ffiffiffi
2

p

4
0:1

0:1 � 1:3p
ffiffiffi
2

p

4

0
BB@

1
CCA:

To achieve synchronization, the response system is

designed as follows:

P11 P12 Q1K2 þ cTT
12 Q1Aþ U1R2 Q1B U3R6 Q1W

H P22 Q1K2 Q1A Q1B 0 Q1W

H H P33 0 U2R4 0 0

H H H �U1 0 0 0

H H H H �U2 0 0

H H H H H Q2H� U3 0

H H H H H H �Q2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

\0
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_yðtÞ ¼ �CyðtÞ þ Af1ðyðtÞÞ þ Bf2ðyðt � 0:85ÞÞ þ IðtÞ þ uðtÞ; t 6¼ tk;

DyðtkÞ ¼ yðtkÞ � yðt�k Þ ¼ �Dkyðt�k Þ; k 2 Zþ;

yðsÞ ¼ uðsÞ; s 2 ½�0:85; 0�;

8
><

>:

ð16Þ

where the initial condition uðsÞ ¼ ð0:3;�0:2ÞT ; s 2
½�0:85; 0�; uðtÞ ¼ K1eðtÞ þ K2eðt � 0:85Þ; K1 and K2 are

the controller gain matrices.

As shown in Fig. 1a–d, the state trajectories x, y and the

synchronization error e1; e2 between drive system (15) and

response one (16) without control input (i.e.,

uðtÞ ¼ ð0; 0ÞT ) does not approach to zero.

Let g ¼ 0:5; a ¼ 0:49 and c ¼ 2 and using the tools of

LMI toolbox, we obtain that the LMIs in Corollary 3.1

have feasible solution. Consequently, the controller gain

matrices K1 and K2 are designed as follows:

K1 ¼ Q�1
1 Y1 ¼

�272:3592 1:0268

8:2749 �143:8495

� �
;

K2 ¼ Q�1
1 Y2 ¼

0:7210 �0:0494

�0:0498 0:7212

� �
:

ð17Þ

0 20 40 60 80 100
−15

−10

−5

0

5

10

t

 x
1(t)

,  
y 1(t)

a
x1(t)

y1(t)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

t

 x
2(t)

,  
y 2(t)

b x2(t)

y2(t)

0 20 40 60 80 100
−10

−5

0

5

10

15

t

e 1(t)
,  

e 2(t)

c e1(t)

e2(t)

−10 −5 0 5 10 15
−1

−0.5

0

0.5

1

e1(t)

 e
2(t)

d

Fig. 1 State trajectories and error trajectories of drive system (15)

and response system (16) without control input
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Fig. 2 State trajectories and error trajectories of drive system (15)

and response system (16) with control input (17
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Note that

kkmax ¼ P�1ðI � DkÞPðI � DkÞ ¼ 0:81\1; k 2 Zþ:

Hence, one may choose M ¼ 1; d ¼ 0 in Corollary 3.1.

Then the systems (15) and (16) are said to be exponentially

synchronized. The simulation results are illustrated in

Fig. 2a–d in which the controller designed in (17) is

applied.

Remark 4.1 In fact, one may observe that matrices

Q2 [ 0;U3 [ 0 and constant a� 0 in Example 4.1 can be

chosen arbitrarily since the distributed delays are not

involved in system (15).

Remark 4.2 In [40], the authors have studied the chaotic

synchronization between derive system (15) and response

one (16) with control input uðtÞ ¼ Mðf ðyðtÞ � f ðxðtÞÞÞ:
Note in Example 4.1, a different scheme is given to

obtain the chaotic synchronization with control input

uðtÞ ¼ K1eðtÞ þ K2eðt � 0:85Þ: Moreover, when the

impulsive condition Dk ¼diagð�0:5; 2:5Þ; k 2 Zþ (abbrev.

DH

k ), let M ¼ 1; d ¼ 0:46ð\0:49Þ; by simple calculation,

we get kkmax � 2:2957\e2d; which implies that sys-

tems (15) and (16) still are exponentially synchronized

under control input uðtÞ ¼ K1eðtÞ þ K2eðt � 0:85Þ by

Theorem 3.1 (see Figs. 3a, b, 2c, d). However, it is

obvious that the sufficient conditions in [40] are not

satisfied and chaotic synchronization cannot be guaran-

teed for the case DH

k .

Remark 4.3 It should be noted that for the case DH

k ; the

corresponding error trajectories are the same as Fig. 2c, d

since the impulsive interval tk � tk�1 ¼ 2; k 2 Zþ.

Example 4.2 Consider the following chaotic neural net-

works with mixed delays and impulsive effects:
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Fig. 3 State trajectories of drive system (15) and response sys-

tem (16) with control input (17) under impulsive condition DH

k
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Fig. 4 State trajectories and error trajectories of drive system (18)

and response system (19) without control input
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where the initial condition /ðsÞ ¼ ð0:5;�0:5ÞT ; s 2
ð�1; 0�; fi ¼ 0:5ðjxþ 1j � jx� 1jÞ; i ¼ 1; 2; 3; sðtÞ ¼ 0:4;

hðsÞ ¼ 0:2e�s; IðtÞ ¼ ð0; 0ÞT ; Dk ¼diagð0:1; 0:2Þ; tk ¼
3k; k 2 Zþ; and parameter matrices C, A, B and W as

follows:

C ¼
1 0

0 1

� �
; A ¼

2:0 �0:1

�5:0 3:2

� �
;

B ¼
�1:3 �0:2

�0:2 �4:2

� �
; W ¼

�0:6 �0:6

4:6 �3:1

� �
:

To achieve synchronization, the response system is

designed as follows:

_yðtÞ ¼ �CyðtÞ þ Af1ðyðtÞÞ þ Bf2ðyðt � sðtÞÞÞ
þW

R t

�1 hðt � sÞf3ðyðsÞÞdsþ IðtÞ þ uðtÞ; t 6¼ tk;

DyðtkÞ ¼ yðtkÞ � yðt�k Þ ¼ �Dkyðt�k Þ; k 2 Zþ;

yðsÞ ¼ uðsÞ; s 2 ð�1; 0�;

8
>>><

>>>:
ð19Þ

where the initial condition uðsÞ ¼ ð�0:8; 0:2ÞT ; s 2
ð�1; 0�; uðtÞ ¼ K1eðtÞ þ K2eðt � 0:4Þ; K1 and K2 are the

controller gain matrices.

As shown in Fig. 4a–d, the state trajectories x, y and the

synchronization error e1; e2 between drive system (18) and

response one (19) without control input (i.e.,

uðtÞ ¼ ð0; 0ÞT ) does not approach to zero.

Let g ¼ 0:5; a ¼ 0:48 and c ¼ 3 and using the tools of

LMI toolbox, we obtain that the LMIs in Corollary 3.1 has

feasible solution. The controller gain matrices K1 and K2

are designed as follows:

K1 ¼Q�1
1 Y1 ¼

�24:5010 �6:9690

�5:6928 �301:1971

� �
;

K2 ¼Q�1
1 Y2 ¼

0:6073 0:1014

0:1125 2:1076

� �
:

ð20Þ

Note that

kkmax ¼ P�1ðI � DkÞPðI � DkÞ ¼ 0:81\1; k 2 Zþ:

Hence, one may choose M ¼ 1; d ¼ 0 in Corollary 3.1. Then

the systems (18) and (19) are said to be exponentially syn-

chronized. The simulation results are illustrated in Fig. 5a–d

in which the controller designed in (20) is applied.

_xðtÞ ¼ �CxðtÞ þ Af1ðxðtÞÞ þ Bf2ðxðt � sðtÞÞÞ þW
R t

�1 hðt � sÞf3ðxðsÞÞdsþ IðtÞ; t 6¼ tk;

DxðtkÞ ¼ xðtkÞ � xðt�k Þ ¼ �Dkxðt�k Þ; k 2 Zþ;

xðsÞ ¼ /ðsÞ; s 2 ð�1; 0�;

8
><

>:
ð18Þ
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Fig. 5 State trajectories and error trajectories of drive system (18)

and response system (19) with control input (10)
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5 Conclusions

In this paper, chaotic neural networks with mixed delays and

impulsive effects have been studied. By constructing suit-

able Lyapunov–Krasovskii functional and employing sta-

bility theory, some delay-dependent schemes are designed to

guarantee the exponential synchronization of neural net-

works, which are different from the existing ones and can be

applied to a wider range of applications. Moreover, the

obtained results are given in terms of LMIs, which can be

easily checked via MATLAB LMI toolbox. Finally, two

numerical examples and their simulations have been given to

verify the theoretical results. The idea in this paper can be

extended to the study of synchronization control of complex-

value neural networks, but it is difficult to be applied to

impulsive NNs with state-delay. More methods and tools

should be explored and developed in this direction.
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