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Abstract Manifold learning is a promising intelligent

data analysis method, and the manifold learning preserves

the local embedding features of the data in manifold

mapping space. Manifold learning has its limitations on

extracting the nonlinear features of the data in many

applications. For example, hyperspectral image classifica-

tion needs to seek the nonlinear local relationships between

spectral curves. For that, researchers applied the kernel

trick to manifold learning in the previous works. The

kernel-based manifold learning was developed, but still

endures the problem that the inappropriate kernel model

reduces the system performance. In order to solve the

problem of kernel model selection, we propose a manifold

framework of multiple-kernel learning for the application

of hyperspectral image classification. In this framework,

the quasiconformal mapping-based multiple-kernel model

is optimized based on the optimization objective equation,

which maximizes the class discriminant ability of data.

Accordingly, the discriminative structure of data distribu-

tion is achieved for classification with the quasiconformal

mapping-based multiple-kernel model.

Keywords Manifold learning � Multiple-kernel learning �
Hyperspectral image classification

1 Introduction

Manifold learning promotes dimensionality reduction of

intelligent data analysis. Dimensionality reduction is to

map a high-dimensional data into a lower-dimensional

space with linear transformation matrix, and the data in

low-dimensional space are easily analyzed. Manifold

learning preserves the nonlinear manifold and constructs a

smooth and graded mesh of data. Manifold-based learning

seeks the natural geometric dimensionality reduction of

data for the excellent classification performance. The most

popular methods are principal component analysis (PCA)

[1], linear discriminant analysis (LDA) [2], principal

curves [3], and principal surfaces [4]. The main manifold

learning methods include self-organizing mapping (SOM)

[5], visualization-induced SOM (ViSOM) [6], locally lin-

ear embedding (LLE) [7], Isomap [8], locality preserving

projection (LPP) [9, 10], and class-wise locality preserving

projection (CLPP) [11]. These methods have the different

criterions of dimensionality reduction as follows. Firstly,

SOM learns a nonparametric model with a topological

constraint of lines, squares, or hexagonal grids [12, 13].

Secondly, ViSOM constructs a smooth and graded mesh of

data as the discrete version of principal curve or surface.

Thirdly, LLE preserves the geometrical perspective, and

Isomap preserves the geometric relationships and neigh-

borhoods of the data. Finally, LPP locates both training

sample and the test data point, and CLPP preserves the

local structure of the original data together with the class

information.

Kernel CLPP is developed with kernel trick for feature

extraction [11]. Researchers present an alternative frame-

work of kernel LPP (KLPP) to develop a framework of

KPCA ? LPP [5, 8] for image for target recognition, and

other improved kernel-based LPP methods were presented

& Xiaodan Xie

xiexiaodanbeijing@126.com

Bohu Li

bohulibeijing@126.com

Xudong Chai

xudongchaibeijing@126.com

1 School of Automation Science and Electrical Engineering,

Beihang University, Beijing, China

2 Beijing Simulation Center, Beijing, China

123

Neural Comput & Applic (2017) 28:3429–3439

DOI 10.1007/s00521-016-2206-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2206-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2206-y&amp;domain=pdf


in the previous works [6, 13, 14]. As the kernel learning

methods, kernel manifold learning still endures the kernel

model selection. The geometrical structure of the data

distribution is determined by the kernel function. The

discriminative ability may be worse under the inappropri-

ate kernel selection [15–17]. Selecting the optimal

parameter does not change the geometry structure of data

distribution. So, some kernel optimization methods are

proposed to improve the performances of kernel learning

machines, for example, data-depend kernel [18], kernel-

adaptive support vector machine [19–21], sparse multiple-

kernel learning [22], large-scale multiple-kernel learning

[23], Lp-norm multiple-kernel learning [24].

As the above discussion, the kernel-based manifold

learning framework includes two stages: kernel mapping

and manifold projection. Multiple-kernel learning methods

aim to construct a kernel model with a linear combination

of fixed base kernels. Learning the kernel then consists of

learning the weighting coefficients for each base kernel.

There are two advantages: (1) multiple-kernel learning

combines the kernel functions with the different charac-

teristics of the data, so it preserves the nonlinear mapping

characteristics of kernel functions; (2) quasiconformal

kernel has its ability to change the data structure. So, we

propose a manifold framework of multiple-kernel learning

for hyperspectral image classification, and the framework

is to solve the problems of the determination of the kernel

function and its parameters of kernel manifold learning for

the practical application system.

2 Proposed scheme

2.1 Motivation

Kernel-based manifold learning is an effective method on

the applications of solving the nonlinear problems. As the

important indexes of system performances, recognition

accuracy or prediction accuracy is largely increased by the

nonlinear kernel trick. However, the performance of ker-

nel-based manifold learning system is largely influenced by

the function and parameter of kernel. Only optimizing the

parameters is not effective, because the data distribution is

not changing with the changing of the parameter of kernel

function. Researchers have proposed alternative kernel

function to solve this problem, for example, multiple kernel

and quasiconformal kernel. Firstly, multiple-kernel learn-

ing combines the kernel functions with the different char-

acteristics of the data. Accordingly, MKL combines many

features and is better to describe the data features than the

single feature extraction method. Multiple-kernel learning

preserves the nonlinear mapping characteristics of kernel

functions. And it shows the possibility of using different

kernel functions for kernel-based manifold learning. Sec-

ondly, quasiconformal kernel has its ability to change the

data structure. It is feasible to improve kernel-based man-

ifold learning through adjusting the quasiconformal.

In this paper, we improve the kernel-based manifold

learning through considering enough the advantages of

multiple-kernel learning and quasiconformal kernel learn-

ing. A manifold framework of multiple-kernel learning is

proposed for hyperspectral image classification. Based on

the traditional kernel-based manifold learning, the quasi-

conformal mapping-based multiple-kernel model is solved

with the constrained optimization. The framework maxi-

mizes the class discriminant ability of data in the nonlinear

kernel-based manifold feature space. The kernel-based

manifold learning system is improved.

2.2 Framework

In the section, we present a framework of kernel manifold

learning with one example of kernel locality preserving

projection (KLPP). KLPP preserves the local structure of

the data in a low-dimensional mapping space. The objec-

tive function of KLPP is defined as

min
Xn

i;j

zUi � zUj

���
���
2

SUij ð1Þ

where SUij is a similarity matrix which measures the like-

lihood of two data points in the Hilbert space

U Xð Þ ¼ U x1ð Þ;U x2ð Þ; . . .;U xnð Þ½ �. The similarity matrix

has the different meanings in the practical applications, for

example, in hyperspectral image, and the similarity matrix

describes the similarity of the different hyperspectral

curves. zUi ¼ wUð ÞTUðxiÞ is the low-dimensional represen-

tation of U xið Þ with the a projection vector wU. On the

similarity matrix SUij , many methods are proposed to con-

struct it in the previous work [11], and in this paper, we use

the following formulation:

SUij ¼
kðxi; xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðxi; xiÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðxj; xjÞ
p if xi and xj belong to the same class;

0 otherwise

8
<

:

ð2Þ

Accordingly, Eq. (1) is changed to

1

2

Xn

i;j

zUi � zUj

���
���
2

SUij ¼ bTK DU � SU
� �

Kb; ð3Þ

where K is kernel matrix calculated with the

training samples, i.e., K ¼ QTQ, and DU ¼ diag
P

j S
U
1j;
P

j S
U
2j; . . .;

P
j S

U
nj

h i
. The matrix DU measures the
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importance of the data points. The element of the similarity

matrix is larger, and the relationship of the data is more

important. The relationship describes the manifold struc-

ture of two training samples. The multikernels-based qua-

siconformal kernel performs higher than the single

quasiconformal kernel on the data distribution.

The hyperspectral image classification system classifies

the curves from the different training with the similarity

matrix. Accordingly, on kernel-based LPP, the constraint

ZUð ÞTDUZU ¼ 1 can be rewritten as bTKDUKb ¼ 1. So,

the minimization problem is transformed to

min
b

bTKLUKb

Subject to bTKDUKb ¼ 1
ð4Þ

where LU ¼ DU � SU. QR decomposition of matrix K is

considered as K ¼ PKPT , where P ¼ r1; r2; . . .; rm½ �, and
K ¼ diag k1; k2; . . .; kmð Þ, and r1; r2; . . .; rm are K’s

orthonormal eigenvectors corresponding to m largest non-

zero eigenvalue k1; k2; . . .; km.
As above discussion, the previous work [11] proposed

kernel locality preserve projections (KLPP) to improve

locality preserve projections (LPP) on the nonlinear feature

extraction. But KLPP still endures kernel model selection

and parameters, and the performance is influenced by the

kernel and parameters. Based on the basic framework of

KLPP [11], we propose a manifold framework of multiple-

kernel learning based on the quasiconformal mapping-

based multiple-kernel model, and the parameter optimiza-

tion method is proposed based on the optimization equa-

tion. The optimization objective equation is created to

maximize the class discriminant ability of data in the

nonlinear manifold feature space.

Secondly, as the excellent work [25], Lin presented

supervised kernel-optimized LPP (SKOLPP) for face

recognition and palm biometrics. The recognition perfor-

mance is to maximize the class separability in kernel

learning for feature extraction of image database. The

excellent performances were reported on ORL, Yale, AR,

and Palmprint databases. In this work, authors apply the

data-dependent kernel to SKLPP, and authors claimed that

the nonlinear features extracted by SKOLPP had larger

discriminative ability compared with SKLPP. Lin’s work

testified the feasibility of enhancing the recognition per-

formance with adjusting the kernel parameters of kernel

model. So, the Lin’s work aims to enhance the recognition

performance of manifold learning, and we also aim to

enhance the manifold learning recognition only with the

different ideas as follows. SKOLPP applied the single-

kernel method to supervised manifold learning, while our

work applies multiple-kernel models. From the viewpoint

of kernel optimization, quasiconformal multiple kernels

have more discriminative ability than single-kernel

learning.

So, the manifold framework of quasiconformal kernels

learning is defined as

min
b

bTKða�ÞLUKða�Þb

Subject to bTKða�ÞDUKða�Þb ¼ 1
ð5Þ

where the optimal projection b is the main projection

vector to construct the projection matrix, Kða�Þ is the kernel
matrix with the optimal a� of multikernels-based quasi-

conformal kernel kðx; x0Þ ¼ Kf k0;iðx; x0Þ; d; a
� �

, so in this

version, a� ¼ fd�; a�g, where d; a are adjusted for the

classification task.

The optimal projection b� is the manifold projection

vector, and a� is vector of the optimal kernel parameters. In

the computing stages, we solve the a� to obtain the optimal

kernel matrix K(a*) and then solve b� the under the optimal

kernel matrix K(a*). The dimensions of the two vectors are

determined by the practical applications. The optimal

projection b� will determine the feature vector after the

dimensionality reduction of the data. And then the vector

of optimal kernel parameters a� is determined by the vector

of expansion vector. The different number of the expansion

vectors has the heavy influence on optimization perfor-

mance of the learning system. The larger dimension

increases the large computation stress. Accordingly, the

computation efficiency is increased by the large-dimen-

sional vectors.

2.3 Procedural steps

In this section, as the proposed framework of the kernel-

based manifold learning, we solve the a� to obtain the

optimal kernel matrix K(a*) and then solve b� the under the
optimal kernel matrix K(a*). Accordingly, the procedure is

described two steps: Step 1. solving a� ¼ fd�; a�g; Step 2.

solving the optimal projection b�. The detailed information

is listed as follows.

Step 1. Solving a� ¼ fd�; a�g

Following the work in [11], we extend the quasicon-

formal kernel to quasiconformal multikernels. Different

from the single quasiconformal kernel, only the expansion

parameters need to be computed by constrained optimiza-

tion equation. While on the quasiconformal multikernels,

the weight parameter and expansion coefficient d; a are

computed through the optimization equation, and the

quasiconformal multikernels model has the higher ability

on describing the data distribution than the quasiconformal

kernel. According to the definition of the quasiconformal

kernel [11], the geometrical structure of the data in the

Neural Comput & Applic (2017) 28:3429–3439 3431

123



kernel mapping space is determined by the expansion

coefficients with the determinative XVs and the free

parameter. The structure is the data distributions in the

empirical mapping space, and the kernel mapping space is

empirical mapping space. The multikernels-based quasi-

conformal kernel has the higher ability on describing the

data distribution than the quasiconformal kernel. The

quasiconformal multikernels model is defined as

kðx; x0Þ ¼ f ðxÞ
Xm

i¼1

dik0;iðx; x0Þf ðx0Þ; ð6Þ

where k0;iðx; x0Þ is the i th basic kernel of polynomial kernel

and Gaussian kernel, and m is the number of basic kernels

for combination, ai � 0 is the weight for the ith basic kernel

function, qð�Þ is the factor function defined by

f ðxÞ ¼ a0 þ
Pn

i¼1 aik0ðx; aiÞ, where k0ðx; aiÞ ¼ e�c x�aik k2 ,

ai 2 Rd, ai is the coefficient for the combination, fai; i ¼
1; 2; . . .; ng are selected by the training samples. The

extended definition will not influence the characters of

kernel matrix, and kðx; x0Þ satisfies the Mercer condition.

Supposed that d ¼ ½d1; d2; . . .; dm�, a ¼ ½a0; a1; a2; . . .; an�,
the quasiconformal multikernels model is defined as

kðx; x0Þ ¼ Kf k0;iðx; x0Þ; d; a
� �

; ð7Þ

where d; a are the adjusted for the classification task. So,

the jointly convex formulation can be described as

max
d;a

FcðK0; d; aÞ

Subject to dk k ¼ 1; ak k ¼ 1;
ð8Þ

Fcð:Þ measures the class discriminative ability, and we can

solve d; a with the two stages, one is to solve d, and second

is to solve a. In the first stage, the centered kernel align-

ment [26] is applied to create the objective optimization

function, and in the second stage, Fisher-based and Margin-

based optimization function is created to solve a.

Step 1.1. Optimize the weights of multiple kernels d

The parameter vector d ¼ ½d1; d2; . . .; dm� is computed

with centered kernel alignment [26] as follows.

maxOcðKðCÞ
0 ;K�Þ

Subject to K
ðCÞ
0 ¼

Xm

i¼1

diK
ðCÞ
0;i ; trðK0Þ ¼ 1; di � 0; 8i

ð9Þ

where OcðKðCÞ
0 ;K�Þ is the optimization objective function,

and there are many methods to construct this equation,

where K�ðx; x0Þ ¼ 1 if y ¼ y0

�1=ðc� 1Þ if y 6¼ y0

�
is the ideal

target kernel, tr denotes the trace of a matrix. K
ðCÞ
0 ¼

I � 11T

m
½ �K0 I � 11T

m
½ � is the centered kernel matrix of K0, I is

the identity matrix, 1 is a vector with all entries equal to 1.

Accordingly, K
ðCÞ
0;i ¼ I � 11T

m
½ �K0;i I � 11T

m
½ � is the centered

kernel matrix of K0;i, i ¼ 1; 2; . . .;m. The objective func-

tion OcðKðCÞ
0 ;K�Þ ¼ K

ðCÞ
0

;K�h i
F

K�
Ck k

F
K

ðCÞ
0k k

F

, K�
C is the centered kernel

matrix of K�, where �; �h iF is the Frobenius norm

between two matrices, i.e., D;Eh iF¼
Pm

i¼1

Pm
j¼1 dijeij ¼

trðDETÞ. K�
C

�� ��
F

is a unchanged value in the practical

machine learning, while the trace constraint is to fix the

scale invariance of KA. So, in the practical applications,

we can consider the denominator K�
C

�� ��
F
as the unchanged

value for the classification task. So, in the optimization

equation of maximizing the numerator K
ðCÞ
0 ;K�

D E

F
, and it

can be removed during solving the equation.

Based on this, centered kernel alignment-based opti-

mization problem can be transformed into a quadratic

programming (QP) problem [27, 28], which is effectively

solved with OPTI toolbox [26]. Supposed that

d ¼ ½d1; d2; . . .; dm�, the optimized solution d� can be

obtained through solving the following QP problem [26],

min vTTv� 2vTg

Subject to vi� 0; 8i
ð10Þ

where d� ¼ v�= d�k k2, g ¼ K
ðCÞ
0;1 ;K

�
D E

F
K

ðCÞ
0;2 ;K

�
D E

F
;

h

. . .; K
ðCÞ
0;m ;K

�
D E

F
�T , and T is a symmetric matrix defined by

Tij ¼ K
ðCÞ
0;i ;K

ðCÞ
0;j

D E

F
; i; j ¼ 1; 2; . . .;m.

Step 1.2. Optimize the coefficients of quasiconformal

kernel a

Fisher-based and margin-based optimization function is

created to solve a. In the practical application, we can

choose any method. The detail procedure is defined as

follows.

Based on Fisher criterion [11], this step is to optimize

the coefficients a ¼ ½b1; b2; . . .; bn� of the quasiconformal

multikernels based on Fisher criterion. Fisher criterion is to

measure the class discriminative ability of the different

class data, and this equation is increasing with the

increasing of the class ability of data. The function is

defined as

J
Fisher

að Þ ¼ ðaTETB0EaÞ=ðaTETW0EaÞ ð11Þ

where ETB0E and ETW0E are constant matrices of train-

ing samples, and the objective function based on Fisher

criterion is to measure the ability of the class discriminant.

Then
oJ

Fisher
ðaÞ

oa ¼ 2
J22
ðJ2ETB0E� J1E

TW0EÞa, where JFisher

is solved through solving the eigenvalue problem of

ðETW0EÞ�1ðETB0EÞ, and the eigenvector is the expansion

coefficients a. However, in many applications, the matrix
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ðETW0EÞ�1ðETB0EÞ is not symmetrical, or the matrix

ETW0E is singular. Supposed that learning rate e nð Þ ¼
e0ð1� n

N
Þ of the initialized learning rate e0, the cur-

rent iteration n, the total iterations N. The optimal a is

solved as

aðnþ1Þ ¼ aðnÞ þ e
1

J2
ETB0E� JFisher

J2
ETW0E

� �
aðnÞ ð12Þ

Based on maximum margin criterion [11], the objective

function is defined as

max aT 2~SB � ~ST
� �

a

Subject to aTa� 1 ¼ 0
ð13Þ

The optimal expansion coefficient a� is the eigenvector of

2~SB � ~ST.
~SB ¼ XBX

T
B

~ST ¼ XTX
T
T

�
,

XT ¼ ðY0 �
1

m
Y01

T
m1mÞE

XB ¼ Y0M
TE

(
,

M ¼ M1 �M2 and M1, M2 are defined as

M1 ¼

1
ffiffiffiffiffiffi
m1

p
	 


m1�m1

0m1�m2
� � � 0m1�mc

0m2�m1

1
ffiffiffiffiffiffi
m2

p
	 


m2�m2

� � � 0m2�mc

..

. ..
. . .

. ..
.

0mc�m1
0mc�m2

� � � 1
ffiffiffiffiffiffi
mc

p
	 


0mc�mc

2
666666666664

3
777777777775

and

M2 ¼

Pc

j

ffiffiffiffiffi
mj

p

m
0 � � � 0

0

Pc

j

ffiffiffiffiffi
mj

p

m

..

. ..
. . .

. ..
.

0 0 � � �

Pc

j

ffiffiffiffiffi
mj

p

m

2

66666666666666664

3

77777777777777775

:

Y0 ¼ K0P0K
�1=2
0 ; K0 ¼ P0K

T
0Y

T
0 , and K0 is the basic

matrix. So

traceðSBÞ ¼ aTXT
BXBa

traceðSTÞ ¼ aTðXTÞTXTa

�
ð14Þ

Supposed that ~SB ¼ XBX
T
B and ~ST ¼ XTX

T
T and then

DisðaÞ ¼ trace aT 2~SB � ~ST
� �

a
� �

ð15Þ

So, maximizing DisðaÞ is equal to obtain the objective

function through calculating eigenvalue equation of matrix

2~SB � ~ST, the column vector of P is the eigenvalue matrix

of 2~SB � ~ST, the eigenvalue is 2K - I.

Step 2. solving the optimal projection b�

After computing, Kða�Þ is computed by the kernel matrix

with the optimal a� of multikernels-based quasiconformal

kernel kðx; x0Þ ¼ Kf k0;iðx; x0Þ; d; a
� �

. Then we solve the

manifold optimization (5), min
b

bTKða�ÞLUKða�Þb, subject to

bTKða�ÞDUKða�Þb ¼ 1, where the optimal projection b is the

main projection vector to construct the projection matrix.

QR decomposition of matrix Kða�Þ is considered as

Kða�Þ ¼ PKPT , where P ¼ r1; r2; . . .; rm½ �, and

K ¼ diag k1; k2; . . .; kmð Þ, and r1; r2; . . .; rm are Kða�Þ’s
orthonormal eigenvector corresponding to m largest non-

zero eigenvalue k1; k2; . . .; km.

2.4 Procedural flowchart

The procedure is shown in Fig. 1. The procedure includes

three procedures of multiple kernels optimization, training

and testing for general kernel-based manifold learning

application. This proposed procedure costs more time to

solve the optimization equation than KLPP without opti-

mizing kernel function. But the kernel optimization pro-

cedure can be implemented off-line. In the practical

applications, the kernel optimization procedure is imple-

mented offline, and in the application it needs the addi-

tional less time consumption. So, it has the little influence

on the learning efficiency in the online application. The

optimization equation is solved by iteration method and

eigenvalue decomposition method, and they are the most

popular methods of solving the optimization equation.

Other methods also are the one of the two kinds of opti-

mization method.

The advance beyond the state-of-the-art comes from the

two points. (1) A manifold framework of quasiconformal

multikernels learning is proposed for hyperspectral data on

dimensionality reduction. Compared to the traditional ker-

nel-based manifold learning, the proposed quasiconformal

multikernels manifold learning achieves the class discrim-

inant ability of data for the data classification. (2) The

quasiconformal mapping-based multiple-kernel model is

proposed for kernel mapping, and the model can adaptively

change the kernel mapping structure of data distribution.

The proposed kernel-based manifold learning has the more

ability of describing the data mapping than the traditional

kernel and data-dependent kernel model, because the data

distribution structure can be adaptively adjusted.

2.5 Discussion

The proposed kernel-based manifold learning is based on

the kernel-based machine. The theoretical bounds also

come from quasiconformal multikernels. The application

system is also to optimize accuracy in predicting the test
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data based on train test. Supposed that the training and test

sets have the same size of data set, we can show a per-

formance guarantee that holds with high probability over

uniformly chosen training/test partitions.

For a function f : v ! R, the proportion of errors on the

test data of a threshold version of f can be written as

erðf Þ ¼ 1

n
nþ 1� i� 2n : yif ðxiÞ� 0f gj j ð16Þ

where the kernel classifiers were obtained by thresholding

kernel expansions of the form, with the bounded norm,

wk k2¼
X2n

i;j¼1

aiajkðxi; xjÞ ¼ aTKa� 1

c2
ð17Þ

where K is the quasiconformal multikernel.

It also holds with high probability over the choice of the

training and test data because permuting the sample leaves

the distribution unchanged. Here we provide an upper

bound on the error of a kernel classifier on the test data

over the training data of a certain margin cost function with

properties of the kernel matrix. In this paper, we focus on

the 1-norm soft margin classifier after manifold-based

feature extraction [26].

For every c[ 0 with probability at least 1� d over

the data xi; yið Þ, every function f 2 Fk has erðf Þ no more

than

1

n

Xn

i¼1

maxð1� yif ðxiÞÞ þ
1ffiffiffi
n

p 4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logð1=dÞ

p
þ

ffiffiffiffiffiffiffiffiffi
1ðkÞ
nc2

s !

ð18Þ

where 1ðKÞ ¼ Emax
K2K

rTKr with the expectation over r.

So,

1ðKÞ ¼ cEmax
K2K

rT
K

traceðKÞ r ð19Þ

then

1ðKÞ� cmin m; nmax
j

kj
traceðKjÞ

� �
ð20Þ

where kj is the largest eigenvalue of Kj. So, the test error is

bounded by a sum of the average over the training data of a

margin cost function plus a complexity penalty term that

depends on the ratio between the trace of the quasicon-

formal multikernel kernel matrix and the squared margin

parameter, c2.

Constructing 
objective function

Solving optimized parameter 

Constructing optimized 
kernel

Learning kernel-based 
manifold model

Optimized  kernel-based 
manifold learning

Objective function

Optimized parameters

Optimized kernel

Optimized kernel-based 
feature extractor/recognizer

Training samples

Test samples

Learning 
Quasconformal 

multikernels 

Results

Procedural parameters

Training manifold 
learning machine

Testing manifold 
learning machine

Fig. 1 Procedure of multiple

kernels-based manifold learning
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3 Experimental results

3.1 Experimental and procedural parameters

setting

We evaluate the performances on the databases, and the

recognition accuracy is evaluated as the performance

index. The average recognition accuracy of ten times of

experiments is used to evaluate the classification perfor-

mance. The experiments are implemented in the MATLAB

platform (Version 6.5) with the computer of Pentium

3.0 GHz, 512 MB RAM. On the selection of the proce-

dural parameters, the cross-validation method is applied to

select the procedure parameters. We choose the kind of

basic kernel functions for the different application systems,

and the parameter of basic kernel is chosen with cross-

validation method.

3.2 Performance on ORL and Yale databases

In this section, some experiments on YALE and ORL

databases were implemented to evaluate the unified

framework of multiple kernels manifold learning. YALE

database from the YALE Center for Computational Vision

and Control contains 165 grayscale images of 15 individ-

uals, and ORL database was developed at the Olivetti

Research Laboratory that consisted of 400 images from

40 individuals. The original ORL face images of 112 9

92 pixels are resized to 48 9 48 pixels. On the Yale

database, we divide the database into 5 sub-databases

through selecting randomly 5 samples as the training set,

and the rest samples as the test sample. The sub-datasets

are denoted with T1, T2, T3, T4, and T5. We implement

LPP [11], CLPP [11], KCLPP [11], and our method to

evaluate the performance, and the experimental results are

shown in Table 1, and the procedural parameters were

chosen through the cross-validation. Similarly, on ORL

database, the quasiconformal kernel-based manifold

learning methods are comprehensively evaluated compared

with LPP, CLPP, and KCLPP. As shown in Table 2, the

proposed framework achieves the highest recognition

accuracy because the data structure is adaptively changed

for the input data.

Some evaluations are implemented on the randomly

selection, and the experimental result is shown in Table 3.

The 10 times of experiments are implemented, and aver-

aged recognition accuracy is considered as the index of

performance. As experimental results, the proposed kernel

optimization method performs better than other methods.

3.3 Application to hyperspectral image classification

The framework of hyperspectral image classification sys-

tem is shown in Fig. 2. Hyperspectral imagery is the most

popular remote sensing technology on satellite platform,

with the prospective applications in military monitoring,

energy exploration, geographic information, and so on. The

development of hyperspectral instruments with hundreds of

contiguous spectral channels promotes collecting remote

imagery data. The size of the data is largely increased with

the high resolutions of spectral and space. Two problems

occur in the practical applications: (1) the bandwidth of the

communication channel limits the transmission of the full

hyperspectral image data for the further processing and

analysis on the ground; (2) the demand of the real-time

processing for some applications. Data compression is

feasible to solve the transmission problem, but is still

endure the limitation on real-time analysis. So, based on

the real-time image analysis, machine learning-based data

analysis technology is feasible and effective to produce one

image from the full band of hyperspectral images. The

classification is to classify the spectrum curve based on the

spectrum data of each object. The hyperspectral data

machine learning system is implemented on the satellite

platform. After the hyperspectral data collection, each pixel

is classified and denoted to the different objects based on

the spectrum database. The spectrum data in database are

collected in advance, so it has inconsistency between the

Table 1 Recognition performance on Yale databases (%)

Datasets LPP [11] CLPP [11] KCLPP [11] Our method

T1 86.33 90.00 94.44 95.67

T2 90.67 91.11 92.22 93.33

T3 88.56 86.67 93.33 94.44

T4 88.89 90.00 93.33 92.33

T5 95.56 93.33 96.67 97.44

Table 2 Recognition performance on ORL databases (%)

Datasets LPP [11] CLPP [11] KCLPP [11] Our method

T1 95.25 96.25 96.25 98.25

T2 93.75 94.25 95.25 97.25

T3 95.25 97.50 98.25 99.25

T4 93.50 94.25 96.25 97.25

T5 91.25 92.25 96.25 97.00

Table 3 Recognition performance on ORL and Yale databases on

randomly selection (%)

Datasets LPP [11] CLPP [11] KCLPP [11] Our method

ORL 94.55 95.35 95.75 98.15

YALE 86.33 91.23 93.44 95.67
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spectrums with the data collection. The inconsistency can

be considered the nonlinear changing. The relationship

between spectral curves is the classical nonlinear rela-

tionship. So the classification is the nonlinear and complex

classification problem. Researches show that kernel learn-

ing method is not effective to hyperspectral sensing data.

Kernel-based manifold learning is applied to hyperspectral

sensing data classification.

Based on the application framework, we evaluate the

proposed algorithm on Indian Pines and Washington, D.C.

Mall databases. The two databases have the various spec-

tral and spatial resolutions under the different environ-

ments of remote sensing.

Indian Pines dataset is collected based on airborne

platform on June 1992 and has the various spectral and

spatial resolutions, and the spectral curves denote the dif-

ferent remote sensing environments. The airborne visible/

infrared imaging spectrometer (AVIRIS) data cube has 224

bands of spectral resolution, and it has the spatial resolu-

tion of 20 m per pixel. In our experiments, we removed the

noisy and water–vapor absorption bands and 200 bands of

images are used in the experiments. The whole scene is

consists of 145 9 145 pixels, and 16 classes of interested

objects rang the size from 20 to 2468 pixels, but only 9

classes of objects are selected in the experiments. Some

examples are shown in Fig. 3.

D.C. Mall data were acquired under the airborne with

hyperspectral digital imagery collection experiment

(HYDICE) sensor on August 23, 1995. The image has

1280 9 307 pixels, and it has the spatial resolution of

1.5 m, and 210 spectral bands are in the 0.4–2.4-lm region.

In the experiments, several bands influenced by the atmo-

spheric absorption are ignored, and the rest 191 bands are

implemented in the experiments. The image is resized to

the size of 211 9 307 including 7 classes of land-covers

namely roof, grass, street, trees, water, path and shadow.

Some examples are shown in Fig. 4.

Firstly, we evaluate the proposed algorithm compared

with support vector classifier (SVC), kernel sparse repre-

sentation classifier (KSRC) on data classification. On the

basic kernel functions, we compare them in the practical

hyperspectral image classification. We test the single-

kernel and quasiconformal multikernels for kernel classi-

fiers on SVC and KSRC, that is, PK-SVC: polynomial

kernel-SVC, GK-SVC: Gaussian kernel-SVC, QMK-

SVC: quasiconformal multikernels-based SVC, PK-KSRC:

Hyperspectral Data 
Preprocessing

Band Selecting

Spectrum 
Dataset Spectrum Machine Learning  

Image Pixel Labeling 

Performance Evaluation

Objects

Hyperspectral images

Band-compressed 
Hyperspectral images

Classified Spectrum

Labeled image

Algorithm performance

Recognition Accuracy

Object 
spectrum

Spectrum labels

Data Preprocessing

Hyperspectral 
image 

Classification

System Evaluation

Fig. 2 Application framework of kernel-based manifold learning
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polynomial kernel-KSRC, GK-KSRC: Gaussian kernel-

KSRC, QMK-KSRC: quasiconformal multikernels-based

KSRC. For the quantitative comparison, we implement

some experiments using polynomial kernel-KCLPP (PK-

KCLPP), Guassian kernel (GK-KCLPP), multiple kernel

(MK-KCLPP), and quasiconformal multiple kernel-based

KCLPP (QMK-KCLPP), PK-SVC, GK-SVC, QMK-SVC,

PK-KSRC, GK-KSRC, and QMK-KSRC. The averaged

accuracy is to evaluate the performance of the algorithms,

and the experimental results are shown in Tables 4 and 5.

On the SVC, QMK-SVC performs better than PK-SVC and

GK-SVC. On the KSRC, QMK-KSRC outperforms PK-

KSRC and GK-KSRC. In particular, the polynomial kernel

performs better than Gaussian kernel under SVC and

KSRC classifiers. On selection of the basic kernels for

multiple-kernel learning, we select the Gaussian kernel and

polynomial kernel as the basic kernels.

Moreover, we also implement some experiments on

D.C. Mall data to evaluate the proposed framework

including polynomial kernel-KCLPP (PK-KCLPP), Guas-

sian kernel (GK-KCLPP), multiple kernel (MK-KCLPP),

and quasiconformal multiple kernel-based KCLPP (QMK-

KCLPP). The experimental results are shown in Table 6.

The experimental results show that multiple kernels-based

manifold learning performs better than the basic kernels,

and quasiconformal multiple kernel-based manifold out-

perform learning performance better than multiple version.

So, it is feasible to apply quasiconformal kernel model to

improve the kernel manifold learning.

3.4 Discussion

As experimental results on the performance of manifold

learning and other machine learning based on quasicon-

formal kernel and quasiconformal multiple kernels, we can

conclude that, the quasiconformal kernel-based manifold

learning performs better than basic kernel-based manifold

learning, and quasiconformal multiple kernels outperform

Fig. 3 One example of Indian Pines data in He & Li [29]. a Three band false color composite, b spectral signatures

Fig. 4 One example from D.C. Mall data in He & Li [29]. a Three band false color composite, b spectral signatures
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other methods. Kernel trick is an effective method to solve

the nonlinear problems of machine learning, and the

recognition accuracy and prediction accuracy are largely

increased with the nonlinear kernel mapping. There is no

any kernel which is adaptive to all applications of detecting

intrinsic information for the complicate sample data. The

multiple kernel-based manifold learning has different ker-

nel representations for the different feature subspaces, and

multiple-kernel learning is a feature extraction method of

combining many features. So, the multikernel-based man-

ifold learning performs better than the single feature

extraction on the data. The proposed framework is to solve

the selection of function and parameter of kernel, which

have heavy influences on the performance of kernel-based

learning system. Quasiconformal single-kernel structure

changes the data structure in the kernel empirical space.

And then, quasiconformal multiple kernels are combined to

more precisely characterize the data for improving per-

formance on solving complex visual learning tasks, so the

proposed framework outperforms others in the different

datasets.

Moreover, we implement many experiments with the

recognition accuracy, and we do not consider the efficiency

in the experiments. The procedure includes three proce-

dures of multiple kernels optimization, training and testing

for general kernel-based manifold learning application. The

optimization procedure costs more time, but the kernel

optimization procedure can be implemented off-line. So

the kernel optimization-based manifold learning does not

cost much time on the online application. In the training

steps, the optimal parameters are solved through iteration

optimization, and the procedure will cost much time. While

in the test stage, it needs the additional less time con-

suming. So, it has the little influence on the learning

efficiency.

4 Conclusion

This paper presents a novel framework of manifold

multiple-kernel learning, and it applies quasiconformal

multiple-kernel model to increase the data description

ability. Some experiments are implemented to evaluate

the multiple kernel and quasiconformal kernel. The pro-

posed framework performs better compared with the tra-

ditional methods. The framework preserves the good

structure of data distribution for classification with the

quasiconformal mapping-based multiple-kernel model.

And the model has the maximum class discriminant

ability of data in the nonlinear manifold feature space. So,

the proposed method is a promising dimensionality

reduction method on data processing, especially on

hyperspectral image processing. The proposed manifold

learning is a promising dimensionality reduction method

on data processing, especially on hyperspectral data pro-

cessing, and it preserves the local embedding. The pro-

posed framework can be applied to many applications, for

example, image retrieval, video classification, speech

recognition, and so on.

Table 4 Performance of

manifold learning compared

with SVC on the Indian Pines

data (%)

Class 1 2 3 4 5 6 7 8 9 10 11 12

PK-SVC 49.3 58.7 96.4 39.2 65.8 93.6 62.9 85.3 100 65.8 72.3 58.4

GK-SVC 78.0 73.6 99.1 76.9 80.5 97.1 79.7 89.8 99.7 83.6 86.0 80.7

QMK-SVC 78.3 80.4 99.9 82.5 90.2 99.2 82.7 98.5 100 86.8 90.2 84.4

KCLPP 76.2 71.4 97.3 74.1 77.4 95.5 76.3 87.1 96.5 81.1 84.6 78.8

QMK-KCLPP 79.3 81.1 98.9 83.2 89.9 98.5 84.7 98.8 100 88.7 90.6 84.8

Table 5 Performance of

manifold learning compared

with KSRC on the Indian Pines

data (%)

Class 1 2 3 4 5 6 7 8 9 10 11 12

PK-KSRC 51.8 59.6 96.1 49.1 78.5 93.8 62.8 84.7 100 67.5 75.2 60.7

GK-KSRC 77.8 76.4 99.1 75.5 79.0 97.4 82.7 88.7 100 83.9 86.3 81.1

QMK-KSRC 79.4 83.5 99.8 83.4 92.6 99.4 82.8 98.3 100 87.8 91.0 85.6

KCLPP 78.9 77.5 99.1 76.5 79.0 98.4 83.7 89.7 100 84.9 87.3 82.1

QMK-KCLPP 79.9 83.7 99.8 83.7 92.9 99.9 83.3 99.1 100 88.8 92.0 86.6

Table 6 Performance on the D.C. Mall data (%)

Class PK-KCLPP GK-KCLPP MK-KCLPP QMK-KCLPP

1 76.23 84.83 90.38 91.12

2 95.45 94.27 96.62 97.45

3 90.24 94.35 95.86 96.67

4 94.45 95.22 95.57 96.35

5 99.67 99.39 97.49 98.25

6 99.22 99.23 97.93 98.27

7 93.23 94.28 95.64 96.83
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