
ORIGINAL ARTICLE

MAGDM based on triangular Atanassov’s intuitionistic fuzzy
information aggregation

Shu-ping Wan1
• Li-Lian Lin1

• Jiu-ying Dong2,3

Received: 6 December 2014 / Accepted: 11 January 2016 / Published online: 4 February 2016

� The Natural Computing Applications Forum 2016

Abstract Triangular Atanassov’s intuitionistic fuzzy

number (TAIFN) has better ability to model fuzzy ill-defined

quantity. The information aggregation of TAIFNs is of great

importance in multi-attribute group decision-making

(MAGDM). In this paper, some arithmetic aggregation

operators for TAIFNs are defined, with the triangular Ata-

nassov’s intuitionistic fuzzy weighted average (TAIFWA)

operator, ordered weighted average (TAIFOWA) operator

and hybrid weighted average (TAIFHWA) operator inclu-

ded. Then we further investigate the Atanassov’s triangular

intuitionistic fuzzy generalized ordered weighted average

(TAIFGOWA) operator and generalized hybrid weighted

average (TAIFGHWA) operator. Some desirable and useful

properties of these operators, such as idempotence, mono-

tonicity and boundedness, are also discussed. For the

MAGDM with TAIFNs and incomplete attribute weight

information, a multi-objective programming model is con-

structed by minimizing total deviation between all alterna-

tives and fuzzy positive ideal solution, which is transformed

into a linear goal programming. Consequently, the attribute

weights are objectively derived. Thereby, an innovated

MAGDM method is proposed on the basis of the TAIFWA

and TAIFGHWA operators. Finally, a green supplier selec-

tion example is provided to illuminate the practicability of

the proposed method in this paper.

Keywords Multi-attribute group decision-making �
Triangular Atanassov’s intuitionistic fuzzy number �
Information aggregation operator � Incomplete weight

information � Multi-objective programming

1 Introduction

Multiple attribute decision-making (MADM) and multiple

attribute group decision-making (MAGDM) have been

extensively applied in a variety of real-life decision problems.

With the influence of subjective factors, sometimes decision

maker (DM) relies on intuition and experience to evaluate the

attributes in decision problems. It is very difficult for DM to

give precise assessment information on the attributes of

alternatives. Furthermore, DM usually has a certain degree of

hesitation during the evaluation process. Consequently, Ata-

nassov [1] initially proposed Atanassov’s intuitionistic fuzzy

sets (AIFSs) that is more flexible and practical than fuzzy set in

dealing with ambiguity and uncertainty [2–5].

Similar to the fuzzy number, Atanassov’s intuitionistic

fuzzy number (AIFN) is a particular AIFS defined on the set of

real numbers. There are several typical AIFNS, such as tri-

angular AIFN (ATIFN) [6–15], trapezoidal AIFN (TrAIFN)

[16–23] and interval-valued TrAIFN (IVTrAIFN) [24–26].

Compared with the AIFSs, TAIFNs can express decision

information in different dimensions and reflect the assessment

information more comprehensively [6–15]. Therefore, it is

very meaningful and valuable to apply TAIFNs to MAGDM
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problems. Hence, in this paper, we mainly focus on TAIFN

and do not discuss the TrAIFN and IVTrAIFN.

At present, the research on TAIFNs has made some pro-

gresses. Shu and Cheng [6] characterized the membership

and non-membership degrees of AIFS using triangular fuzzy

numbers and put forward the concept of TAIFN. Li [7]

improved the operation laws of TAIFNs defined in [6]. Nan

et al. [8] studied matrix game problem in which the payments

are TAIFNs. Li [9] defined the values and ambiguities for a

TAIFN, developed a new ranking method on the basis of the

ratio of the value index to the ambiguity index which is

incorporated in MADM with TIFNs. Li et al. [10] investi-

gated the cut sets and the values and ambiguities of TAIFNs,

thereby proposed a ranking method of TAIFNs to solve

MADM problems. Wan et al. [11] extended the classical

VIKOR method for MAGDM using TIFNs. According to the

possibility theory of fuzzy sets, Wan et al. [12] introduced the

possibility mean, variance and covariance of TAIFNs. Wan

[13] further proposed the MADM method on the basis of the

possibility variance coefficient of TIFNs. Wan and Dong

[14] developed the possibility-based method for MAGDM

with incomplete weight information in the context of

TAIFNs. Wang et al. [15] proposed some operation laws for

TAIFNs, which are employed in fault analysis of a printed

circuit board assembly system.

The aforementioned research mainly focuses on operation

laws, ranking method, possibility mean, variance and

covariance of TAIFNs. There is less investigation on the

information fusion operators of TAIFNs. Information aggre-

gation is an important link for MAGDM. The information

fusion operators of TAIFNs are the useful tools for integrating

all attributes of alternative into an individual overall value. Up

to now, a great number of aggregation operators have been

proposed and applied to decision-making field, such as

ordered weighted average (OWA) operator [27], generalized

ordered weighted average (GOWA) operator [28], fuzzy

generalized ordered weighted average (FGOWA) operator

[29], hybrid average (HA) operator [30], fuzzy generalized

hybrid average (FGHA) operator [31], quasi-arithmetic mean

operators [32], to name a few. For more details, readers can

refer to the review literature [33] and the newest monograph

[34]. Therefore, this paper defines some weighted arithmetic

average operators and generalized ordered weighted average

operators of TAIFNs and proposes a new approach to solving

the MAGDM problems with TAIFNs and incomplete attribute

weight information. The main works and features of this paper

are presented as follows:

1. Define some triangular intuitionistic fuzzy aggregation

operators, i.e., the triangular Atanassov’s intuitionistic

fuzzy weighted average (TAIFWA) operator, ordered

weighted average (TAIFOWA) operator and hybrid

weighted average (TAIFHWA) operator.

2. Develop two triangular Atanassov’s intuitionistic fuzzy

generalized ordered weighted average operators, i.e.,

triangular Atanassov’s intuitionistic fuzzy generalized

ordered weighted average (TAIFGOWA) operator and

triangular Atanassov’s intuitionistic fuzzy generalized

hybrid weighted average (TAIFGHWA) operator.

3. Determine objectively the attribute weights through

constructing multi-objective programming model

which can be transformed into a linear goal program-

ming one to solve.

4. Propose a new approach to MAGDM with TIFNs and

incomplete attribute weight information.

The rest of this paper is organized as follows. In Sect. 2,

we review the basic concepts, distance and ranking method

of TAIFNs. Section 3 introduces some triangular intu-

itionistic fuzzy arithmetic aggregation operators and gen-

eralized ordered weighted average operators and discusses

some desirable properties in detail. Section 4 proposes a

new approach to solving the MAGDM problems with

TAIFNs and incomplete attribute weight information. In

Sect. 5, we provide a green supplier selection example to

illuminate the proposed method. Some conclusion remarks

are made in the last section.

2 Triangular Atanassov’s intuitionistic fuzzy
numbers

In this section, we give some concepts of TAIFNs,

involving the definition, operation laws, Hamming distance

and ranking method.

2.1 Review on TAIFNs

Definition 1 [9] A TAIFN ~a ¼ ða; a; �aÞ;w~a; u~að Þ is a

special AIFS on the set R of real numbers, whose mem-

bership and non-membership functions are, respectively,

defined as follows:

l~aðxÞ ¼

x� a

a� a
w~a; if a� x\ a

w~a; if x ¼ a
�a� x

�a� a
w~a; if a\ x � �a

0; if x\ a or x [ �a

8
>>>>><

>>>>>:

;

and

m~aðxÞ ¼

a� xþ ðx� aÞu~a

a� a
; if a� x\a

u~a; if x ¼ a
x� aþ ð�a� xÞu~a

�a� a
; if a\x� �a

1; if x\a or x[ �a

8
>>>>><

>>>>>:

;
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which are depicted in Fig. 1, and the values w~a and u~a

mean the maximum degree of membership and the mini-

mum degree of non-membership, such that 0�w~a � 1,

0� u~a � 1 and w~a þ u~a � 1. p~aðxÞ ¼ 1 � w~aðxÞ � u~aðxÞ is

called an intuitionistic fuzzy index of an element x in ~a.

If a� 0 and at least one of a, a and ði ¼ 1; 2Þ is not equal

to 0, then the TAIFN ~a ¼ ða; a; �aÞ;w~a; u~að Þ is positive and

denoted by ~a� 0 [9]. In the sequel, we only use positive

TAIFNs. Denote the set of all positive TAIFNs by X.

Definition 2 [9] Let ~ai ¼ ðai; ai; �aiÞ;w~ai ; u~aið Þ (i = 1, 2)

be two TAIFNs and k� 0. Then the operation laws for

TAIFNs are defined as:

1. ~a1 þ ~a2 ¼ ða1 þ a2; a1 þ a2; �a1 þ �a2Þ;w~a1
^ w~a2

; u~a1
ð

_u~a2
Þ;

2. ~a1~a2 ¼ ða1a2; a1a2; �a1�a2Þ;w~a1
^ w~a2

; u~a1
ð _u~a2

Þ;
3. k~a1 ¼ ðka1; ka1; k�a1Þ;w~a1

; u~a1
ð Þ;

4. ~ak1 ¼ ðak1; ak1; �ak1Þ;w~a1
; u~a1

� �
;

where ‘‘^’’ and ‘‘_’’ represent min and max operators,

respectively.

Definition 3 Let ~a1 ¼ ðða1; a1; �a1Þ;w~a1
; u~a1

Þ and ~a2 ¼
ðða2; a2; �a2Þ;w~a2

; u~a2
Þ be two TAIFNs. The Hamming dis-

tance between ~a1 and ~a2 is defined as

dð~a1; ~a2Þ ¼ 1

6
½jð1 þ w~a1

� u~a1
Þa1 � ð1 þ w~a2

� u~a2
Þa2j

þ jð1 þ w~a1
� u~a1

Þa1 � ð1 þ w~a2
� u~a2

Þa2j
þ jð1 þ w~a1

� u~a1
Þ�a1 � ð1 þ w~a2

� u~a2
Þ�a2j�:

2.2 The ranking method of TAIFNs

Definition 4 [9] Let ~a ¼ ða; a; �aÞ;w~a; u~að Þ be a TAIFN.

Then the membership function average index Sð~aÞ and the

non-membership function average index Hð~aÞ of ~a are

defined by

Sð~aÞ ¼ w~aðaþ 2aþ �aÞ=4; ð1Þ

and

Hð~aÞ ¼ ð1 � u~aÞðaþ 2aþ �aÞ=4; ð2Þ

respectively.

Li [9] presented an order relation among two TAIFNs,

which is specified in Definition 5.

Definition 5 [9] Let ~a1 and ~a2 be two TAIFNs. Sð~aiÞ ¼
w~aiðai þ 2ai þ �aiÞ=4 and Hð~aiÞ ¼ ð1 � u~aiÞðai þ 2aiþ
�aiÞ=4 are the membership and non-membership function

average indexes of ~ai (i = 1, 2), respectively. Then

1. if Sð~a1Þ\Sð~a2Þ, then ~a1 is smaller than ~a2, denoted by

~a1\~a2;

2. if Sð~a1Þ ¼ Sð~a2Þ, then

a) if Hð~a1Þ ¼ Hð~a2Þ, then ~a1 and ~a2 represent the

same amount, i.e., ~a1 is equal to ~a2, denoted by

~a1 ¼ ~a2;

b) if Hð~a1Þ\Hð~a2Þ then ~a1\~a2.

Theorem 1 For two TAIFNs ~ai ¼ ðai; ai; �aiÞ;w~ai ; u~aið Þ
ði ¼ 1; 2Þ, if
a1 � a2; a1 � a2; �a1 � �a2;w~a1

�w~a2
; u~a1

� u~a2
; ð3Þ

then ~a1 � ~a2, where the symbol B means smaller than or

equal to.

Proof Since a1 � a2; a1 � a2; �a1 � �a2;w~a1
�w~a2

; u~a1
� u~a2

,

we have

w~a1
ða1 þ 2a1 þ �a1Þ=4�w~a2

ða2 þ 2a2 þ �a2Þ=4; ð1 � u~a1
Þ

ða1 þ 2a1 þ �a1Þ=4�ð1 � u~a2
Þða2 þ 2a2 þ �a2Þ=4:

Namely, Sð~a1Þ� Sð~a2Þ, Hð~a1Þ�Hð~a2Þ. Thus, ~a1 � ~a2.

Theorem 1 shows that Eq. (3) may be viewed as a

sufficient condition of ~a1 � ~a2.

3 Some triangular Atanassov’s intuitionistic fuzzy
aggregation operators

In this part, motivated by existing achievements [29–34],

we develop some triangular Atanassov’s intuitionistic

fuzzy arithmetic aggregation operators and discuss some

useful properties of them. Then, two new generalized

aggregation operators for TAIFNs are further investigated.

3.1 Some triangular Atanassov’s intuitionistic fuzzy

arithmetic aggregation operators

Definition 6 A triangular Atanassov’s intuitionistic fuzzy

weighted average operator is a mapping TAIFWA: Xn !
X and

a x

aw

au

1

( )a xν

( )a xμ

aa

Fig. 1 The membership function and non-membership function of

TAIFN
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TAIFWAwð~a1; ~a2; . . .; ~anÞ

¼
Xn

i¼1

wiai;
Xn

i¼1

wiai;
Xn

i¼1

wi�ai

 !

;^n
i¼1w~ai ;_n

i¼1u~ai

 !

;
ð4Þ

in which w ¼ ðw1;w2; . . .;wnÞT
is the weighting vector of

~ai (i = 1, 2,…,n), satisfying 0�wi � 1 (i = 1, 2,…,n) and
Pn

i¼ 1 wi ¼ 1. In particular, if wi ¼ 1=n, then the TAIFWA

operator is called the triangular Atanassov’s intuitionistic

fuzzy arithmetic average (TAIFAA) operator.

Definition 7 A triangular Atanassov’s intuitionistic fuzzy

ordered weighted average operator is a mapping TAIFOWA:

Xn ! X and

TAIFOWAwð~a1; ~a2; . . .; ~anÞ ¼
Xn

i¼1

wi~aðiÞ

¼
Xn

i¼1

wiaðiÞ;
Xn

i¼1

wiaðiÞ;
Xn

i¼1

wi�aðiÞ

 !

;^n
i¼1w~aðiÞ ;_n

i¼1u~aðiÞ

 !

;

ð5Þ

where w ¼ w1;w2; . . .;wnð ÞT
is the weighting vector asso-

ciated with TAIFOWA, satisfying 0�wi � 1 ði ¼
1; 2; . . .; nÞ and

Pn
i¼1 wi ¼ 1, ðð1Þ; ð2Þ; . . .; ðnÞÞ is a per-

mutation of (i = 1, 2,…,n) such that ~aði�1Þ � ~aðiÞ for all i.

Definition 8 A triangular Atanassov’s intuitionistic fuzzy

hybrid weighted average operator is a mapping TAIFHWA:

Xn ! X and

TAIFHWAx;wð~a1; ~a2; . . .; ~anÞ ¼
Xn

i¼1

wi
~bðiÞ

¼
Xn

i¼1

wi bðiÞ

� �
;
Xn

i¼1

wi bðiÞ
� �

;
Xn

i¼1

wi
�bðiÞ
� �

 !

;^n
i¼1w~aðiÞ ;_n

i¼1u~aðiÞ

 !

;

ð6Þ

where w ¼ ðw1;w2; . . .;wnÞT
is the weighting vector asso-

ciated with TAIFHWA, satisfying 0�wi � 1 (i = 1,

2,…,n) and
Pn

i¼1 wi ¼ 1, x ¼ ðx1;x2; . . .;xnÞT
is the

weighting vector of ~ai (i = 1, 2,…,n), satisfying 0�xi � 1

(i = 1, 2,…,n) and
Pn

i¼1 wi ¼ 1, ~bi is a TAIFN obtained by

weighting the ~ai, i.e., ~bi ¼ nxi~ai, ð1Þ; ð2Þ; . . .; ðnÞð Þ is a

permutation of ð1; 2; . . .; nÞ such that
~bð1Þ � ~bð2Þ � � � � � ~bðnÞ.

The weighting vector w ¼ ðw1;w2; . . .;wnÞT
associated

with TAIFHWA (or TAIFOWA) can be obtained by the

fuzzy linguistic quantifier [27] as follows:

wi ¼ Qð i
n
Þ � Qði� 1

n
Þ ði ¼ 1; 2; . . .; nÞ ð7Þ

where Q is the fuzzy linguistic quantifier and

QðtÞ ¼
0; t\n
ðt � nÞ=ðg� nÞ; n� t\g
1; t� g

8
<

:

with n; t; g 2 ½0; 1�. For the criteria ‘‘at least half,’’ ‘‘most’’

and ‘‘as many as possible,’’ the parameter pair ðn; gÞ takes

the values (0, 0.5), (0.3, 0.8) and (0.5,1), respectively.

3.2 Some generalized ordered weighted average

operators of TAIFNs

In this section, the TAIFOWA operator is further gener-

alized to develop two new generalized aggregation opera-

tors for TIFNs, which are totally inspired by Merigó and

Casanovas [29, 31, 32].

Definition 9 A triangular Atanassov’s intuitionistic fuzzy

generalized ordered weighted average operator is a map-

ping TAIFGOWA: Xn ! X and

TAIFGOWAwð~a1; ~a2; . . .; ~anÞ ¼
Xn

i¼1

wið~aðiÞÞk
 !1=k

¼
Xn

i¼1

wiðaðiÞÞ
k

 !1=k

;
Xn

i¼1

wiðaðiÞÞk
 !1=k

;

0

@

0

@

Xn

i¼1

wið�aðiÞÞk
 !1=k

1

A;^n
i¼1w~aðiÞ ;_n

i¼1u~aðiÞ

1

A; ð8Þ

where k 2 ð0;þ1Þ is a parameter, w ¼ ðw1;w2; . . .;wnÞT

is the weighting vector associated with TAIFGOWA, sat-

isfying 0�wi � 1 (i = 1, 2,…,n) and
Pn

i¼1 wi ¼ 1,

ð1Þ; ð2Þ; . . .; ðnÞð Þ is a permutation of ð1; 2; . . .; nÞ such that

~aði�1Þ � ~aðiÞ for all i.

The TAIFGOWA operator has some useful properties

which are listed in the following propositions.

Proposition 1 (Idempotence) Let ~ai ¼
ðai; ai; �aiÞ;w~ai ; u~aið Þ (i = 1, 2,…,n) be a group of TAIFNs.

If all ~ai ði ¼ 1; 2; . . .; nÞ are equal, i.e., ~a1 ¼ ~a2 ¼
� � � ¼ ~an ¼ ~a, then TAIFGOWAwð~a1; ~a2; . . .; ~anÞ ¼ ~a.

Proof According to Definition 9, for ~ai ¼ ~a (i = 1,

2,…,n), we have

TAIFGOWAwð~a1; ~a2; . . .; ~anÞ ¼
Xn

i¼1

wiðaðiÞÞ
k

 !1=k

;

0

@

0

@

Xn

i¼1

wiðaðiÞÞk
 !1=k

;
Xn

i¼1

wið�aðiÞÞk
 !1=k

1

A;^n
i¼1w~aðiÞ ;_n

i¼1u~aðiÞ

1

A

¼
Xn

i¼1

wiðaÞk
 !1=k

;
Xn

i¼1

wiðaÞk
 !1=k

;
Xn

i¼1

wið�aÞk
 !1=k

0

@

1

A;

0

@

^n
i¼1w~a;_n

i¼1u~a

!

Note that
Pn

i¼1 wi ¼ 1, so
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TAIFGOWAwð~a1; ~a2; . . .; ~anÞ

¼ ðððaÞkÞ1=k; ððaÞkÞ1=k; ðð�aÞkÞ1=kÞ;w~a; u~a

� �

¼ ða; a; �aÞ;w~a; u~að Þ ¼ ~a:

Proposition 2 (Monotonicity) Let ~ai ¼ ðai; ai;ð
�aiÞ;w~ai ; u~aiÞ and ~a0i ¼ ða0i; a0i; �a0iÞ;w~a0

i
; u~a0

i

� �
be two collec-

tions of TAIFNs, and ðð1Þ; ð2Þ; . . .; ðnÞÞ is a permutation of

ð1; 2; . . .; nÞ such that aðiÞ � a0ðiÞ, aðiÞ � a0ðiÞ, �aðiÞ � �a0ðiÞ,

w~aðiÞ �w~a0ðiÞ
, u~aðiÞ � u~a0ðiÞ

for all i (i = 1, 2,…,n), then

TAIFGOWAwð~a1; ~a2; . . .; ~anÞ�TAIFGOWAwð~a01; . . .; ~a0nÞ:

Proof Since aðiÞ � a0ðiÞ, aðiÞ � a0ðiÞ, �aðiÞ � �a0ðiÞ, w~aðiÞ �w~a0ðiÞ
,

u~aðiÞ � u~a0ðiÞ
, we get

Xn

i¼1

wiðaðiÞÞ
k

 !1=k

�
Xn

i¼1

wiða0ðiÞÞ
k

 !1=k

;

Xn

i¼1

wiðaðiÞÞk
 !1=k

�
Xn

i¼1

wiða0ðiÞÞ
k

 !1=k

;

Xn

i¼1

wið�aðiÞÞk
 !1=k

�
Xn

i¼1

wið�a0ðiÞÞ
k

 !1=k

;

î
w~aðiÞ �

î
w~a0ðiÞ

; _
i
u~aðiÞ � _

i
u~a0ðiÞ

:

Therefore, according to Eqs. (3) and (8), we have

TAIFGOWAwð~a1; ~a2; . . .; ~anÞ�TAIFGOWAwð~a01; . . .; ~a0nÞ:

Proposition 3 (Boundedness) Let ~ai ¼
ðai; ai; �aiÞ;w~ai ; u~aið Þ (i = 1, 2,…,n) be a group of TAIFNs.

If

~a� ¼ ðmin
i

aif g;min
i

aif g;min
i

�aif gÞ;
î
w~ai ;_

i
u~ai

� �

;

~aþ ¼ ðmax
i

aif g;max
i

aif g;max
i

�aif gÞ;_
i
w~ai ;

î
u~ai

� �

;

then

~a� �TAIFGOWAwð~a1; ~a2; . . .; ~anÞ� ~aþ:

Proof For any ~ai ¼ ðai; ai; �aiÞ;w~ai ; u~aið Þ (i = 1, 2,…,n),

we have

min
i

aðiÞ

n o
�

Xn

i¼1

wiðaðiÞÞ
k

 !1=k

� max
i

aðiÞ

n o
;

min
i

aðiÞ
� 	

�
Xn

i¼1

wiðaðiÞÞk
 !1=k

� max
i

aðiÞ
� 	

;

min
i

�aðiÞ
� 	

�
Xn

i¼1

wið�aðiÞÞk
 !1=k

� max
i

�aðiÞ
� 	

:

Thus, according to Eqs. (8) and (1), we get

~a� �TAIFGOWAwð~a1; ~a2; . . .; ~anÞ� ~aþ.

Proposition 4 Let ð _~a1; _~a2; . . .; _~anÞ be an arbitrary per-

mutation of ð~a1; ~a2; . . .; ~anÞ, then
TAIFGOWAwð~a1; ~a2; . . .; ~anÞ¼TAIFGOWAwð _~a1; _~a2; . . .; _~anÞ:

Proof Since ð _~a1; _~a2; . . .; _~anÞ is an arbitrary permutation of

ð~a1; ~a2; . . .; ~anÞ, _~aði�1Þ � _~aðiÞ is equivalent to ~aði�1Þ � ~aðiÞ.

Thus, we have

TAIFGOWAwð _~a1; _~a2; . . .; _~anÞ ¼
Xn

i¼1

wið _~aðiÞÞk
 !1=k

¼
Xn

i¼1

wið~aðiÞÞk
 !1=k

= TAIFGOWAwð~a1; ~a2; . . .; ~anÞ:

Proposition 5 Let ~ai ¼ ðai; ai; �aiÞ;w~ai ; u~aið Þ (i = 1,

2,…,n) be a collection of TAIFNs. Then,

1. when k ! 0, it easily follows from Eq. (8) that

TAIFGOWAwð~a1; ~a2; . . .; ~anÞ ¼
Yn

i¼1

ð~aðiÞÞwi ;

which is called the ordered weighted geometric

operator of TAIFNs;

2. when k ! 1, it easily follows from Eq. (8) that

TAIFGOWAwð~a1; ~a2; . . .; ~anÞ ¼
Xn

i¼1

wi~aðiÞ;

which is reduced to the TAIFOWA operator;

3. when k ! þ1 and wi 6¼ 0 (i = 1, 2,…,n), by Eq. (8)

it follows that

TAIFGOWAwð~a1; ~a2; . . .; ~anÞ ¼ maxf~aiji
¼ 1; 2; . . .; ng;

which is called the max operator of TAIFNs;

4. if all weights are equal, i.e., wi ¼ 1=n (i = 1, 2,…,n),

then by Eq. (8) it is easily derived that

TAIFGOWAwð~a1; ~a2; . . .; ~anÞ ¼
1

n

Xn

i¼1

ð~aðiÞÞk
 !1=k

;

ð9Þ

which is called the triangular Atanassov’s intuition-

istic fuzzy generalized mean (TAIFGM) operator. To

sum up, the TAIFGOWA operator reduces to the

TAIFGM operator, if the weighting vector

w¼ 1=n; 1=n; . . .;ð 1=nÞT:

By Eq. (8), Eq. (9) can be explicitly written as
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TAIFGOWAwð~a1; ~a2; . . .; ~anÞ

¼ 1

n

Xn

i¼1

ðaðiÞÞ
k

 !1=k

;
1

n

Xn

i¼1

ðaðiÞÞk
 !1=k

;

0

@

0

@

1

n

Xn

i¼1

ð�aðiÞÞk
 !1=k

1

A;^n
i¼1w~aðiÞ ;_n

i¼1u~aðiÞ

1

A: ð10Þ

Particularly, if k = 1, then by Eq. (10) it is easily

derived that

TAIFGOWAwð~a1; ~a2; . . .; ~anÞ

¼ 1

n

Xn

i¼1

ðaðiÞÞ;
1

n

Xn

i¼1

ðaðiÞÞ;
1

n

Xn

i¼1

ð�aðiÞÞ
 !

;

 

^n
i¼1w~aðjÞ ;_n

i¼1u~aðiÞ

�
;

which is called triangular Atanassov’s intuitionistic fuzzy

simple average operator.

Propositions 1–5 show that, although the meaning of k is

not totally obvious, the TAIFGOWA operator can have

different forms using different values of the parameter k.

The parameter k can reflect some preference of DM to

some degree. It can be chosen properly according to the

need of real application and the DM’s preference.

Definition 10 A triangular Atanassov’s intuitionistic

fuzzy generalized hybrid weighted average operator is a

mapping TAIFGHWA: Xn ! X and

TAIFGHWAx;wð~a1; ~a2; . . .; ~anÞ ¼
Xn

i¼1

wið~bðiÞÞk
 !1=k

¼
Xn

i¼1

wiðbðiÞÞ
k

 !1=k

;
Xn

i¼1

wiðbðiÞÞk
 !1=k

;

0

@

0

@

Xn

i¼1

wið�bðiÞÞk
 !1=k

1

A;^n
i¼1w~aðiÞ ;_n

i¼1u~aðiÞ

1

A; ð11Þ

where k 2 ð0;þ1Þ is a parameter, w ¼ ðw1;w2; . . .;wnÞT
is

the weighting vector associated with TAIFGHWA, satisfy-

ing 0�wi � 1 (i = 1, 2,…,n) and
Pn

i¼1 wi ¼ 1, x ¼
ðx1;x2; . . .;xnÞT

is the weighting vector of ~ai (i = 1,

2,…,n), satisfying 0�xi � 1 ði ¼ 1; 2; . . .; nÞ and
Pn

i¼1 wi ¼ 1, (i) indicates a permutation of i such that

~bð1Þ � ~bð2Þ � � � � � ~bðnÞ and ~bi is a triangular Atanassov’s

intuitionistic fuzzy number obtained by weighting the ~ai, that

is, ~bi ¼ nxi~ai. In particular, if k = 1, then the TAIFGHWA

operator is called the triangular Atanassov’s intuitionistic

fuzzy hybrid weighted average (TAIFHWA) operator.

By Definition 10, we can immediately get the following

conclusions:

1. when k ! 0, it easily follows from Eq. (11) that

TAIFGHWAwð~a1; ~a2; . . .; ~anÞ ¼
Yn

i¼1

ð~bðiÞÞwi ;

which is called the hybrid weighted geometrical

operator of TAIFNs;

2. when k ! 1, it easily follows from Eq. (11) that

TAIFGHWAwð~a1; ~a2; . . .; ~anÞ ¼
Xn

i¼1

wi
~bðiÞ;

which is called the hybrid weighted average operator

of TAIFNs;

3. when k ! þ1 and wi 6¼ 0 (i = 1, 2,…,n), it easily

follows from Eq. (11) that

TAIFGHWAwð~a1; ~a2; . . .; ~anÞ ¼ maxf~biji
¼ 1; 2; . . .; ng;

which is called the hybrid max operator of TAIFNs;

4. if all weights are equal, i.e., wi ¼ 1=n (i = 1, 2,…,n),

then by Eq. (11) it is easily derived that

TAIFGHWAwð~a1; ~a2; . . .; ~anÞ ¼ 1

n

Xn

i¼1

ð~bðiÞÞk
 !1=k

;

which is called generalized hybrid mean operator of

TAIFNs.

4 MAGDM with TIFNs and incomplete attribute
weight information

In this part, we present the MAGDM problems with

TAIFNs and incomplete attribute weight information and

then propose a new approach to solving such MAGDM

problems using TAIFWA and TAIFGHWA operators.

4.1 Statement of MAGDM problems using TIFNs

and incomplete attribute weight information

MAGDM refers to the selection or ranking alternatives asso-

ciated with some attributes for a decision group. There are p

DMs ek ðk ¼ 1; 2; . . .; pÞ who attempt to choose one of (or

rank)malternativesAi ði ¼ 1; 2; . . .;mÞ assessed onnattributes

ajðj ¼ 1; 2; . . .; nÞ. Denote the set of DMs (or experts) by E ¼
fe1; e2; . . .; epg, the set of alternatives by A ¼ fA1;A2; . . .;

Amg and the set of attributes by F ¼ fa1; a2; . . .; ang. Assume

that the rating of alternative Ai on attribute aj given by the DM

ek is represented by a TAIFN ~akij ¼ ðakij; akij; �akijÞ;
�

w~ak
ij
; u~ak

ij
Þði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; pÞ.

Thus, we can get the triangular Atanassov’s intuitionistic fuzzy

decision matrices ~Dk ¼ ð~akijÞm�n ðk ¼ 1; 2; . . .; pÞ, on the basis

of which the MAGDM problems are usually investigated.
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Suppose that tk is the weight of expert

ek 2 E ðk ¼ 1; 2; . . .; pÞ, and it is known in advance. xj is the

relative weight of attribute aj 2 F ðj ¼ 1; 2; . . .; nÞ, satisfying

the normalization condition:
Pn

j¼1 xj ¼ 1 and xj 2 ½0; 1� ðj
¼ 1; 2; . . .; nÞ. Denote K0 ¼ fxj

Pn
j¼1 xj ¼ 1;xj 2 ½0; 1�

ðj ¼ 1; 2; . . .; nÞg, which is the set of all attribute weighting

vectors. Usually, the information of attribute weights is

incomplete. It has five basic relations, which are denoted by

subsets Ks ðs ¼ 1; 2; 3; 4; 5Þ of K0, respectively (see Refs. [3,

4, 35] for detail). Denote the incomplete information structure

of attribute weights byK, which consists of several subsetsKs

ðs ¼ 1; 2; 3; 4; 5Þ.
The motivation of this paper is to select the best alternative

according to the fuzzy decision matrices ~Dk ðk ¼ 1; 2; . . .; pÞ
and incomplete information structure K of attribute weights.

4.2 Determining the attribute weighting vector

based on goal programming model

In order to diminish the physical effect of different

dimensions on the final decision results, the decision matrix
~Dk ¼ ð~akijÞm�n should be normalized as ~Rk ¼ ð~rkijÞm�n where

~rkij ¼ ððrkij; rkij; �rkijÞ;w~ak
ij
; u~ak

ij
Þ, and

rkij ¼ akij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
ð�akijÞ

2
q

; rkij ¼ akij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
ðakijÞ

2
q

;

�rkij ¼ �akij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
ðakijÞ

2
q

; for j 2 Fb;
ð12Þ

rkij ¼
1

�akij
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xm

i¼1

1

akij

 !2
v
u
u
t ; rkij ¼

1

akij
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xm

i¼1

1

akij

 !2
v
u
u
t ;

�rkij ¼
1

akij
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xm

i¼1

1

�akij

 !2
v
u
u
t ; for j 2 Fc; ð13Þ

where Fb is the collection of benefit attributes and Fc is the

collection of cost attributes.

To derive the weights of attributes, we select the trian-

gular Atanassov’s intuitionistic fuzzy positive ideal solu-

tion Aþ ¼ ð~rþ1 ; ~rþ2 ; . . .; ~rþn Þ as a reference point, where

~rþj ¼ ðð1; 1; 1Þ; 1; 0Þ ðj ¼ 1; 2; . . .; nÞ.
Generally, the closer the alternative to the positive ideal

solution, the better the alternative is. We use Hamming

distance to measure the deviation between the ideal solu-

tion and alternative. The Hamming distance between

alternative Ai and A? for the DM ek is computed as follows:

dkðAi;A
þÞ ¼ 1

6
½jð1 þ

ĵ
w~rk

ij
� _

j
u~rk

ij
Þ

Xn

j¼1

xjr
k
ij � 2j þ jð1 þ

ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xjr
k
ij � 2j

þ jð1 þ
ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xj�r
k
ij � 2j�:

Hence, the total deviation between all alternatives and

A? for the DM ek is
Pm

i¼1 dkðAi;A
þÞ.

To reasonably determine the weights of attributes, we

can establish the multi-objective optimization model:

min
Xm

i¼1

d1ðAi;A
þÞ ;

Xm

i¼1

d2ðAi;A
þÞ; . . .;

Xm

i¼1

dpðAi;A
þÞ

( )

:

s:t:x 2 K ð14Þ

Equation (14) can be converted into a single-objective

programming by linear sum of DMs’ weights:

min
Xp

k¼1

½tk
Xm

i¼1

dkðAi;A
þÞ�

( )

s:t:x 2 K ð15Þ

To solve the above model, we can set

dkþi1 ¼ 1

2
½jð1 þ

ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xjr
k
ij � 2j

þ ð1 þ
ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xjr
k
ij � 2�;

dk�i1 ¼ 1

2
½jð1 þ

ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xjr
k
ij � 2j

� ð1 þ
ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xjr
k
ij þ 2�;

dkþi2 ¼ 1

2
½jð1 þ

ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xjr
k
ij � 2j

þ ð1 þ
ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xjr
k
ij � 2�;

dk�i2 ¼ 1

2
½jð1 þ

ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xjr
k
ij � 2j

� ð1 þ
ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xjr
k
ij þ 2�;

dkþi3 ¼ 1

2
½jð1 þ

ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xj�r
k
ij � 2j

þ ð1 þ
ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xj�r
k
ij � 2�;

dk�i3 ¼ 1

2
½jð1 þ

ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xj�r
k
ij � 2j

� ð1 þ
ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Xn

j¼1

xj�r
k
ij þ 2�:

Thus, Eq. (15) is converted into the linear goal pro-

gramming model:
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By simplex method, the attribute weighting vector x ¼
ðx1;x2; . . .;xnÞT

can be obtained.

4.3 A new approach to MAGDM using TAIFNs

and incomplete attribute weight information

So, a new approach to MAGDM with TAIFNs and

incomplete attribute weight information is described step

by step as follows:

Step 1 Normalized the decision matrix ~Dk ¼ ð~akijÞm�n to

~Rk ¼ ð~rkijÞm�n by using Eqs. (12) and (13).

Step 2 By integration of the ith row elements of the

matrix ~Rk ¼ ð~rkijÞm�n using the TAIFWA

operator, the individual comprehensive value

~rki of alternative Ai for the DM ek is obtained as

follows:

~rki ¼ ððrki ; rki ; �rki Þ;w~rk
i
; u~rk

i
Þ

¼ TIFWAxð~rki1; ~rki2; . . .; ~rkinÞ

¼
Xn

j¼1

xjr
k
ij;
Xn

j¼1

xjr
k
ij;
Xn

j¼1

xj�r
k
ij

 !

;

 

ĵ
w~rk

ij
;_
j
u~rk

ij

�

; ð17Þ

where x ¼ ðx1;x2; . . .;xnÞT
is the weighting

vector of attributes.

Step 3 Determine the weights of attributes through

constructing multi-objective programming.

Step 4 Utilized the TAIFGHWA operator to integrate

all the individual comprehensive values ~rki
ðk ¼ 1; 2; . . .; pÞ, the collective comprehensive

value ~ri of alternative Ai is computed by

~ri ¼ ððri;ri; �riÞ;w~ri ;u~riÞ
¼ TAIFGHWAw;vð~r1

i ; ~r
2
i ; . . .; ~r

p
i Þ

¼
Xp

k¼1

wkðr0ðkÞi Þk
 !1=k

;
Xp

k¼1

wkðr0ðkÞi Þk
 !1=k

;

0

@

0

@

Xp

k¼1

wkðr0ðkÞi Þk
 !1=k

1

A;
k̂
w~rk

i
;_
k
u

~rk
i

1

A;

ð18Þ

where ~r
0ðkÞ
i ¼ r

0ðkÞ
i ; r

0ðkÞ
i ; �r

0ðkÞ
i

� �
;

�
w

~r
0ðkÞ
i

; u
~r
0ðkÞ
i

Þ
represents the kth largest TAIFN of ~r0ki ¼ ptk~r

k
i

ðk ¼ 1; 2; . . .; pÞ, T ¼ ðt1; t2; . . .; tpÞT
is the

weighting vector of DMs, w ¼ ðw1;w2; . . .;wpÞT

is the weighting vector associated with

TAIFGHWA.

Step 5 According to Definition 4, calculate the

membership and non-membership function

average indexes for the collective comprehensive

value ~rki to sort ~ri (i = 1, 2,…,m), and then

generate the ranking order of alternatives.

The aforementioned decision-making process can be

described by the following algorithm.

Algorithm: An approach to MAGDM with TAIFNs

Step 1: Normalize each decision matrixes by Eqs. (12) and (13);

Step 2: Calculate the individual comprehensive value ~rki by

Eq. (17);

Step 3: Determine the weights of attributes by Eq. (16);

Step 4: Compute the collective comprehensive value ~ri by

Eq. (18);

Step 5: Rank the alternatives by the value ~ri (i = 1, 2,…,m).

min Z ¼ 1

6

Xp

k¼1

½tk
Xm

i¼1

X3

l¼1

ðdkþil þ dk�il Þ�

s:t:

ð1 þ
ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Pn

j¼1

xjr
k
ij � 2 � dkþi1 þ dk�i1 ¼ 0 ði ¼ 1; 2; . . .;m; k ¼ 1; 2; . . .; pÞ

ð1 þ
ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Pn

j¼1

xjr
k
ij � 2 � dkþi2 þ dk�i2 ¼ 0 ði ¼ 1; 2; . . .;m; k ¼ 1; 2; . . .; pÞ

ð1 þ
ĵ
w~rk

ij
� _

j
u~rk

ij
Þ
Pn

j¼1

xj�r
k
ij � 2 � dkþi3 þ dk�i3 ¼ 0 ði ¼ 1; 2; . . .;m; k ¼ 1; 2; . . .; pÞ

dkþil � 0; dk�il � 0; dkþil dk�il ¼ 0 ði ¼ 1; 2; . . .;m; k ¼ 1; 2; . . .; p; l ¼ 1; 2; 3Þ
x 2 K

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð16Þ
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5 A green supplier selection example analysis

In this part, a green supplier selection example is provided

to demonstrate the applicability and reasonability of the

proposed method in the paper.

5.1 A green supplier selection example

and the analysis process

Nowadays, global environment is a vital concern in reality,

and an increasingly extensive attention is concentrated on

the green production in various fields. An air-conditioning

company plans to select the most appropriate green sup-

plier for a key element in its process of manufacture. After

pre-assessment, four suppliers Ai ði ¼ 1; 2; 3; 4Þ are

remained for further evaluation from five aspects: the

product quality a1; the technology capability a2; the pol-

lution control a3; the environmental management a4; and

the profitability a5 (whose weighting vector is unknown). A

group of DMs are asked to form a advisory committee: e1

is from the production department; e2 is from the engi-

neering department; e3 is from the quality inspection

department; and e4 is from the purchasing department

(whose weighting vector is known that

t ¼ ð0:20; 0:30; 0:35; 0:15ÞT
). By statistical analysis, the

assessment information of the alternatives on attributes can

be characterized by TAIFNs as in Tables 1, 2, 3 and 4.

The weighting vector of attributes is unknown, but their

incomplete weight information can be used to estimate.

According to the experts’ comprehensions and judgments,

the preference information structure K of attribute weight

by the experts is presented as follows:

Table 1 The TAIFN decision matrix by e1

a1 a2 a3 a4 a5

A1 ((4,6,7);0.5,0.4) ((7,9,10);0.6,0.4) ((4,6,7);0.6,0.2) ((6.4,7.8,8.5);0.4,0.5) ((5.7,7.7,8.3);0.5,0.3)

A2 ((5,6,8);0.7,0.1) ((6,8,10);0.5,0.3) ((7,8,9);0.7,0.3) ((6.7,8.5,9.7);0.3,0.5) ((5, 7, 8);0.4, 0.6)

A3 ((4,5,6);0.5,0.3) ((6,8,9);0.6,0.3) ((8,9,10);0.4,0.3) ((4.8,5.6,9.1);0.4,0.2) ((5.7,7.7,9);0.5,0.2)

A4 ((6,7,9);0.6,0.2) ((7,8,10);0.7,0.2) ((5,6,7);0.8,0.1) ((4.2,6.3,6.8);0.6,0.3) ((8.33,9.4,9.8);0.7,0.2)

Table 2 The TAIFN decision

matrix given by e2

a1 a2 a3 a4 a5

A1 ((4,6,8);0.7,0.1) ((6,7,9);0.8,0.2) ((3,5,6);0.5,0.4) ((5.8,7.4,8.4);0.5,0.4) ((3, 5, 7); 0.6, 0.3)

A2 ((6,7,9);0.5,0.3) ((5,8,9);0.7,0.2) ((3,4,7);0.6,0.3) ((8.1,8.7,9.1);0.4,0.3) ((6.5,8.6,9.5);0.8,0.1)

A3 ((5,7,8);0.6,0.2) ((7,9,10);0.5,0.3) ((4,5,6);0.7,0.2) ((7.8,8.6,9.3);0.6,0.2) ((8,8.6,9.7);0.6,0.4)

A4 ((7,8,9);0.8,0.2) ((8,9,10);0.6,0.1) ((3,4,5);0.5,0.3) ((7.8,8.1,9.3);0.5,0.1) ((8.3,9.1,9.6);0.5,0.3)

Table 3 The TAIFN decision matrix by e3

a1 a2 a3 a4 a5

A1 ((5,6,8);0.7,0.2) ((6,7,8);0.4,0.4) ((4,5,6);0.7,0.2) ((6.9,7.2,8.5);0.3,0.4) ((8.2,9.1,9.5);0.7,0.1)

A2 ((6,9,10);0.5,0.4) ((5,7,10);0.7,0.3) ((5,7,8);0.6,0.3) ((5.9,6.4,7.9);0.6,0.3) ((7.3,8.7,9.4);0.5,0.3)

A3 ((6,7,8);0.6,0.3) ((4,6,7);0.5,0.2) ((5,6,7);0.6,0.2) ((8.2,9.1,9.8);0.5,0.3) ((6.5,8.2,9.3);0.6,0.3)

A4 ((4,6,7);0.6,0.2) ((5,8,9);0.8,0.1) ((3,4,6);0.5,0.4) ((5.3,7.3,8.7);0.4,0.3) ((7, 8, 9); 0.5, 0.5)

Table 4 The TAIFN decision matrix by e4

a1 a2 a3 a4 a5

A1 ((6,7,10);0.6,0.3) ((5,8,9);0.5,0.3) ((6,7,9);0.6,0.2) ((8.7,9.1,10);0.7,0.2) ((7,8.7,9.4);0.6,0.3)

A2 ((4,5,6);0.5,0.2) ((6,7,8);0.5,0.4) ((5,8,9);0.7,0.2) ((5.8,6.9,8);0.5,0.3) ((6, 8, 9); 0.9, 0.1)

A3 ((6,8,10);0.4,0.5) ((4,7,9);0.7,0.1) ((7,9,10);0.8,0.1) ((7.6,8.6,9.4);0.4,0.5) ((6.3,8.3,9.7);0.5,0.2)

A4 ((5,7,8);0.5,0.1) ((7,8,10);0.6,0.3) ((8,9,10);0.5,0.3) ((7,8,9); 0.6, 0.1) ((5.2,6.2,7.6);0.7,0.2)
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K ¼ fx
2 K0jx1 [ 1:2x2 ; 0:06\x3

� x2\0:12; 0:21\x4\0:35; x4 � x5 [x3

� x1; x5\x2g

Step 1 According to Eq. (12), the normalized decision

matrices are obtained as in Tables 5, 6, 7 and 8.

Table 5 The normalized TAIFN decision matrix by e1

a1 a2 a3 a4 a5

A1 ((0.26,0.50,0.73);0.5,0.4) ((0.36,0.54,0.77);0.6,0.4) ((0.24,0.41,0.56);0.6,0.2) ((0.37,0.55,0.76);0.4,0.5) ((0.32,0.48,0.66);0.5,0.3)

A2 ((0.33,0.50,0.83);0.7,0.1) ((0.31,0.48,0.77);0.5,0.3) ((0.42,0.54,0.73);0.7,0.3) ((0.39,0.59,0.86);0.3,0.5) ((0.28,0.44,0.63);0.4,0.6)

A3 ((0.26,0.41,0.62);0.5,0.3) ((0.31,0.48,0.69);0.6,0.3) ((0.48,0.61,0.81);0.4,0.3) ((0.28,0.39,0.81);0.4,0.2) ((0.32,0.48,0.71);0.5,0.2)

A4 ((0.40,0.58,0.93);0.6,0.2) ((0.36,0.48,0.77);0.7,0.2) ((0.30,0.41,0.56);0.8,0.1) ((0.24,0.44,0.60);0.6,0.3) ((0.47,0.59,0.78);0.7,0.2)

Table 6 The normalized TAIFN decision matrix by e2

a1 a2 a3 a4 a5

A1 ((0.23,0.43,0.71);0.7,0.1) ((0.32,0.42,0.68);0.8,0.2) ((0.25,0.55,0.91);0.5,0.4) ((0.32,0.45,0.57);0.5,0.4) ((0.17,0.31,0.52);0.6,0.3)

A2 ((0.35,0.50,0.80);0.5,0.3) ((0.26,0.48,0.68);0.7,0.2) ((0.25,0.44,1.00);0.6,0.3) ((0.45,0.53,0.61);0.4,0.3) ((0.36,0.54,0.70);0.8,0.1)

A3 ((0.29,0.50,0.71);0.6,0.2) ((0.37,0.54,0.76);0.5,0.3) ((0.33,0.55,0.91);0.7,0.2) ((0.43,0.52,0.63,0.6,0.2) ((0.44,0.54,0.71);0.6,0.4)

A4 ((0.41,0.57,0.80);0.8,0.2) ((0.42,0.54,0.76);0.6,0.1) ((0.25,0.44,0.76);0.5,0.3) ((0.43,0.49,0.63);0.5,0.1) ((0.46,0.57,0.71);0.5,0.3)

Table 7 The normalized TAIFN decision matrix by e3

a1 a2 a3 a4 a5

A1 ((0.30,0.42,0.75);0.7,0.2) ((0.35,0.50,0.79);0.4,0.4) ((0.29,0.45,0.69);0.7,0.2) ((0.39,0.48,0.64);0.3,0.4) ((0.44,0.53,0.65);0.7,0.1)

A2 ((0.36,0.63,0.94);0.5,0.4) ((0.29,0.50,0.99);0.7,0.3) ((0.37,0.62,0.92);0.6,0.3) ((0.34,0.42,0.59);0.6,0.3) ((0.39,0.51,0.65);0.5,0.3)

A3 ((0.36,0.49,0.75);0.6,0.3) ((0.23,0.43,0.69);0.5,0.2) ((0.37,0.53,0.81);0.6,0.2) ((0.47,0.60,0.74);0.5,0.3) ((0.35,0.48,0.64);0.6,0.3)

A4 ((0.24,0.42,0.66);0.6,0.2) ((0.29,0.57,0.89);0.8,0.1) ((0.22,0.36,0.69);0.5,0.4) ((0.30,0.48,0.65);0.4,0.3) ((0.38,0.47,0.62);0.5,0.5)

Table 8 The normalized TAIFN decision matrix by e4

a1 a2 a3 a4 a5

A1 ((0.35,0.51,0.94);0.6,0.3) ((0.28,0.53,0.80);0.5,0.3) ((0.32,0.42,0.68);0.6,0.2) ((0.48,0.56,0.68);0.7,0.2) ((0.39,0.55,0.76);0.6,0.3)

A2 ((0.23,0.37,0.56);0.5,0.2) ((0.33,0.47,0.71);0.5,0.4) ((0.26,0.48,0.68);0.7,0.2) ((0.32,0.42,0.54);0.5,0.3) ((0.33,0.51,0.73);0.9,0.1)

A3 ((0.35,0.59,0.94);0.4,0.5) ((0.22,0.47,0.80);0.7,0.1) ((0.37,0.54,0.76);0.8,0.1) ((0.42,0.52,0.64);0.4,0.5) ((0.35,0.53,0.79);0.5,0.2)

A4 ((0.29,0.51,0.75);0.5,0.1) ((0.39,0.53,0.89);0.6,0.3) ((0.42,0.54,0.76);0.5,0.3) ((0.38,0.49,0.61);0.6,0.1) ((0.29,0.39,0.62);0.7,0.2)
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Step 2 According to Eq. (17), the individual

comprehensive values of alternatives for each

DM are obtained as follows:

~r1
1 ¼ ðð0:26x1 þ 0:36x2 þ 0:24x3 þ 0:37x4 þ 0:32x5; 0:50x1 þ 0:54x2 þ 0:41x3 þ 0:55x4 þ 0:48x5;

0:73x1 þ 0:77x2 þ 0:56x3 þ 0:76x4 þ 0:66x5Þ; 0:4; 0:5Þ
~r1
2 ¼ ðð0:33x1 þ 0:31x2 þ 0:42x3 þ 0:39x4 þ 0:28x5; 0:50x1 þ 0:48x2 þ 0:54x3 þ 0:59x4 þ 0:44x5;

~r1
3 ¼ ðð0:26x1 þ 0:31x2 þ 0:48x3 þ 0:28x4 þ 0:32x5; 0:41x1 þ 0:48x2 þ 0:61x3 þ 0:39x4 þ 0:48x5;

0:62x1 þ 0:69x2 þ 0:81x3 þ 0:81x4 þ 0:71x5Þ; 0:4; 0:3Þ
~r1
4 ¼ ðð0:40x1 þ 0:36x2 þ 0:30x3 þ 0:24x4 þ 0:47x5; 0:58x1 þ 0:48x2 þ 0:41x3 þ 0:44x4 þ 0:59x5;

0:93x1 þ 0:77x2 þ 0:56x3 þ 0:60x4 þ 0:78x5Þ; 0:6; 0:3Þ
~r2
1 ¼ ðð0:23x1 þ 0:32x2 þ 0:25x3 þ 0:32x4 þ 0:17x5; 0:43x1 þ 0:42x2 þ 0:55x3 þ 0:45x4 þ 0:31x5;

0:71x1 þ 0:68x2 þ 0:91x3 þ 0:57x4 þ 0:52x5Þ; 0:5; 0:4Þ
~r2
2 ¼ ðð0:35x1 þ 0:26x2 þ 0:25x3 þ 0:45x4 þ 0:36x5; 0:50x1 þ 0:48x2 þ 0:44x3 þ 0:53x4 þ 0:54x5;

0:80x1 þ 0:68x2 þ 1:00x3 þ 0:61x4 þ 0:70x5Þ; 0:4; 0:3Þ
~r2
3 ¼ ðð0:29x1 þ 0:37x2 þ 0:33x3 þ 0:43x4 þ 0:44x5; 0:50x1 þ 0:54x2 þ 0:55x3 þ 0:52x4 þ 0:54x5;

0:71x1 þ 0:76x2 þ 0:91x3 þ 0:63x4 þ 0:71x5Þ; 0:5; 0:4Þ
~r2
4 ¼ ðð0:41x1 þ 0:42x2 þ 0:25x3 þ 0:43x4 þ 0:46x5; 0:57x1 þ 0:54x2 þ 0:44x3 þ 0:49x4 þ 0:57x5;

0:80x1 þ 0:76x2 þ 0:76x3 þ 0:63x4 þ 0:71x5Þ; 0:5; 0:3Þ
~r3
1 ¼ ðð0:30x1 þ 0:35x2 þ 0:29x3 þ 0:39x4 þ 0:44x5; 0:42x1 þ 0:50x2 þ 0:45x3 þ 0:48x4 þ 0:53x5;

0:75x1 þ 0:79x2 þ 0:69x3 þ 0:64x4 þ 0:65x5Þ; 0:3; 0:4Þ
~r3
2 ¼ ðð0:36x1 þ 0:29x2 þ 0:37x3 þ 0:34x4 þ 0:39x5; 0:63x1 þ 0:50x2 þ 0:62x3 þ 0:42x4 þ 0:51x5;

0:94x1 þ 0:99x2 þ 0:92x3 þ 0:59x4 þ 0:65x5Þ; 0:5; 0:4Þ
~r3
3 ¼ ðð0:36x1 þ 0:23x2 þ 0:37x3 þ 0:47x4 þ 0:35x5; 0:49x1 þ 0:43x2 þ 0:53x3 þ 0:60x4 þ 0:48x5;

0:75x1 þ 0:69x2 þ 0:81x3 þ 0:74x4 þ 0:64x5 Þ; 0:5; 0:3Þ
~r3
4 ¼ ðð0:24x1 þ 0:29x2 þ 0:22x3 þ 0:30x4 þ 0:38x5; 0:42x1 þ 0:57x2 þ 0:36x3 þ 0:48x4 þ 0:47x5;

0:66x1 þ 0:89x2 þ 0:69x3 þ 0:65x4 þ 0:62x5Þ; 0:4; 0:5Þ
~r4
1 ¼ ðð0:35x1 þ 0:28x2 þ 0:32x3 þ 0:48x4 þ 0:39x5; 0:51x1 þ 0:53x2 þ 0:42x3 þ 0:56x4 þ 0:55x5

0:94x1 þ 0:80x2 þ 0:68x3 þ 0:68x4 þ 0:76x5Þ; 0:5; 0:3Þ
~r4
2 ¼ ðð0:23x1 þ 0:33x2 þ 0:26x3 þ 0:32x4 þ 0:33x5; 0:37x1 þ 0:47x2 þ 0:48x3 þ 0:42x4 þ 0:51x5;

0:56x1 þ 0:71x2 þ 0:68x3 þ 0:54x4 þ 0:73x5 Þ; 0:5; 0:4Þ
~r4
3 ¼ ðð0:35x1 þ 0:22x2 þ 0:37x3 þ 0:42x4 þ 0:35x5; 0:59x1 þ 0:47x2 þ 0:54x3 þ 0:52x4 þ 0:53x5;

0:94x1 þ 0:80x2 þ 0:76x3 þ 0:64x4 þ 0:79x5Þ; 0:4; 0:5Þ
~r4
4 ¼ ðð0:29x1 þ 0:39x2 þ 0:42x3 þ 0:38x4 þ 0:29x5; 0:51x1 þ 0:53x2 þ 0:54x3 þ 0:49x4 þ 0:39x5;

0:75x1 þ 0:89x2 þ 0:76x3 þ 0:61x4 þ 0:62x5Þ; 0:5; 0:3Þ:
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Step 3 Determine the triangular Atanassov’s intuitionistic

fuzzy positive ideal solution Aþ ¼ ð~rþ1 ; ~rþ2 ; . . .; ~rþn Þ,
where ~rþj ¼ ðð1; 1; 1Þ; 1; 0Þ ðj ¼ 1; 2; . . .; 5Þ. Then

by Eq. (16), a linear goal programming model is

structured:

min Z ¼ 1

6

X4

k¼1

tk
X4

i¼1

X3

l¼1

ðdkþil þ dk�il Þ
" #

s:t:

x2 [ 1:2x1 ; 0:06\x3 � x2\0:12; 0:21\x4\0:35; x4 � x5 [x3 � x1; x2\x5;

0�xj � 1;
X5

j¼1

xj ¼ 1; t1 ¼ 0:20; t2 ¼ 0:30; t3 ¼ 0:35; t4 ¼ 0:15;

0:9r1
1 � 2 � d1þ

11 þ d1�
11 ¼ 0; 0:9r1

1 � 2 � d1þ
12 þ d1�

12 ¼ 0; 0:9�r1
1 � 2 � d1þ

13 þ d1�
13 ¼ 0;

0:7r1
2 � 2 � d1þ

21 þ d1�
21 ¼ 0; 0:7r1

2 � 2 � d1þ
22 þ d1�

22 ¼ 0; 0:7�r1
2 � 2 � d1þ

23 þ d1�
23 ¼ 0;

1:1r1
3 � 2 � d1þ

31 þ d1�
31 ¼ 0; 1:1r1

3 � 2 � d1þ
32 þ d1�

32 ¼ 0; 1:1�r1
3 � 2 � d1þ

33 þ d1�
33 ¼ 0;

1:3r1
4 � 2 � d1þ

41 þ d1�
41 ¼ 0; 1:3r1

4 � 2 � d1þ
42 þ d1�

42 ¼ 0; 1:3�r1
4 � 2 � d1þ

43 þ d1�
43 ¼ 0;

1:1r2
1 � 2 � d2þ

11 þ d2�
11 ¼ 0; 1:1r2

1 � 2 � d2þ
12 þ d2�

12 ¼ 0; 1:1�r2
1 � 2 � d2þ

13 þ d2�
13 ¼ 0;

1:1r2
2 � 2 � d2þ

21 þ d2�
21 ¼ 0; 1:1r2

2 � 2 � d2þ
22 þ d2�

22 ¼ 0; 1:1�r2
2 � 2 � d2þ

23 þ d2�
23 ¼ 0;

1:1r2
3 � 2 � d2þ

31 þ d2�
31 ¼ 0; 1:1r2

3 � 2 � d2þ
32 þ d2�

32 ¼ 0; 1:1�r2
3 � 2 � d2þ

33 þ d2�
33 ¼ 0;

1:2r2
4 � 2 � d2þ

41 þ d2�
41 ¼ 0; 1:2r2

4 � 2 � d2þ
42 þ d2�

42 ¼ 0; 1:2�r2
4 � 2 � d2þ

43 þ d2�
43 ¼ 0;

0:9r3
1 � 2 � d3þ

11 þ d3�
11 ¼ 0; 0:9r3

1 � 2 � d3þ
12 þ d3�

12 ¼ 0; 0:9�r3
1 � 2 � d3þ

13 þ d3�
13 ¼ 0;

1:1r3
2 � 2 � d3þ

21 þ d3�
21 ¼ 0; 1:1r3

2 � 2 � d3þ
22 þ d3�

22 ¼ 0; 1:1�r3
2 � 2 � d3þ

23 þ d3�
23 ¼ 0;

1:2r3
3 � 2 � d3þ

31 þ d3�
31 ¼ 0; 1:2r3

3 � 2 � d3þ
32 þ d3�

32 ¼ 0; 1:2�r3
3 � 2 � d3þ

33 þ d3�
33 ¼ 0;

0:9r3
4 � 2 � d3þ

41 þ d3�
41 ¼ 0; 0:9r3

4 � 2 � d3þ
42 þ d3�

42 ¼ 0; 0:9�r3
4 � 2 � d3þ

43 þ d3�
43 ¼ 0;

1:2r4
1 � 2 � d4þ

11 þ d4�
11 ¼ 0; 1:2r4

1 � 2 � d4þ
12 þ d4�

12 ¼ 0; 1:2�r4
1 � 2 � d4þ

13 þ d4�
13 ¼ 0;

1:1r4
2 � 2 � d4þ

21 þ d4�
21 ¼ 0; 1:1r4

2 � 2 � d4þ
22 þ d4�

22 ¼ 0; 1:1�r4
2 � 2 � d4þ

23 þ d4�
23 ¼ 0;

0:9r4
3 � 2 � d4þ

31 þ d4�
31 ¼ 0; 0:9r4

3 � 2 � d4þ
32 þ d4�

32 ¼ 0; 0:9�r4
3 � 2 � d4þ

33 þ d4�
33 ¼ 0;

1:2r4
4 � 2 � d4þ

41 þ d4�
41 ¼ 0; 1:2r4

4 � 2 � d4þ
42 þ d4�

42 ¼ 0; 1:2�r4
4 � 2 � d4þ

43 þ d4�
43 ¼ 0;

dkþil � 0; dk�il � 0; dkþil dk�il ¼ 0 ði ¼ 1; 2; 3; 4; k ¼ 1; 2; 3; 4; l ¼ 1; 2; 3Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð19Þ
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Solving Eq. (19) by Lingo software, we can

obtain the weights of attributes:

x1 ¼ 0:1848; x2 ¼ 0:2217; x3 ¼ 0:1617;

x4 ¼ 0:2100; x5 ¼ 0:2217:

By Step 2, the individual comprehensive values of

alternatives for each DM are calculated as:

~r1
1 ¼ ðð0:3153; 0:5004; 0:7022Þ; 0:4; 0:5Þ;
~r1
2 ¼ ðð0:3416; 0:5076; 0:7625Þ; 0:3; 0:6Þ;
~r1
3 ¼ ðð0:3242; 0:4692; 0:7261Þ; 0:4; 0:3Þ;
~r1
4 ¼ ðð0:3569; 0:5031; 0:7321Þ; 0:6; 0:3Þ;
~r2
1 ¼ ðð0:2588; 0:4248; 0:6642Þ; 0:5; 0:4Þ;
~r2
2 ¼ ðð0:3371; 0:5010; 0:7283Þ; 0:4; 0:3Þ;
~r2
3 ¼ ðð0:3769; 0:5300; 0:7366Þ; 0:5; 0:4Þ;
~r2
4 ¼ ðð0:4016; 0:5255; 0:729Þ; 0:5; 0:3Þ;
~r3
1 ¼ ðð0:3594; 0:4796; 0:7039Þ; 0: 3; 0:4Þ;
~r3
2 ¼ ðð0:3485; 0:5288; 0:8100Þ; 0:5; 0:4Þ;
~r3
3 ¼ ðð0:3537; 0:504; 0:7199Þ; 0:5; 0:3Þ;
~r3
4 ¼ ðð0:2915; 0:4672; 0:7049Þ; 0:4; 0:5Þ;
~r4
1 ¼ ðð0:3658; 0:5192; 0:7724Þ; 0:5; 0:3Þ;
~r4
2 ¼ ðð0:2981; 0:4515; 0:6462Þ; 0:5; 0:4Þ;
~r4
3 ¼ ðð0:3391; 0:5273; 0:7836Þ; 0:4; 0:5Þ;
~r4
4 ¼ ðð0:3521; 0:4885; 0:7244Þ; 0:5; 0:3Þ:

Step 4 Utilize the TAIFGHWA operator to calculate

~r0ki ¼ 4tk~r
k
i and acquire the ranking order of

~r0ki ði ¼ 1; 2; 3; 4; k ¼ 1; 2; 3Þ by Eqs. (2) and (3).

Then take the criterion ‘‘most,’’ the weighting

vector associated with TAIFGHWA is computed

using Eq. (7) as w1 = 0, w2 = 0.4, w3 = 0.5 and

w4 = 0.1. We got the collective comprehensive

values of alternatives Ai (i = 1, 2, 3, 4) by

Eq. (18):

~r1 ¼ððð0�0:311kþ0:4�0:503kþ0:5�0:219k

þ0:1�0:252kÞ1=k;ð0�0:510kþ0:4�0:671k

þ0:5�0:312kþ0:1�0:400kÞ1=k; ð0�0:797k

þ0:4�0:985kþ0:5�0:463kþ0:1�0:562kÞ1=kÞ;
0:3;0:5Þ~r2 ¼ððð0�0:488kþ0:4�0:405kþ0:5�0:179k

þ0:1�0:273kÞ1=k;ð0�0:740kþ0:4�0:601k

þ0:5�0:271kþ0:1�0:406kÞ1=k; ð0�1kþ0:4

�0:874kþ0:5�0:388kþ0:1�0:61kÞ1=kÞ;0:3;0:6Þ
~r3 ¼ððð0�0:495kþ0:4�0:452kþ0:5�0:259kþ0:1

�0:204kÞ1=k;ð0�0:706kþ0:4�0:636kþ0:5�0:375k

þ0:1�0:316kÞ1=k; ð0�1kþ0:4�0:884kþ0:5

�0:581kþ0:1�0:470kÞ1=kÞ;0:4;0:5Þ
~r4 ¼ððð0�0:482kþ0:4�0:408kþ0:5�0:285kþ0:1

�0:211kÞ1=k;ð0�0:631kþ0:4�0:654kþ0:5�0:403k

þ0:1�0:293kÞ1=k; ð0�0:875kþ0:4�0:987kþ0:5

�0:586kþ0:1�0:435kÞ1=kÞ;0:4;0:5Þ

Step 5 Calculate the membership and non-membership

function average indexes for ~ri (i = 1, 2, 3, 4),

and then generate the ranking order of

alternatives.

For example, when k = 2, we get the following results:

~r1 ¼ ðð0:0659; 0:1224; 0:2637Þ; 0:3; 0:5Þ;
~r2 ¼ ðð0:0445; 0:0989; 0:2090Þ; 0:3; 0:6Þ;
~r3 ¼ ðð0:0598; 0:1211; 0:2517Þ; 0:4; 0:5Þ;
~r4 ¼ ðð0:0559; 0:1304; 0:2900Þ; 0:4; 0:5Þ:

Thus, we obtain the membership and non-membership

function average indexes:

Sð~r1Þ ¼ 0:0431; Hð~r1Þ ¼ 0:0718; Sð~r2Þ ¼ 0:0338; Hð~r2Þ ¼ 0:0451;

Sð~r3Þ ¼ 0:0554; Hð~r3Þ ¼ 0:0692; Sð~r4Þ ¼ 0:0607; Hð~r4Þ ¼ 0:0758:

Therefore, by Definition 4, the ranking of the alterna-

tives is A4 � A3 � A1 � A2.
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Similarly, for different parameter value k, we can obtain

the ranking order of the alternatives. The results and

ranking of alternatives are presented in Table 9.

From Table 9, we find that the ranking alternatives are

different when parameter value k takes different values.

When k 2 ½0; 4:27�, the ranking is A4 � A3 � A1 � A2

and the best is A4; while k 2 ð4:27; 50�, the ranking is

A4 � A1 � A3 � A2 and the best is A4; especially, when

k ! þ1, the ranking is A3 � A4 � A2 � A1 and the best

is A3. The above analysis shows that the parameter k is

indeed of great importance to the decision-making. The

DMs can choose different parameter k according to their

preference and requirement which well ensures the flexi-

bility and agility of decision-making process.

5.2 Comparison analysis

Wan et al. [11] proposed the VIKOR method for MAGDM

using TAIFNs. We use the method in [11] to solve the

above example for illustration of the superiorities of the

proposed method in this paper. By method [11], the

closeness of each alternative to the ideal solution and the

ranking results with different coefficient of decision

mechanism k are shown in Table 10.

It can be seen from Table 10 that although the ranking

orders obtained by method [11] are not completely the same

when the coefficient of decision mechanism k takes different

values, the best candidate is always A2, while the best can-

didate by the method in this paper is A2 when k\þ1, A4

when k ? ? ?. In contrast with method [11], the method in

this paper is featured by the following points:

1. The former only utilized the TAIFWA operator to

obtain the group decision matrix, whereas the latter

uses the TAIFWA and TAIFGHWA operators to

derive the collective comprehensive values of alterna-

tives. The TAIFGHWA operator simultaneously con-

siders the weights of elements and the weights of the

positions. Therefore, the latter is more comprehensive

than the former.

2. Through choosing different parameter values of k in

TAIFGHWA operator, the latter is able to give different

ranking orders of alternatives, which well ensures the

flexibility and agility of the proposed method.

Table 9 The results for

different parameter values and

ranking of alternatives

k Sð~r1Þ Sð~r2Þ Sð~r3Þ Sð~r4Þ Ranking orders Best alternative

0.0 0.1363 0.1197 0.1900 0.1967 A4 � A3 � A1 � A2 A4

0.5 0.4081 0.3825 0.5515 0.5609 A4 � A3 � A1 � A2 A4

0.8 0.2074 0.1873 0.2805 0.2885 A4 � A3 � A1 � A2 A4

1.0 0.1460 0.1287 0.1969 0.2043 A4 � A3 � A1 � A2 A4

2.0 0.0431 0.0338 0.0554 0.0607 A4 � A3 � A1 � A2 A4

4.0 0.0115 0.0072 0.0119 0.0158 A4 � A3 � A1 � A2 A4

4.27 0.0102 0.0062 0.0102 0.0139 A4 � A3 � A1 � A2 A4

5.0 0.0077 0.0043 0.0070 0.0105 A4 � A1 � A3 � A2 A4

10.0 0.0027 0.0008 0.0013 0.0036 A4 � A1 � A3 � A2 A4

20.0 0.0011 0.0001 0.0002 0.0015 A4 � A1 � A3 � A2 A4

50.0 0.0003 0.0000 0.0000 0.0004 A4 � A1 � A3 � A2 A4

?? 0.1596 0.2226 0.2907 0.2619 A3 � A4 � A2 � A1 A3

Table 10 The ranking results

of alternatives with different

coefficient of decision

mechanism

k Q (A1) Q (A2) Q (A3) Q (A4) Ranking orders Best candidate

0.0 0 1 0.7828 0.4159 A2 � A3 � A4 � A1 A2

0.1 0 1 0.7840 0.4252 A2 � A3 � A4 � A1 A2

0.2 0 1 0.7852 0.4345 A2 � A3 � A4 � A1 A2

0.3 0 1 0.7864 0.4438 A2 � A3 � A4 � A1 A2

0.4 0 1 0.7876 0.4531 A2 � A3 � A4 � A1 A2

0.5 0 1 0.7889 0.4624 A2 � A3 � A4 � A1 A2

0.6 0 1 0.7901 0.4717 A2 � A3 � A4 � A1 A2

0.7 0 1 0.7913 0.4811 A2 � A3 � A4 � A1 A2

0.8 0 1 0.7925 0.4904 A2 � A3 � A4 � A1 A2

0.9 0 1 0.7937 0.4997 A2 � A3 � A4 � A1 A2

1.0 0 1 0.7949 0.5090 A2 � A3 � A4 � A1 A2

2700 Neural Comput & Applic (2017) 28:2687–2702

123



3. The former assumed that the attribute weighting

information was completely unknown and did not

consider the incomplete weight information of attri-

bute weight. In reality, it is possible that DMs may

give the incomplete weight information through using

their knowledge, experience and judgment. From this

point of view, the latter is closer to the actual situation

than the former.

6 Conclusion

This paper defined some arithmetic aggregation operators

for TIFNs including the TAIFWA operator and TAIFOWA

operator. Then we further develop two triangular intu-

itionistic fuzzy generalized aggregation operators: TAIF-

GOWA operator and TAIFGHWA operator. Taking into

account the incomplete attribute weight information, we

propose a new approach to MAGDM with TAIFN and

incomplete weight information.

The TAIFGOWA and TAIFGHWA operators are the

useful extensions of the arithmetic aggregation operators of

TAIFNs. The developed TAIFGOWA and TAIFGHWA

operators are especially suitable for MAGDM in a variety

of situations. Although a green supplier selection problem

is provided to show the feasibility and effectiveness of the

proposed method, it can be also applied to many real-life

decision problems, such as water resource evaluation and

supply chain management. However, the weights of experts

are known in advance in the proposed method, which is a

weakness of this paper. How to determine these weights of

experts objectively will be studied in future. In addition, we

will develop some new generalized geometric aggregation

operators of TAIFNs and generalize some quasi-arithmetic

mean operators to accommodate to the case of TAIFNs.
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