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Abstract The transportation problem (TP) is an impor-
tant supply chain optimization problem in the traffic
engineering. This paper maximizes the total profit over a
three-tiered distribution system consisting of plants, dis-
tribution centers (DCs) and customers. Plants produce
multiple products that are shipped to DCs. If a DC is used,
then a fixed cost (FC) is charged. The customers are sup-
plied by a single DC. To characterize the uncertainty in the
practical decision environment, this paper considers the
unit cost of TP, FC, the supply capacities and demands as
Gaussian type-2 fuzzy variables. To give a modeling
framework for optimization problems with multifold
uncertainty, different reduction methods were proposed to
transform a Gaussian type-2 fuzzy variable into a type-1
fuzzy variable by mean reduction method and CV reduc-
tion method. Then, the TP was reformulated as a chance-
constrained programming model enlightened by the credi-
bility optimization methods. The deterministic models are
then solved using two different soft computing tech-
niques—generalized reduced gradient and modified parti-
cle swarm optimization, where the position of each particle
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is adjusted according to its own experience and that of its
neighbors. The numerical experiments illustrated the
application and effectiveness of the proposed approaches.
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1 Introduction

A transportation problem (TP) is often associated with
additional costs (termed as fixed costs) besides trans-
portation cost. The fixed-charge transportation problem,
first proposed by Hirsch and Dantzig [1], considers two
types of costs (say direct cost and fixed charge). These
fixed-charge costs may be due to permit fees, toll charges,
etc. Since the introduction of TPs by Hitchcock [2], there
have been lots of developments in this area by several
researchers. Chanas et at. [3] formulated and solved TPs
with fuzzy supply and demand values (cf. Pakdaman et al.
[4], Mortazavi et al. [5]). Recently, Fegad et al. [6] found
optimal solutions to TPs using interval and triangular
membership functions. It is sometimes difficult to deter-
mine the exact membership grades to (deterministic) rep-
resent an uncertain parameter by ordinary fuzzy set, and as
a result, membership function itself is again represented by
a fuzzy set (FS). Such a fuzzy set is called type-2 fuzzy set
(T2FS). Due to fuzziness in membership function, the
computational complexity is very high to deal with T2FS.
For a T2FS, normally complete defuzzyfication process
consists of two parts—type reduction and defuzzyfication
proper. Type reduction is a procedure by which a T2FS is
converted to the corresponding type-1 FS (i.e., ordinary
fuzzy set), known as type-reduced set (TRS). Karmik and
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Mendel [7] proposed a centroid-type reduction method to
reduce interval T2FS to T1FS. But it is very difficult to
apply this method to a generalized T2FS. Some researchers
(cf. Liu [8], Chen and Chang [9], Malin and Castillo [10],
Yang et al. [11, 12], Liu et al. [13], Tavoosi et al. [14],
Zoveidavianpoor et al. [15], Tavoosi and Badamchizadeh
[16], etc.) have developed type reduction strategies for
continuous generalized T2FS. Coupland [17] proposed a
geometric defuzzification method for T2FSs by converting
a T2FS into a geometric T2FS. Recently, Qin et al. [18]
introduced three kinds of reduction methods called opti-
mistic CV, pessimistic CV and CV reduction (critical
values) of regular fuzzy variables. Figueeroa-Garce and
Hernndez [19] first considered a TP with interval type-2
fuzzy demands and supplies. Recently, Kundu et al. [20]
have solved fixed-charge transportation problem (FCTP)
with type-2 fuzzy parameters introducing an interval
approximation method of continuous type-2 fuzzy vari-
ables. Abdullah and Najib [21] have developed a new type-
2 fuzzy set of linguistic variables for the fuzzy analytic
hierarchy process. But they did not consider the variables
as Gaussian type-2 type. It requires a different reduction
method for reduction to type-1 fuzzy set (T1FS) and then a
different defuzzification method (Jana et al. [22]).

Due to the complex environment during the trans-
portation activities, some significant parameters in the solid
transportation problem are always treated as uncertain
variables to meet the practical situations. For instance, if
one needs to make a transportation plan for the next month,
the supply capacity at each source, the demand at each
destination, price of product, selling price and the con-
veyance capacity are often required to be estimated by
professional judgments or probability statistics because of
no precise a priori information. In this case, it is more
suitable to investigate this problem by using fuzzy or
random optimization methodologies. For this purpose,
type-2 fuzzy variable is introduced in STP.

Particle swam optimization (PSO) is a heuristic opti-
mization technique based on swarm intelligent that is
inspired by the behavior of bird blocking (cf. Kennedy and
Eberhat [23]). Like GA, a PSO normally starts with a set of
solutions (called swarm) of the decision-making problem
under consideration. Individual solutions are called parti-
cles, and food is analogous to optimal solution. The par-
ticles are flown through a multidimensional search space,
where the position of each particle is adjusted according to
its own experience and that of its neighbors. Many studies
have been made to improve modified particle swam opti-
mization (MPSO) algorithm in continuous optimization (cf.
Pedrycz et al. [24], Sadeghi et al. [25], Koulinas et al. [26]).

In this paper, we consider two fixed-charge transporta-
tion problems for a two-stage supply chain network in
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Gaussian fuzzy type-2 environment. The problems are
formulated as maximization of profit in transporting the
units from a manufacturing center to some DCs and from
DC:s to business centers to satisfy the demands of retailers.
Here, fixed-charge costs, unit transportation costs, avail-
abilities and demands are expressed by Gaussian type-2
fuzzy numbers. The T2FS FCTPs are reduced to crisp
FCTP by CV reduction following Qin et al. [18]. The
proposed models are solved by soft computing techniques
GRG and MPSO. Optimum results obtained from two
methods are compared. Sensitivity analyses are carried out
on the basis of different optimistic labels of decision
maker.

In this paper, the transportation problem with fuzzy
information, we have two motivations to explore this
problem within the framework of Gaussian type-2 fuzzy
(GT2F) set theory. Firstly, it is more general and common
to treat some critical parameters as GT2F variables because
of the practical difficulties of determining their crisp
membership functions. Secondly, when some parameters
are assumed to be type-2 fuzzy variables, designing an
effective method to handle the optimization problem is also
a challenging issue. With this concern, we are particularly
interested in how to formulate the transportation model and
then design effective algorithms to produce the optimal
transportation strategies. To this end, this study proposes
two new defuzziness methods for type-2 fuzzy variables
via mean reduction method. Numerical experiments are
done by two different soft computing techniques MPSO
and Lingo-14.0.

The structure of this paper is as follows: in Sect. 2, we
give some preliminaries about T2FS. In Sect. 3, notations
of the proposed models are presented. In Sect. 4, we for-
mulate the models in fuzzy type-2 environments. The
solution procedure via GRG and MPSO is presented in
Sect. 5. Experimental results and discussion are presented
in Sect. 6, and some sensitivity analysis is performed in
Sect. 7. The paper is concluded in Sect. 8.

2 Preliminaries
2.1 Type-2 fuzzy sets

In 1975, the concept of a T2FS was introduced by Zadeh
[27] as an extension of the concept of an ordinary fuzzy
set (henceforth called a T1FS). A T2FS is characterized
by a fuzzy membership function; i.e., the membership
grade for each element of this set is a fuzzy set in [0, 1],
unlike a T1FS where the membership grade is a crisp
number in [0, 1]. Such sets can be used in situations
where there is uncertainty about the membership grades
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themselves, e.g., an uncertainty in the shape of the
membership function or in some of its parameters. Con-
sider the transition from ordinary sets to fuzzy sets. When
we cannot determine the membership of an element in a
set as 0 or 1, we use fuzzy sets of type-1. Similarly, when
the situation is so fuzzy that we have trouble determining
the membership grade even as a crisp number in [0, 1],
we use fuzzy sets of type-2 (cf. Li et al. [28]).

Example 1 Let us consider the case of a fuzzy set char-
acterized by a Gaussian membership function (in Fig. 1)
with mean m and standard deviation ¢ that can take values
in o € [01, 07, i.e.,

2
(x— ) ), g € [o1,0,]

(1)

202

u(x) = exp (—

Let us now consider the domain elements of the primary
memberships of x (denoted by p;) and membership grades

of these primary memberships which is secondary mem-
berships of x [denoted by u,(x, 1), 1ty € [0, 1]]. So, for a
fixed x, we get a T1FS whose domain elements are primary
memberships of x and whose corresponding membership
grades are secondary memberships of x. If we assume that
the secondary memberships follow a Gaussian with mean
m(x) and standard deviation o,, as in Fig. 2, we can
describe the secondary membership function for each x as

(1 — m<x>>2>

2
202,

fo(x, ) = exp < (2)
The Gaussian type-2 fuzzy set is depicted in Fig. 3 and
another way of viewing type-2 membership functions is in
a three-dimensional fashion, in which we can better
appreciate the idea of type-2 fuzziness. The three-dimen-
sional view of a type-2 Gaussian membership function is
shown in Fig. 4.
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Fig. 3 A type-2 fuzzy set in T
which the membership grade of
every domain point is a
Gaussian T1FS

Fig. 4 Three-dimensional view
of a T2FS membership function

AXxis z

Definition 1 A Gaussian type-2 fuzzy set is one in which
the membership grade of every domain point is a Gaussian
T1FS contained in [0, 1].

2.2 Possibility and credibility measures on type-2
fuzzy variables

Let I" be the universe of discourse. An ample field A on I"
is a class of subsets of I' that is closed under arbitrary
unions, intersections and complements in I'.

Let Pos : A — [0, 1] be a set function on the ample field
A. Pos is said to be a possibility measure if it satisfies the
following conditions:

@ Springer

0.6 x1 0.7 0.8 0.9 1

P1: Pos(®) = 0 and Pos(I") = 1.
P2: For any subclass {A;|iel} of A (finite, countable or
uncountable),

Pos <UA ) sup Pos(4;) (3)

The triplet (I', A, Pos) is referred to as a possibility space,
in which a credibility measure is defined as

1
Cr(A) = 5(1 + Pos(A) — Pos(A€)), AecA 4)
If (', A, Pos) is a possibility space, then an m-ary regular

fuzzy vector f = (¢, &, ..., &,) is defined as a measurable
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Fig. 5 Fuzzy type-2 variable A

map from T to the space [0, 1] in the sense that for every
t=(t1,1,...,t,) €[0,1]", one has

{reriém=i}={reri&m<nbm<n. .
En(1) St} € A (%)

When m = 1,% is called a regular fuzzy type-2 variable
(RT2FV). In this paper, we denote by R([0, 1]) the col-
lection of all RT2FVs on [0, 1].

Example 2 If ¢ has the following possibility distribution:

reor ...y
- <#1 M- .Un>
where  for i=1,2,...,n,rel0,1],& >0, and
max}_, p; =1, then ¢ is a discrete RFV. If ¢ =
(ri,r2,r3,r4) with 0<rj<r<r3<ry<I, then ¢ is a

trapezoidal REV. If & = (r1,r,r3) with0<ry <r,<r; <1,
then ¢ is a triangular RFV.

(TS}

each

: 0.4
0.1 . /

0.8

0.7
0.6

u

For example (in Fig. 5), if ¢ is defined as
1, with possibility (0.1, 0.2, 0.4)
&=1{ 4, with possibility T
8, with possibility (0.1, 0.3, 0.5, 0.7)

then ¢ is a type-2 fuzzy variable that takes on the values
1,4 and 8 with possibilities (0.1,0.2,0.4), 1 and
(0.1, 0.3, 0.5, 0.7), respectively.

3 Defuzzification methods for type-2 fuzzy
variables (T2FVs)

For application purpose, some detailed defuzzification
methods for T2FVs will be introduced in this section, which
can be conceived as a simplification process for twofold
uncertain information. Based on this, a type-2 fuzzy variable
can be easily converted into a type-1 fuzzy variable with the
aid of reduction methods (1) mean reduction method and (2)
CV reduction method.

@ Springer
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3.1 Mean reduction methods

A type-2 fuzzy number should be defuzzified before
applying in practical problems. For this purpose, some
defuzzification methods have been presented in the litera-
ture such as Karnik and Mendel [7] and Liu [8]. In this
section, we suggest a new reduction methods for a type-2
fuzzy variable. Compared with the existing methods in the
literature, the proposed methods are easy to use in building
the model with type-2 fuzzy coefficients. We call the above
methods as the mean reduction methods for the type-2

(2+0,)exp (— (x— ,u)2>

202
2 )
#’ﬁ(x) = (x - 'u)z
(2 —0,)exp (— 52

2

_r1+r2
= B

_r1+2r2+r3

E.[4 ;

E[¢]
(6)

In the following, we discuss the mean reductions for a
T2FVs.

Theorem 1 Let ij be a GT2FV N(u,6%;0,,0,). Then, we
have

(1)  With E* reduction method, the reduction 1, of 1 has
the following distribution

if x<pu—0v2In2 or x>pu+0v2In2

>+0r
, if u—ov2In2<x<pu+ov2In2

fuzzy variable &. According to the definition of the

expectation (Qin et al. [18]) of fuzzy variables, if E:
(r1,r2,r3) is a triangular RT2FV, then we have

(2)  With E, reduction method, the reduction n, of 1 has
the following distribution

2
2- QI)CXP<— <x2 f) )
o
> , if x<pu—ov2In2 or x>u+ov2In2
'uﬂz(x) = 2
X— U
(2—|—01)exp<—( 20_2) ) -0,
5 , if pu—ovV2In2<x<u+ov2In2
(3)  With E reduction method, the reduction 15 of 1 has
the following distribution
2
(440, — 0)) exp <_ (XZUQ‘) )
1 , ifx<u—ov2In2 or x>pu+0v2In2
'u’h()‘) = 2
(4 — 0, + 0;) exp (- (x 265‘) ) 10,0,
1 , if u—0ov2In2<x<u+ov2In2
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Proof We only prove (1). The rest can be proved simi- 1 J
larly. Since 77 is a GT2FV, the secondary possibility dis- e,
tribution p1;(x) of ¢ is the following REV 08

ex _(X—H)z — 0mind 1 — ex _(X—N)z 06
p 202 ! p 202 ’
04}
(x— )’ (x— )’
exp <— 20_2 s exp — 20_2 5 .
(x — )’ . (x—p)’
€xp <_ 202 + 0, ming 1 —exp| — 507 | . ) .
0 05 1 15

2 3
D)
p 202 Fig. 6 u; , ug,, pz, of mean reduction method

For any x € R. If we denote #; as E reduction of #, then by
(6), we have

e}

rh+r
py, =Pos{n; = x} = 5

exp (= 438) + exp (= 458) + Oy min{(1 — exp( - 74 enp (- 32) }

2
2
(24 0,)exp < (x2 f) )
o
> , if x<pu—ov2In2orx>u+ov2In2
- 2
(2—0r)exp<— (x2 f) ) + 0,
o
> , fu—oV2ln2<x<u+ov2In2
which completes the proof of assertion (1). U Example 4 Let E be a GT2FV defined as
Example 3 1f & = N(2,0.5,0.8,0.2) be a GT2FV, then the £=N(2,05,02,0.8), and suppose &, &, and & are
fe, s e, iz, of mean reduction method are graphically rep- E*,E, and E reductions of £. respectively. Then according

resented in Fig. 6 and the corresponding support of in Fig.7. to Theorem 1, we have

if x<2-0.5v2In2 orx>2+0.5v2In2

He () = 2
-2
0.9exp (— (xo 5 )
2

) +0.8
, if2—-05v2In2<x<240.5v21n2
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1 , , , , . , . . . Theorem 2 Let & be E reduction of the GT2FV
gz: ] gt :N(.uho-izael,herﬁi)' Suppose 617527' "aén are mutually
07} independent, and 0, — 011 < 0,5 — 01, < -+ <0,,, — 01,

_06r and k; >0 fori=1,2,... n.

X 05}

18-;- (1) if o€ (0,(4+0,; —0,,)/16], then Cr{>" K
ool & <t} >ais equivalent to
0.1
0

; ,Zj;ki (#i - Gi\/Z In(4+46,; —0;;) —2In 83() <t

Fig. 7 Support of ¢ in Example 2 @) if o€ ((4+0,,—0,)/16,0.05, then Cr{3",

ki¢; <t} >ua is equivalent to
(2) With E, reduction method, the reduction &, of & has
the following distribution

_2)?
1.8exp<— (xOS) )
5 : , if x<2—0.5v2In2 or x>2 +0.5y/21n2
Hey () = 2
(x—2)
2.2exp| — 05 —-0.2
2' ., if2-0.5v2I2<x<2+0.5v2In2

(3) With E reduction method, the reduction &; of E has
the following distribution

4.6 exp <— (x0—52 2)
Z , if x<2—0.5v/2In2 or x>2+0.5y/21n2
Hey(x) = (x—2)
3.4exp (— 05 > + 0.6
I , if2—0.5v2In2<x<2+0.5v/2In2
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Z ki
=1

X \/2In(4 = 0, +0,,)) — 2In(82

-0, + 9/,i)) <t

(3) if AS (0'57 (12 - 0r7n - 0[;1)/16], then Cr{Z:l:l kl
& <t} > o is equivalent to

zn: ki(p; + o
i=1

x \/2 In(4 = 0, + 0,;) — 2In2(8(1 — o) — 0,.; + 91,i)> <t

@) if ae((12=0,,—0,,)/16,1], then Cr{3" k¢,
<t} >a is equivalent to

zn:ki(,“i +0;
i=1

X \/210(4 + 0,5 — 01) — 2n8(1 - a)) <t

Proof We only prove (3) and (4). The rest can be proved
similarly. Since ¢ is the E reduction of the type-2 normal
fuzzy variable Ei for i =1,2,...,n, their possibility dis-
tributions are as follows

Eaup(2 —200) <t

Since &;,&,,. ..,

gsup 2 205 (Zk f ) 2 — 20{)
sup

= z:kiéisup(2 - 2“) <t
i=1

If 2—20>(4+0,;,—0,)/8, ie, o€ (05,(12—6,;+
01:)/ 16), then for each i, &; 4, (2 — 2a) is the solution of
the following equation

&, are mutually independent, we have

(7)

(4— 9,,+9,,)exp< (o )+9,,79,1
4

—-2)=0 ®

Solving the above equation, we have

Ssup(2 — 2)
= 1+ 017 /210(4 = 0,5+ 01) — 2In(8(1 — 2) — 0, + 0),)
9)
On the other hand, if 2 —-2x<(4+0,;,—0,;)/8, ie.,
o€ (12—0,;+0,;)/16,1). Then for each i,¢ € (2—

i.sup
20) is the solution of the following equation

(44 00— 1) exp (— %)
1 ! , ifxgui—ai\/Z_MoerMi—i—aim
S (x — )’
(4—0.; 4 01;) exp ( 2021 > + 00 — 0
1 ! , if ,ui—a,-\/m<x<,ui+a,-\/m
fori=1,2,...,n.Leté =Y " | k&, if oo > 0.5, then we have

n 1
. < = — — P
Cr{?_l kzé,_t} 3 (1 +§l£u¢(X) fliptug(xv
1
== (1 +1—sup ,ugv(x))

x>t

(2 nnt0)

ki&; <t} >ua is equivalent to

[\

N —

Thus, Cr{}_",

sup pi(x) < (2 — 20)
x>t

If we denote &gp(x) = sup{r|sup, -, p:(x)>a} for
€ (0,1], then we have

(4+0,;— Hll)eXP( (Zrl?z
4

>—(2—20c):O

Solving the above equation gives

Eap(2 = 22) = g + 01y /21n(4 + 0, 0,7) — 21n8(1 — )

Note that 0,«,1 — 01,1 < Hr,z — 01,2 <. < Q,W — 01,,, and
ki >0 fori=1,2,...,n. We have the following results. If
(440,,—0,,)/8<(2—2a)<1, then (2 —20>(4+0,;
—0,;)/8, for i=1,2,...,n. Therefore, if o€ (0.5,
(12— 0,; — 0,;)/16], then Cr{} ", k;&; <t} > o is equiv-
alent to
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Zn:ki(.“i + 0i
i=1

X \J210(4 = 05+ 0,5) = 210 2(8(1 — 2) — 0,5+ 0,,) ) <1

(10)
If 2—20(<(4+H,-71 —9“)/8, then 2—20(§(4—|—9r3,‘—
0,;)/8 for i=1,2,...,n. Therefore, if o€ ((12—

0,; — 0,;)/16,1], then Cr{> ", k;&; <t} >u is equivalent
to

;ki(ﬂg + ai\/21n(4 +6,;,—0,;)—2In8(1 — o()) <t

(11)
O

3.2 CV reduction method

Because of fuzziness in membership function of T2FS,
computational complexity is very high to deal with T2FS. A
general idea to reduce its complexity is to convert a T2FS into
a T1FS so that the methodologies to deal with T1FSs can also
be applied to T2FSs. Qin et al. [18] proposed a CV-based
reduction method which reduces a type-2 fuzzy variable to a
type-1 fuzzy variable (may or may not be normal). Let £ be a
T2 FV with secondary possibility distribution function zi;(x)
(which represents a RFV). The method is to introduce the
critical values (CVs) as representing values for RFV
CV.[is(x)], CV*[fig (x)] or CV[1i,(x)], and so corresponding
type-1 fuzzy variables (T1FVs) are derived using these CVs of
the secondary possibilities. Then, these methods are respec-
tively called optimistic CV reduction, pessimistic CV reduc-
tion and CV reduction method (in Fig. 3).

3.3 Critical values for RFVs

In this section, we define three kinds of CVs for an RFV by
using a fuzzy integral

Definition 2 Let £ be an RFV. Then, the optimistic CV of
&, denoted by CV*[¢], is defined as

CV*[¢] = Pos(¢ > a)],
€)= sup oA Pos( ) (12)

sup [0 A Cr(¢& > a)]

a€(0,1]
CV[¢ = sup [@A1]V sup [xA0.9]V sup
%€[0,0.1] %€[0.1,0.3] %€[0.3,0.8]

0.1v03v035v0=0.35

while the pessimistic CV of &, denoted by CV.[], is
defined as

CV.[{] = sup [xANec(¢=a)], (13)
«€0,1]

The CV of ¢, denoted by CV[¢], is defined

CVIe) = sup [ Cr{e ), (14)

Example 5 Let ¢ be a discrete RFV with the following
possibility distribution:

¢ 0.1 03 06 0.8
02 1 05 07
Then it is easy to compute that
1, if «<0.3
Pos(é>a) =< 0.7, if 0.3<x<0.8

0, if 0.8<a<l
1, if «<0.1

Nec(é>a) =< 0.8, if 0.1<a<0.3

0, if 03<a<l
and

1, if 2<0.1

0.9, if 0.1<x<0.3
Cr(é>a) = -

0.35, if 03<x<0.8
0, if 0.8<a<l

Therefore, by the definitions of CVs, we have

sup [x APos(&>a)]
0€0,1]

CV'[¢&l=4¢ sup [xA1]V sup [xA0.7]V sup [xAQ]
2€[0,0.3] %€[0.3,0.8] %€[0.8,1]
03v0.7v0=0.7

sup [xANec(&>a)]
0€(0,1]

CV.[¢]=4¢ sup [aA1]V sup [xA0.8]V sup [xAO0]
%€[0,0.1] %€[0.1,0.3] %€[0.3,1]
0.1v03v0=03

and

[« A0.35]V sup [xAO)

2€[0.8,1]
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The following theorem presents the formulas for CVs of a
trapezoidal RFV.

Theorem 3 (Qin et al. [18]) Let & be a type-2 normal
fuzzy variable N(u,c%;0,,0,). Then, we have

(1) Using the optimistic CV reduction method, the

reduction & of E has the following possibility
distribution:

(14 0,)exp (— (x— ,u)2>

202

(-
1+ 0,exp| — 752

0,4+ (1 —0,)exp <— (x— ,u)2>

ifx<pu—ovV2In2orx>pu+0ov2In2

202

2
1—|—0,—0,exp<—(x_'u) )

, if u—ov2In2<x<u+ov2In2

202

(2) Using the pessimistic CV reduction method, the

reduction £, of E has the following possibility
distribution:

2
exp<— (xz_o_f) )
2 )
1+016XP<_ (xz_o—f) )

Hey ) = (x _ 'u)z
exXp <_ 20_2 )

if x<u—ovV2In2orx>u+0ov2In2

if u—ov2In2<x<pu+ov2In2
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(3)  Using the CV reduction method, the reduction &5 of
E has the following possibility distribution:

(1+0,)exp (- (xz_af )2>

2 )
1+20rexp<— (=1 >

ifx<pu—ov2In2orx>u+ov2In2

202
Heyx) = )
0.+ (1—0))exp (— (XZ—US) )
N if pu— a\/m<x<,u+6\/m
1+ 26, — 20, exp (— (x20£) )
Theorem 4  (Qin et al. [18]) Let & be the reduction of the Example 6 (Using the same data from Example 3) If & =

type-2 fuzzy variable & = N(Nn 62,0,;,0,,;) obtained by the
CV  reduction method for i=1,2,...,n. Suppose
&1, 6, ..., ¢, are mutually independent, and k; >0 for
i=1,2,...,n

(1)  Given the generalized credibility level o. € (0,0.5], if
a € (0,0.25], then Cr{}__, k& <t} >w is equiva-
lent to

;ki <,U,- - 0;\/21n(1 +(1—4a)0,;) — 21n2fx) <t,

if o€ (0.25,0.50], then Cr{d>.\ ki <t}>o is
equivalent to

Zki(:ui — 0
i=1

X /201 + (42— 1)0,5) — 2In(20 + 4o — Do) <,

(2)  Given the generalized credibility level o € (0.5,1], if
a € (0.5,0.75], then Cr{} ., ki&; <t} >a is equiv-
alent to

> kily + o
P

X (/2101 + (3 40)0,7) = 2In2(0 — 1) + (3 - 4&)9”-) <1,

if o€ (0.75,1], then Cr{>_" | ki&; <t} > o is equiv-

alent to

zn:ki(ﬂi + i
i=1

x /2In(1 + (3 — 49)0,;) — 2In2(1 — oc)) <t

— "

@ Springer

N(2,0.5,0.8,0.2) be a Gaussian FT2 variable, then from
Example 2 i, pte,, pe, of mean reduction method are
graphically represented in Fig. 8 and the corresponding
support of & in Fig. 9.

]
0.9
0.8
0.7}
0.6

% 05)

Zoaf
0.3}
0.2
0.1}

0 !
-4 2 0

Fig. 9 Support of ¢ in Example 6
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Theorem 5 (Qin et al. [18]) Let & be a Gaussian RFV
with the following possibility distribution:

o =
e (x) = exp , x€10,1]. (15)

202

(1) If u=1, then CV*[£] =1, and if 0<u<1, then
CV*[&] is the solution of the following equation:

(0 — p)* +26%Ino = 0.

2) If u=0, then CV,[£] =0, and if 0<u<1, then
CV.[¢&] is the solution of the following equation:
(0 — p)* +26°In(1 — o)) = 0.

3) Ifp=0.,then CV[{] =0.5,and if 0.5 < u<1, then
CV[¢&] is the solution of the following equation:
(o0 — p)* +26°In2(1 — ) = 0.

Example 7 The CVs of a Gaussian RFV can be evaluated
by the Newton—Rapshon method. Consider the following
possibility distribution as:

Y
pelx) = exp(— ) ) xe (0.1l (16)

Using Theorem 5, we compute CV*[£] = 0.7559, CV, [¢] =
0.3275 and CV[¢] = 0.6336.

4 Notations and abbreviations

In this investigation, a two-stage transportation problem
(TP) consisting of manufacturer, distribution centers (DCs)
and customers are considered. Here, products from each
manufacturer are transported to each DC and the item from
a DC is transported to a specific customer only. The pur-
chasing and selling prices of the items and the respective
transportation costs are considered, and TP is formulated as
a maximization problem. In this TP, the following nota-
tions are used:

(1) P = number of product (indexed i = 1,2,...,P).

(2) M = number of origins/plants/manufacturers of the
TP (indexed j=1,2,...,M) from which the
humanitarian products are shipped.

(3) N = number of distribution centers (DCs) (indexed
k=1,2,...,N).

(4) R = number of customers (indexed / = 1,2,...,R).

(5)  a; = capacity for i-th product at the j-th manufac-
turer, which is GT2FVs in nature (ton).

(6) dy = demand for i-th product by the I-th customer,
which is GT2FVs in nature (ton).

(7)  Cijx = unit transportation cost for i-th product from
J-th manufacturer to the k-th DC ($/ton).

(8) g = unit transportation cost for i-th product from
k-th DC to the I-th customer($/ton).

(9)  x;x = the amount (tons) to be transported from j-th
manufacturer to k-th DC for the i-th product
(decision variables).

(10) fk = each DC has an associated fixed cost ($).

(11)  Z; = an open indicator, which take the value O or 1
by the decision maker.

(12) Y = Each k-th customer is served by one DC.

(13) s = selling price of the product at the k-th
destination ($/unit).

(14) B = total budget of the TP ($).

(15)  p; = the purchasing price of the item at jth
manufacturer ($/unit).

(16) TF = total profit in the problem ($).

(17)  RA = total received amount at the customer (ton).

5 Formulation of Gaussian type-2 fuzzy
transportation problem (GT2FTP)

In this model, we maximize total profit (TF) over a three-
tiered distribution system (in Fig. 10) consisting of plants,
distribution centers and customers. Plants produce multiple
products that are shipped to distribution centers. If a dis-
tribution center is used, then a fixed cost is charged. Cus-
tomers are supplied by a single distribution center. The
GT2FTP is formulated as
P M N

max TF = {(Ek —p;— Eijk)xijk}
i=1 j=1 k=
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Fig. 10 Multiproduct
transportation problem

Manufacturer-2

Manufacturer-M

For the objective function TF is concerning with transporta-
tion cost ¢, purchasing price p;, selling price sy, fixed-charge

cost fk, total supply da;;, and total demand d;;, represents
GT2FVs in nature.

5.1 Crisp equivalences

Suppose that the ¢, ajj, fk, dj are all mutually independent
type-2 Gaussian fuzzy variables defined by ¢ = (u*,

o 2Cik GCijk 00//k)’ &il — ( ub”, O.Zbu7 9?,1, Q}r)”)’ J;k _ ( ,uf*, O.ka7
o Gf )s dig = (b1, 6?00 0P1), respectively. Applying

[2Yr
chance constraint programming in the above GT2FTP, we

obtain the equivalent crisp problem as:

min f
P M N
s.t CI{ZZZ{( Sk —ﬁj — Eijk)xijk}
N R .
+ 30 {aw x da x Yu}
N
Z{fk X Zi ) >f}>oc
=
N
Cr{zxijkfaij} > By, Vij

0

~

I

-
[

k=1

R
T injk > ;dil X Ykl} >y Vik (19)

Q

P M N
Cr{ZZZﬁ ,Jk<B}2nand (18). (20)
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Dc -~ Customer-R

where o, f8;,7;,1n, and 0 are different optimistic levels
which are to be chosen by decision maker (DM). Then, the
above model can be solved by the following mean reduc-
tion method and CV reduction method.

5.1.1 Using mean reduction method

Case 1: 0 <o <0.25: then, the equivalent parametric pro-
gramming problem for the model representation is

min f

P M N : _
st LIZZ{( — o\ 204+ 0% — ) — 2In8a)

J=1 k=1

(’uf’/ /\/21n(4_0€fi+9f’i)—21n80()

o \/2 In(4+ 6% — 6%) —21n 80()} X Xt

g d; d;
>y Z{udfal,\/21n4+0;fe,;)721n8a}
=1 k=1 I=
X gkt X Yu

=

—Z{ui oliy/2In(4 + 0 — 0f) — 21n8a}><Zk] >f

(21)
N
E Xijk S Fa,','a Vi7j
k=1
M R
and injk > Z Fdi1><Yk17 Vi, k (22)
=1 =1
P M N
Z Z F,;/,xijk SFg and (18)
i=1j=1k=1
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where

iy = oy \J2In(4 + 0% — 071) — 2In8p;, if B; € [0,0 ]
Hi — oy \/2 In(4 — 07+ 0,5)) — 2In(86;; — 07, + 0,7), if B € <0 25,0. 50}
Fo, =
U ' + oy \/2 In(4 — 07 + 03) —2In(8(1 — By) — 0 + 0;), if B € (O 50,0. 75}
,ul.aj” + al-aj”\/2ln 4+ 03';] 9,“,’]) —2In8(1 - B), if B e {O 75 ]
il — o\ J2in(4 — 0% + 0%h) — 21n 8y, if 7y € [07 0.2 }

it — ol \/ 2In(4 + 0% — 071)) — 2In(8yy + O, — Ora), if y, € (0.25,0. 50}

(

’uﬂ,/ + O.ll,z \/2 11’1 4 — erl 9;{’[’) — 211’1(8(1 — ”/”) + 0”'1 — 91_],’[), if Vi €

0.50, 0. 75}

,ul]”—l—o‘l\/2ln4 0T+ 0f1) — 2In8(1 — yy), ify,-,e[07 }

where Fj; and Fj can be written from the above two Case 3: 0.5<a<0.75: then, the equivalent parametric

equations. programming problem for the model representation is

Case 2: 0.25<a<0.5: then, the equivalent parametric
programming problem for the model representation is

N
5.t ZZZ{(@ - a_f.k\/Zln(él— 0 + 9;;) ~2In(8x— 9i§j+0§;))

i=1 j=1 k=1

_<H¢f_aff\/2 n(4+07 - 9{@)—21n(8a+05fi—9ﬁ’%)>

— (e — o \/ 21n (4 + 00— o‘vk) 21n (&x + 00— 0;’3:*)) } X Xk

P N
=1 k=

ZZZ{W mpr: \/2111(44-90’11 9;{;) —21n(8a+0;f;—0§{;)} % g % Y

1 1 I=1

i{

2 i — \/21n(4+9f" 0’2)21n(8a+9@0@)}xzk} S/

and (22 (23)
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f
5.t [ii Y {(u;k—a;k\/zln(zx—e;;w;;) —21n(8(1—a>—9;3+9;;))
=1
(;H’f l’\/21n<4+0p’ 9{@) —2ln(8(1 a)+9’,’j’,.6ﬁ)>
(uj;;f - aj;;f\/zln(4+0°f‘ —0 'fk) —21n<8(1 — o)+ 0% — 9;3*))} X X
_ EP:kEN:ER: {ﬂzl —ayf \/21n(4+ gdzl — 0;111) — 21n<8(1 —o) + Hf;’. - 07‘]1)} X gkt X Yu

i=1 k=1 I=1

_kZNI:{,j \/21n(4+6fk ofy) - 2mn(s (1—0()+9/2‘J—9§3)}><Zk]2f

and (22) (24)
Case 4: 0.75<a<1.0: Then, the equivalent parametric
programming problem for the model representation is
min f
P N
s.t [ZZZ { (u;k ajk\/Zln(él o — 9;;) —2In8(1 — :x))
i=1 j=1 k=1
- (uﬁ"" aff\/21n<4 o, +0P') —2In8(1 — oc))
- (;l;;f - j]';j\/zln(4 0% + 0 ’fk) —2In8(1 — OC)) } X X
P N R
>3y {M,z — o \/2111(4 0% + ef’”) —2In8(1 — oc)} X gt X Yu
i=1 k=1 I=1
N
- ; {,ﬂ,} - o{;\/zln(4 — 0+ 0{;) —2In8(1 — oc)} X Zk} >f
and (22) (25)
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5.1.2 Using CV reduction method
Case 1: 0<a<0.25: Then, the equivalent parametric
programming problem for the model representation is
max fi
M
s.t [ZZ {< “ g °k\/21n (1 —42)0%)) — 2124
i=1 j=1 k=1
— (i = \/21n(1 + (1 - 42)0;) — 21n 29)
_ (’ufﬂ’f - J;Z\/Zln(l +(1- 405)9;"{.';.,() —2In 2a>x,-jk
P N R
_ ZZZ {luil” _ ll"\/2h’l 1 - 40() - 95{;/]) —2In 2“} X ikl X Yu
i=1 k=1 I=1
N
—Z{#ik_0713\/21“(1+(1_4“)9)Zk_21n2°‘}sz] >f (26)

Z Xijk < Fa,;,v; VZJ
k=1

M=
&
vV
M=

and Fa,xvy, Vik (27)

~

Il
—

Il
-

M~

Ms

M=
~

Il
18
~.

Il
-
~

Il

X Xijk SFB and (18)

Pj

where X = (15, 0%, 0%,0%) =, a;, B, Y = (1, ¢, 07, 0")

s Yo Y y Yy Uy

= Di, dy, the different optimistic labels 1 = ﬁi/’ 7,,1 and

1 — 0i/2I(1 + (1 — 42)0,,) — 21n24, if 1€ 0,02 ]

1 — oi/2In(1 + (47— 1)0,,)) — 2In(24 + (47— 1)0L,), if ) e (o 25, 0. 50]
Fy =

1+ 0 /2I(1 + (3 — 40)0;,) — 2In(2(1 = 4) + (3 — 44)0,,), if /€ (o 50, 0. 75]

1+ 0\/2In(1 + (47— 3)0,,) — 2In2(1 — 7, if /e [ 75 ]

i — 0i7/2In(1 + (1 — 40)0,;) — 2In24, if Le [0,0 ]

= 0i/2In(1 + (42— 1)0,,)) — 2In(27 + (44— 1)0,,), if )€ (0 25,0. 50}
Fy =

i+ 0 /2In(1 + (3 —42)0,,) —2In(2(1 — 1) + 3 —44)0,,), if € (0 50, 0. 75}

pi + 0iy/2In(1 4+ (44 —3)0,;) —2In2(1 — 4), if 1€ [0 75 ]
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Case 2: 0.25<x<0.5: then, the equivalent parametric
programming problem for the model representation is

s.t [ZM:Z 1{( g W\/zln (4~ 1)0%) — 21In(20 + (4 — 1)03)

i=1 j=1 k=

- l.f\/z In(1 + (4o — 1)0%) — 21In(20 + (4o — 1)0%)

— (w5 — ok \/2 In(1 + (4o — 1)6,%,) — 21n(20 + (4o — 1)ofjg§k))>xijk

P N R
-y y {ﬂ?;"’ _ a;’;"\/ﬂn(l + (1 — 40) — 01) — 21n(20 + (4o — 1)9‘}@»} X gt X Y

Case 3: 0.5<a<0.75: Then, the equivalent parametric
programming problem for the model representation is

s.t [EM:ZEK: { (,ujs-k + o}t \/2111(1 + (3 —40)07%) = 2In(2(1 — o) + (3 — 42)07%)

— (i + G /2In(1 + (3~ 4)07)) — 21n(2(1 — ) + (3 — 4o)07)

— (w5 + i \/2 In(1+ (3 —40)60,%,) —2In(2(1 — o) + (3 — 4a)ejj§;k))x,-jk

P N

R
-SY Y {#i_zli, + gl \/2 In(1+ (3 — 4a)0%) — 2In(2(1 — ) + (3 4«)0f’§l)} X g X Yu

k=1 I=1

—_

N
Z {,4 +o-{;\/21n (3 —4a)0f, —2In(2(1 — ) + (3 — 4o — 1)0@,)} X Zk} >f
7

and (27) (29)
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Case 4: 0.75<a<1.0: then, the equivalent parametric
programming problem for the model representation is
max fj
M
5.t [ZZ {( vHra“\/zln —3)63%) —2In2(1 — )
i=1 j=1 k=1
— W+ /\/zln( + (o= 3)07) —2In2(1 — )
— (g + o 2In(1 + (40— 3)07%,) — 21n2(1 - a)))x,jk
P N R
_ ZZ Z {:u;ll” + O—;ilf’\/Zh’l(l + (406 - 3)07[’;1) - 2111(2(1 — OC)} X &ikl X Ykl
i=1 k=1 I=1
N
=y oS+ a’{;\/zln(l + (4o — 3)0f, — 2In(2(1 — ac)} x Zk} f
k=1
and (27) (30)

The above deterministic problems has been solved by the
following soft computing technique.

5.2 Modified particle swarm optimization (MPSO)

A PSO normally starts with a set of solutions (called
swarm) of the decision-making problem under considera-
tion. Individual solutions are called particles, and food is
analogous to optimal solution. The particles are flown
through a multidimensional search space, where the posi-
tion of each particle is adjusted according to its own
experience and that of its neighbors. Each particle i has a
position vector (X;(7)), velocity vector (V;(z)), the position
vector at which the best fitness (X,pes:i(f)) encountered by
the particle so far and the best position vector of all par-
ticles (Xgpes(f)) in current generation ¢. In generation
(t + 1), the position and velocity of the particle are changed
to X;(r + 1) and V;(¢ + 1) using following rules:

Vi(t+ 1) = WV,'( ) +/11V1( phem(t) 7Xi(t))
+ ,UQVZ(ngest(t) - Xl(t))

Xi(t) + Vit +1)

The parameters p; and p, are set to constant values, which
are normally taken as 2, r; and r, are two random values

(31)

Xi(t+1) = (32)

uniformly distributed in [0, 1], and w(0 <w<1) is inertia
weight which controls the influence of previous velocity on
the new velocity.

In our study, this algorithm is modified by introducing
diversity in the initial population, using entropy originating
from information theory. After each iteration of the proposed
algorithm, search space is modified depending upon the
concentration of better individuals. The outline of the pro-
posed algorithm is presented below. In the algorithm, t is
generation counter, p. and p,, are probability of crossover
and mutation, respectively, Maxgen is maximum number of
generation of the algorithm, S is population size, i.e., number
of solutions in the population, B;(t) is lower boundary vector
and B, (t) is upper boundary vector of initial search space,
andX;(t) is i-th solution vector. Check_constraint (X;) check
whether solution X; satisfies the constraints of the problem or
not. It returns 1 if constraints are satisfied by X; otherwise it
returns 0. A separate subfunction is used for this purpose.
f(X;(1)) represents the fitness of solution X;. k; represents
reduction factor of search space for i-th variable. Xpbem(l)
represents the position of i-th particle at which best fitness up
to #-th iteration is encountered. Xg.q(f) represents the
position where best fitness is found up to generation ¢ with
respect to all the particles.
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MPSO Algorithm

@ Springer

. Initialize p1, p2, w, pe, Pm, €, S and Mazgen.

. Set iteration counter ¢ = 0. and randomly generate initial population P(t) of S solutions, where

diversity in the population is maintained using entropy originating from information theory.

3. Evaluate fitness of each solution X;(¢) and find X gpe (t).

S

20.
21.
22.
23.

24.

25.

26.

217.
28.

29.

31.

32.
33.
34.
35.
36.

. Set initial velocity Vj(t), VX;(t) € P(t) and set Xppeqri (t) = X;(t), VX;(t) € P(t).

. Set avj fit= average fitness of solutions of P(t).
. Set best fit= fitness of Xgpeq(t).
. While (t < Maxgen and |best fit — avj fit| < €) do

Fori = 1: N do //Improve the fitness of each solution by PSO strategy.
Vilt+1) = wVilt) + s (Xppest(8) — Xi(D) + para(Xghese(t) — Xi(1)).
If (Vi(t 4+ 1) > Vipae) then set Vi(t + 1) = Viyga-
If (Vi(t + 1) < =Vipae) then set Vi(t + 1) = — V0.
Xi(t+1) = X;(t) + Vi(t + 1).
If (X;(t + 1) > By(t)) then set X;(t + 1) = By ().
If (X;(t + 1) < By(t)) then set X;(t + 1) = By(t).
If check_constraint (X;(t + 1)) = 0.
Set Xi(t + 1) = Xi(1), Vi(t +1) = Vi(1).
Else
If f(Xi(t+1)) > f(Xppesti(t)) then set Xppeori(t + 1) = X;(t +1).
If f(Xi(t+1)) > f(Xgpest(t)) then set Xgpese (t + 1) = X; (¢t +1).
End If.
End For
Sett =1¢+ 1.
Select S solutions from P(t) for mating pool using roulette wheel selection
process. Let this set be Pyy(t).
Made crossover operations on the solutions of Py (t) with probability p.
and store the child solutions in the solution set Pc(¢).
Set initial velocity V;(t), VX;(t) € Pc(t) and set Xppesi(t) = Xi(t), VX;(¢)
€ Pc(t).
Made mutation operations on the solutions of P¢(t) with probability p;,
and modify X e (t) for each muted solution X;(t).
Combine the solutions of P(t) and Pr(t) in to a new set Py ().
Select S solutions from Py (t) using tournament selection process.
Replace all solutions of P(t) by these selected solutions.
Select an elite subset of P(t).

For every variable x;, center of attraction x;. is defined by calculating a mean

of the individuals of elite subset.
The search region is changed using the following formulae
Bui(t +1) = @ic + {Bui(t) — By (t)}ki' (33)
Byi(t +1) = wic — {Bui(t) — Bu(t) }ki" (34)
Set avj fit= average fitness of solutions of P(t).
Set best fit=fitness of X gpest(t).
End While.
Output: Best solution of Ft).
End Algorithm.
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Table 1 Plant capacities (in ton) a;

(80~,570l70r) (4()*5’ 01’ ()r)
(20,5,0,,0,) (60,5,0,,0,)

(757570l70r)
(7575701-,0r)

The proposed crisp model presented earlier is solved by the
above-mentioned PSO.

6 Numerical experiment
6.1 Input data

In the experiments, assume that there are products P = 2,
three plants M = 3, four distributions centers N = 4 and
five customers R = 5. Let unit transportation costs, fixed-
charge costs, supplies and demands are Gaussian fuzzy
type-2 in nature, and these are given in Tables 1, 2, 3, 4 and
5. Here, total budget B = (2500,50, 0;,0,), selling price
sk = (80, 10, 0;, 0,) and purchasing cost p; = (10,2, 0y, 0,).
Also let the left and right spreads are 0; = 0.5 and 0, = 0.5,
respectively, for all Gaussian FT2 variables.

6.2 Optimum results

With the above input data, we solve the problems derived
in Sects. 5.1.1 and 5.1.2, using above-mentioned meta-
heuristic technique MPSO and gradient base optimization
technique-GRG (Lingo-14.0 software). The optimum
results are presented in Tables 6, 7, 8 and 9. To derive the
optimum results, we first use optimistic value criterion to
reduce type-2 fuzzy parameters with different confidence
level. Then, MPSO and GRG are used to derive the optimal
solutions with different values of «. The results are exe-
cuted on a personal computer with a 2.50 GHz CPU and 4
GB memory.

7 Discussion

From the our experiments, the determined compromise
solutions are different with different degrees. In order to

Table 3 Fixed-charge costs (in $) fk at each DC
(100, 10,6,,6,) (150,10,06,6,) (160,10,0,,0,)

(1397 10~ elaer)

a sensitivity analyses are given in Tables 10 and 11 at the end
to demonstrate the applicability of the proposed methodol-
ogy (MPSO) and to provide some managerial insights. It
shows that the presented algorithm is efficient in searching
good solutions, and the obtained Pareto optimal solutions set
is acceptable for decision support systems. For minimum
transported cost, the selected unit transportation costs and the
transported amounts in different cells for each model are also
presented in Tables 6, 7, 8 and 9 against different optimistic
labels of decision maker (0— 0.25),(0.25 —0.50)
(0.5 —0.75), (0.75 — 1.0). It may be noted that the optimum
value of TF, i.e., maximum profit for each model using mean
reduction method is greater than the maximum profit using
CV reduction method. A comparison of the results shows
that the PSO algorithm performs better than the GRG (Lingo-
14.0) algorithms in terms of the objective function values.

8 Conclusions and future research work

In this investigation, we have developed a multilevel dis-
tribution in a supply chain transportation problem (TP)
under Gaussian type-2 fuzzy (GT2F) environments. Here,
the supply capacities, demands and transportation capaci-
ties, unit transportation costs and fixed-charge costs are
supposed to be GT2F variables due to the instinctive
imprecision. Then, the TP is reformulated as profit maxi-
mization problem by the credibility optimization methods
via (1) mean reduction method and (2) CV-based reduction
method. The numerical experiments illustrated the appli-
cation and effectiveness of the proposed approaches. The
deterministic models are solved using MPSO and GRG.

The major new features of the paper include the fol-
lowing three aspects:

(1)  For general fuzzy variables, we defined a generalized
credibility measure and discussed the properties of
the reduced fuzzy variables of type-2 normal fuzzy

validate the proposed models, different optimistic results and variables.
CT;‘:t’:e(i g“gtrampor‘aﬁo“ (1,09,0,0,)  (3,09,0,0,)  (3,09,0,0,) (509,0,0,) (4,09,0,0,) (45,09,0,0,)
" (1.5,0.9,0,0,) (3.8,0.9,0,0,) (2,09,0,0,)  (33,0.9,0,0,) (2.2,0.9,0,,0,) (3.2,0.9,0,,0,)
(1,09,0,,0,)  (2,09,0,,0,)  (2,09,0,,0,)  (5,0.9,0,0,)  (4,09,0,0,)  (4.6,0.9,0,,0,)
(1.3,0.9,0,,6,) (3.5,0.9,0,,0,) (1.8,09,0,,0,) (3,09,0,,0,)  (3,09,0,,0,)  (2,09,0,,0,)
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Table 4 Shipping costs, DC to

. 5 5 3 2 4 51 49 33 25 27 35 2 19 4 43 2 5 49 33 25
customer (in $) g

5 49 33 25 41 5 48 3 22 25 32 2 2 1.7 35 4 15 2 5 5

Table 5 Demand for the i-th product by the /-th customer (in $) dy

(25,0.5,0,,0,) (30,0.5,0,,0,) (50,0.5,0;,0,) (15,0.5,0,,0,) (35,0.5,0,,0,)
(25,0.5,0,,0,) (8,0.5,0,,0,) (0,0.5,0,,6,) (30,0.5,6,,06,) (30,0.5,6,,06,)

Table 6 Optimistic results via

GRG and PSO for Case 1 Methods Mean reduction method CV reduction method
Optimistic labels GRG PSO GRG PSO
o By Vit RA TF RA TF RA TF RA TF

020 020 0.2 24239 129427 24481 1320.16 24198 1290.58 246.820 129548
020 0.15 0.15 24437 1296.05 246.81 132197 24241 129298 247.258 1297.89
020 0.1 0.1 24525 1296.59 247.70 1322.52 24298 129334  247.840 1298.25
020 0.05 0.05 24515 1297.02 247.60 1322.96 243.08 1293.98 247.942 1298.90
0.15 020 020 242.12 1299.04 24454 1325.02 241.89 1310.13 246.728 1315.11
0.10 020 020 24256 129995 24499 132595 242.05 131029 246.891 1315.27
0.05 020 020 243.09 1300.59 24552 1326.60 243.45 1311.87 248.319 1316.86

Table 7 Optimistic results via

GRG and PSO for Case 2 Methods Mean reduction method CV reduction method
Optimistic labels GRG PSO GRG PSO
o By Vit RA TF RA TF RA TF RA TF

045 045 045 249.66 1307.21 252.16 1333.36 24440 131639 24929 1321.39
045 04 040 251.70 1309.01 254.22 1335.19 244.83 1318.84 249.73 1323.85
045 035 035 25261 1309.56 255.13 133575 24541 131921 25032 1324.22
045 03 030 25250 1309.99 255.03 1336.19 245.51 1319.85 25042 1324.88
040 045 045 24938 1312.03 251.88 1338.27 24431 1336.33 24920 1341.41
035 045 045 24984 131295 25234 1339.21 24447 1336.50 249.36 1341.57
030 045 045 25038 1313.60 252.89 1339.87 245.88 1338.11 250.80 1343.19

Table 8 Optimistic results via

GRG and PSO for Case 3 Methods Mean reduction method CV reduction method
Optimistic labels GRG PSO GRG PSO
o p i Vit RA TF RA TF RA TF RA TF

070 070 0.70 250.16 1318.73 252.21 1345.10 254.18 1338.13 250.53 1343.21
070 0.65 0.65 25220 1320.28 254.27 1346.69 254.63 134272 25098 1347.82
0.70 0.6 0.60 253.11 1322.10 255.18 1348.54 255.23 134522 251.57 135033
070 055 055 253.01 1322.65 255.08 1349.10 25533 134559 251.67 1350.70
065 070 0.70 249.88 1323.09 251.93 134955 254.08 1346.26 25044 1351.37
0.60 0.70 0.70 25034 1325.15 252.39 1351.65 25425 1363.06 250.61 1368.24
055 0.70 0.70 250.88 1326.08 25294 1352.60 255.72 136323 252.06 1368.41
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g‘ggea?l d%%glgtrlcc;zseuzs via Methods Mean reduction method CV reduction method
Optimistic labels GRG PSO GRG PSO
o p i Vit RA TF RA TF RA TF RA TF
095 095 095 25216 132532 25473 134537 254.68 1338.67 259.78 1343.75
095 090 090 25422 1326.89 256.81 1346.96 255.14 1343.26 260.24 1348.36
095 0.85 085 255.14 132871 257774 1348.81 25574 134575 260.85 1350.87
095 0.80 0.80 255.03 1329.26 257.63 1349.37 255.84 1346.13 260.96 1351.24
090 095 095 251.88 1329.71 25445 1349.82 25459 1346.80 259.68 135191
085 095 095 25234 1331.78 25491 1351.92 25476 1363.60 259.85 1368.79
0.80 095 095 252.89 1332.71 25547 1352.87 256.23 1363.77 261.36 1368.95
CT}:‘;’J;I};’ s%pgin(‘i??f;r:;“g;fy % Change of SD of different FVs (%) GRG (%) PSO (%)
via MPSO of mean reduction gCik ok gl ol RA TF RA TF
method
10 10 0.172 0.986 0.332 1.186
20 20 0.202 1.013 0.241 2.143
30 30 0.298 2.172 0.182 3.176
40 40 0.312 3.924 0.489 4.176
10 10 0.885 0 0.868 0
20 20 0.934 0 0.968 0
30 30 2.643 0 2.723 0
CT;“:’;;igl S%pgfléf;‘f;fnst“g;l’y % Change of SD of different FVs (%) GRG (%) PSO (%)
via MPSO of CV reduction gCik 7 g % RA TF RA TF
method
10 10 0.312 1.486 0.332 1.496
20 20 0.312 2.973 0.332 2.996
30 30 0.312 4.472 0.332 4.482
40 40 0.312 5.971 0.332 5.982
10 10 0.885 0 0.868 0
20 20 0.934 0 0.968 0
30 30 2.643 0 2.723 0
(2) Using the proposed two reduction methods, a new  References

3)

class of generalized credibility transportation prob-

lem has been established. L.
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