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Abstract Multiview learning problem refers to the

problem of learning a classifier from multiple view data. In

this data set, each data point is presented by multiple dif-

ferent views. In this paper, we propose a novel method for

this problem. This method is based on two assumptions.

The first assumption is that each data point has an intact

feature vector, and each view is obtained by a linear

transformation from the intact vector. The second

assumption is that the intact vectors are discriminative, and

in the intact space, we have a linear classifier to separate

the positive class from the negative class. We define an

intact vector for each data point, and a view-conditional

transformation matrix for each view, and propose to

reconstruct the multiple view feature vectors by the product

of the corresponding intact vectors and transformation

matrices. Moreover, we also propose a linear classifier in

the intact space, and learn it jointly with the intact vectors.

The learning problem is modeled by a minimization

problem, and the objective function is composed of a

Cauchy error estimator-based view-conditional recon-

struction term over all data points and views, and a clas-

sification error term measured by hinge loss over all the

intact vectors of all the data points. Some regularization

terms are also imposed to different variables in the objec-

tive function. The minimization problem is solved by an

iterative algorithm using alternate optimization strategy

and gradient descent algorithm. The proposed algorithm

shows its advantage in the compression to other multiview

learning algorithms on benchmark data sets.

Keywords Multiview learning � Supervised learning �
Intact space � Hinge loss

1 Introduction

1.1 Background

Multiview learning has been an important in machine

learning community [5, 21, 22, 24, 32, 34, 35, 38, 40, 41].

In traditional machine learning problems, we usually

assume that a data point has a feature vector to represent its

input information. For example, in image recognition

problem, we can extract a visual feature vector from an

image, using a texture descriptor [9, 14, 25–28, 36, 39]. In

this scene, the texture is a view of the image. However,

there could be more than one view of an image. Besides the

texture view, we can also extract feature vectors from other

views, including shape and color. An other example is the

problem of classification of scientific articles, and we may

extract a feature vector from the main text of the article [4,

6, 11, 11, 16, 18, 19, 23, 29, 29]. However, the main text is

just one view of the article, and we can also have features

from other views, such as abstract, reference list. Mul-

tiview learning argues that we should learn from more than

one views to present the data and construct a predictor. The

motive for multiview learning is that single view-based

data representation is usually incomplete, and different
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views can present complementary information for the

learning problem. In the problem of multiview learning, the

input of a data point is not just one single feature vector of

one single view, but multiple feature vectors presenting

different views. The target of multiview learning is to learn

a predictor to take multiple view feature vectors to predict

one single output of a data point. The problem of multiview

learning can be classified to two types, supervised multi-

view learning and unsupervised learning.

• Supervised multiview learning refers to the problem of

learning from a data set, where both the multiview

input and output are available for each data point [10,

15, 20]. In this problem, the output is usually a class

label, or a continuous response. In this case, the

learning problem is to build a predictive model from

the training data set to predict the output of a input data

point, with help the input–output pairs of the training

set.

• Unsupervised multiview learning refers to the problem

of cluster a set of data points, and the multiview inputs

of each data point are given [7, 33, 44]. In this problem,

the outputs of the data points are not available.

In this paper, we investigate the problem of supervised

multiview learning, and propose a novel algorithm to solve

it. The proposed method is based on an assumption that

different views of a data point are generated from one

single intact feature vector, and the view generation is

performed by a linear transformation. We try to recover the

intact feature vector for each data point from its multiview

feature vectors, with guiding of its corresponding output,

i.e., its binary class label.

1.2 Relevant works

There are some existing multiview learning methods. Their

state-of-the-arts is as follows.

• Zhang et al. [43] proposed to use local learning (LL)

method for the problem of multiview learning problem,

and designed a local predictive model for each data

point based on the multiview inputs. The local predic-

tive model is learned on the nearest neighbors of a data

point.

• Sindhwani et al. [31] proposed to use co-training

algorithm for multiview learning problems to improve

the classification performance of each view (CT). This

method is based on multiview regularization, and the

agreement and smoothness over both labeled and

unlabeled data points.

• Quadrianto [30] proposed a multiview learning algo-

rithm to solve the problem of view disagreement (VD),

i.e., different views of one single data point do not

belong to the same class. This method uses a condi-

tional entropy criterion to find the disagreement among

different views, and removes the data points with view

disagreement from the training set.

• Zhai [42] proposed multiview metric learning method

with global consistency and local smoothness (GL) for

the multiview learning problem with partially labeled

data set. This method simultaneously considers both the

global consistency and local smoothness, by assuming

that the different views have a shared latent feature

space, and imposing global consistency and local

structure to the learning procedure.

• Chen et al. [2] proposed a statistical subspace multi-

view representation method (SS), by leveraging both

multiview dependencies and supervision information.

This method is based on a subspace Markov network of

multiview latent and assumes that the multiviews and

the class labels are conditionally independent. The

algorithm is based on the maximization of data

likelihood and the minimization of classification error.

1.3 Contributions

In this paper, we propose a novel supervised multiview

learning method. This method is based on the assumption

of single discriminative intact of different multiview

inputs. Under this assumption, although there are different

views of one single data point, one single intact feature

vector exists for the data point. This intact feature vector is

assumed to be discriminative, i.e., it can represent the class

information of each data point. Moreover, the feature

vector of each view of a data point can be obtained from

the intact vector, by performing a linear view-conditional

transformation to the intact feature vector. In this way, if

we learn the discriminative intact feature vector for each

training data point, we can learn a classifier in the intact

with the help of the class labels of the training data points.

To this end, we proposed a novel method to learn the

hidden intact feature vectors, the view-conditional trans-

formation matrices, and the classifier in the intact space

simultaneously. We define a intact feature vector for each

data point, and a transformation matrix for each view. The

feature vector of one view of each data point can be

reconstructed as the product of its corresponding transfor-

mation matrix and intact feature vector. The reconstruction

error for each view of each data point is measured by the

Cauchy error estimator [8, 12]. To learn the optimal intact

feature vectors and view-conditional transformation

matrices, we propose to minimize the Cauchy errors.

Moreover, due to the assumption that the intact feature

vectors are discriminative, we also argue that we can

design a classifier in the intact space, and the classifier can

2294 Neural Comput & Applic (2017) 28:2293–2301

123



minimize the classification error. Thus, we also propose to

learn a linear classifier in the intact space, and use the hinge

loss to measure the classification error the training set in

the intact space [1, 3]. To learn the optimal classifier

parameter and the intact feature vectors, we also propose to

minimize the hinge loss with regard to both the classifier

parameter and the intact feature vectors.

To model the problem, we propose a joint optimization

problem for learning of intact vectors, view-conditional

transformation matrices, and the classifier parameter vec-

tor. The objective function of this problem is composed of

two error terms, and three regularization terms. The firs

error term is the view reconstruction term measured by

Cauchy estimator over all the data points and views. The

second error term is the classification error over all the

intact feature vectors of all training data points, measured

by hinge losses. The three regularization terms are all

squared ‘2 norm terms over each intact feature vectors,

view-conditional matrices, and the classifier parameter

vectors. The purpose of impose the squared ‘2 norm to

these variables is to reduce the complexity of the learned

outputs. To minimize the proposed objective function, we

adapt an alternate optimization strategy, i.e., when the

objective function is minimized with regard to one vari-

able, other variables are fixed. The optimization with

regard to each variable is conducted by using gradient

descent algorithm.

The contributions of this paper are of three parts:

1. We propose a novel supervised multiview learning

framework by simultaneous learning of intact feature

vectors, view-conditional transformation matrices, and

classifier parameter vector.

2. We build a novel optimization problem for this

learning problem, by considering both the view

reconstruction problem, and the classifier learning

problem.

3. We develop an iterative algorithm to solve this

optimization problem based on alternate optimization

strategy and gradient descent algorithm.

1.4 Paper organization

This paper is organized as follows: In Sect. 2, the proposed

method for supervised multiview learning is introduced. In

this section, we first model this problem as a minimization

problem of a objective function, and then solve it with an

iterative algorithm. In Sect. 3, the proposed iterative

algorithm is evaluated. We first give an analysis of its

sensitivity to parameters, and then compare it to some

state-of-the-art algorithms, and finally test the running time

performance of the proposed algorithm. In Sect. 4, we give

the conclusion of this paper.

2 Methods

In this section, we introduce the proposed supervised

multiview learning method.

2.1 Problem modeling

We assume we are dealing with supervised binary classi-

fication problem with multiview data. A training data set of

n data points is given, X ¼ fh1; . . .; hng. hi ¼
ðx1i ; . . .; xmi ; yiÞ is the ith data point. The information of

each data point is composed of feature vectors of m views,

and a binary class label yi. x
j
i 2 Rdj is the dj-dimensional

feature vector of the jth view of the ith data point, and

yi 2 fþ1;�1g is a the binary class label of the ith data

point. The problem of supervised multiview learning is to

learn a predictive model from the training set, which can

predict a binary class label from the multiview input of a

test data point. We assume there is an intact vector zi 2 Rd

for the ith data point, and its jth view xji can be recon-

structed by a linear transformation,

xji  Wjzi; ð1Þ

where Wj 2 Rdj�d is the view-conditional linear transfor-

mation matrix for the jth view. Please note that the view-

conditional transformation matrix for the same view of all

the data points is the same. By learning both the Wj and zi,

we can recover the hidden intact vector for the ith data

point, zi, and use it for classification problem. To this end,

we propose to minimize the reconstruction error. The

reconstruction error is measured by Cauchy error estimator,

Eðxji;WjziÞ,

Eðxji;WjziÞ ¼ log 1þ
xji �Wjzi
�
�

�
�
2

2

c2

 !

: ð2Þ

This error estimator has been shown to be robust, and it

also provides an offset. We propose to minimize this error

estimator over all data points and all views with regard to

both zi; i ¼ 1; . . .; n, and Wj; j ¼ 1; . . .;m,

min
zijni¼1 ;Wj jmj¼1

Xn

i¼1

Xm

j¼1
Eðxji;WjziÞ ¼

Xn

i¼1

Xm

j¼1
log 1þ

xji �Wjzi
�
�

�
�
2

2

c2

 !( )

ð3Þ

Moreover, we also assume that the intact feature vectors

of the data points are discriminative, and presents the class

information, thus the intact feature vectors can minimize a

classification loss function of the data set. We propose to

learn the intact feature vector of the ith data point by jointly

learning a liner classifier to predict its class label, yi. The

classifier is designed as linear function,
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yi  x>zi ð4Þ

The classification error can be measured by the hinge loss

function,

Lðyi;x>ziÞ ¼ maxð0; 1� yix
>ziÞ: ð5Þ

The optimization of this loss function can obtain a large

margin classifier. To learn the optimal classifier and the

discriminative intact feature vectors, we propose to mini-

mize the classifier loss measured by the hinge loss function

of the classification result over all the training data points,

min
zijni¼1;x

Xn

i¼1
Lðyi;x>ziÞ ¼

Xn

i¼1
maxð0; 1� yix

>ziÞ
( )

ð6Þ

Moreover, to prevent the problem of over-fitting of

variables, we propose to minimize the squared ‘2 norm of

the variables to regularize the learning zi, Wj, and x,

min
zi jni¼1 ;Wj jmj¼1 ;x

Rðzijni¼1;Wjjmj¼1;xÞ ¼
Xn

i¼1
kzik22 þ

Xm

j¼1
kWjk22 þ kxk

2
2

( )

:

ð7Þ

Our overall learning problem is obtained by considering

both the problems of view-conditional reconstruction in

(3), and classifier learning in the intact space in (6),

min
zi jni¼1 ;Wj jmj¼1 ;x

Xn

i¼1

Xm

j¼1
Eðxji;WjziÞ þ aLðyi;x>ziÞ þ cRðzijni¼1;Wjjmj¼1;xÞ

(

¼
Xn

i¼1

Xm

j¼1
log 1þ

xji �Wjzi
�
�

�
�
2

2

c2

 !

þ a
Xn

i¼1
maxð0; 1� yix

>ziÞ

þc
Xn

i¼1
kzik22 þ

Xm

j¼1
kWjk22 þ kxk

2
2

 !)

; ð8Þ

where a is a tradeoff parameter to balance the view-con-

ditional reconstruction terms and the classification error

terms, and c is a tradeoff parameter to balance the view-

conditional reconstruction terms and the regularization

terms. By optimizing this problem, we can learn intact

feature vectors which can present the multiview inputs of

the data points, and also is discriminative.

2.2 Optimization

To solve the optimization problem in (21), we propose to

use the alternate optimization strategy. The optimization is

conducted in an iterative algorithm. When one variable is

considered, the others are fixed. After one variable is

updated, it will be fixed in the next iteration when other

variable is updated. In the following subsections, we will

discuss how to update each variable.

2.2.1 Updating zi

When we want to update zi, we only consider this single

variable, while fix all other variables. Thus we have the

following optimization problem,

min
zi

Xm

j¼1
log 1þ

xji �Wjzi
�
�

�
�
2

2

c2

 !

þ amaxð0; 1� yix
>ziÞ þ ckzik22

( )

:

ð9Þ

The second term maxð0; 1� yix
>ziÞ is not a convex

function, and it is hard to optimize it directly. Thus we

rewrite it as follows,

maxð0; 1� yix
>ziÞ ¼ 1� yix

>zi; if 1� yix
>zi [ 0

0; otherwise:

�

ð10Þ

We define a indicator variable, bi, to indicate which of the

above cases is true,

bi ¼
1; if 1� yix

>zi [ 0

0; otherwise;

�

ð11Þ

and rewrite (10) as follows,

maxð0; 1� yix
>ziÞ ¼ bi 1� yix

>zi
� �

ð12Þ

Please note that bi is also a function of zi; however, we first
update it by using zi solved in previous iteration, and then

fix it to update zi in current iteration. In this way, (9) is

rewritten as

min
zi

Xm

j¼1
log 1þ

xji�Wjzi
�
�

�
�
2

2

c2

 !

þabi 1�yix
>zi

� �

þckzik22¼gðziÞ
( )

;

ð13Þ

where gðziÞ is the objective of this optimization problem.

To seek the minimization of gðziÞ, we use gradient descent
algorithm. This algorithm update zi by descending it to the

direction of gradient of gðziÞ,
zi  zi � lrgðziÞ; ð14Þ

where l is the descent step, and rgðziÞ is the gradient

function of gðziÞ. We set rgðziÞ as the partial derivative of
gðziÞ with regard to zi,

rgðziÞ ¼
ogðziÞ
ozi

¼
Xm

j¼1

2W>j ðx
j

i
�WjziÞ

c2

1þ xj
i
�Wjzik k2

2

c2

� �� abiyixþ czi

¼
Xm

j¼1

2W>j ðx
j
i �WjziÞ

c2 þ xji �Wjzi
�
�

�
�
2

2

� 	� abiyixþ czi: ð15Þ

By substituting (15) to (14), we have the final updating rule

of zi,
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zi  zi � l
Xm

j¼1

2W>j ðx
j
i �WjziÞ

c2 þ xji �Wjzi
�
�

�
�
2

2

� 	� abiyixþ czi

0

@

1

A:

ð16Þ

2.2.2 Updating Wj

When we want to optimize Wj, we fix all other variables

and only consider Wj itself. The optimization problem is

changed to,

min
Wj

Xn

i¼1
log 1þ

xji �Wjzi
�
�

�
�
2

2

c2

 !

þ ckWjk22 ¼ f ðWjÞ
( )

:

ð17Þ

where f ðWjÞ is the objective function of this problem. To

solve this problem, we also updateWj by using the gradient

descent algorithm,

Wj  Wj � lrf ðWjÞ; ð18Þ

where rf ðWjÞ is the gradient function of f ðWjÞ,

rf ðWjÞ ¼
of ðWjÞ
oWj

¼
Xn

i¼1

2ðxj
i
�WjziÞz>i
c2

1þ xj
i
�Wjzik k2

2

c2

� �þ cWj

¼
Xn

i¼1

2ðxji �WjziÞz>i
c2 þ xji �Wjzi

�
�

�
�
2

2

� 	þ cWj: ð19Þ

Substituting (19) to (18), we have the final updating rule of

Wj,

Wj  Wj � l
Xn

i¼1

2ðxji �WjziÞz>i
c2 þ xji �Wjzi

�
�

�
�
2

2

� 	þ cWj

0

@

1

A: ð20Þ

2.2.3 Updating x

When we want to update x to minimize the objective

function of (21), we fix the other variables, and only con-

sider x. Thus the problem in (21) is transferred to

min
x

a
Xn

i¼1
bi 1� yix

>zi
� �

þ ckxk22 ¼ hðxÞ
( )

: ð21Þ

Please note that bi is actually a function of x. However,

similar the strategy to solve zi, we also update it according

to x solved in previous iteration, and fix it to update x in

current iteration. When bi; i ¼ 1; . . .; n are fixed, we update

x to minimize hðxÞ by using the gradient descent

algorithm,

x x� lrhðxÞ; ð22Þ

where rhðxÞ is the gradient function of hðxÞ, and it is

defined as follows,

rhðxÞ ¼ ohðxÞ
ox

¼ �a
Xn

i¼1
biyizi þ cx: ð23Þ

By substituting it to (24), we have the final updating rule

for x,

x x� l �a
Xn

i¼1
biyizi þ cx

 !

: ð24Þ

2.3 Iterative algorithm

After we have the updating rules of all the variables, we

can design an iterative algorithm for the learning problem.

This iterative algorithm has one outer FOR loop, and two

inner FOR loops. The outer FOR loop is corresponding to

the main iterations. The two inner FOR loops are corre-

sponding to the updating of n intact feature vectors of

n data points, and the updating of m view-conditional

transformation matrices. The algorithm is given in Algo-

rithm 1. The iteration number T is determined by cross-

validation in our experiments.

– Algorithm 1. Iterative algorithm for multiview intact

and single-view classifier learning (MISC).

– Input: Training data set, ðx11; . . .; xm1 ; y1Þ; . . .;
ðx1n; . . .; xmn ; ynÞ.

– Input: Tradeoff parameters, a and c.
– Input: Maximum iteration number, T.

– Initialization: z0i ; i ¼ 1; . . .; n, W0
j ; j ¼ 1; . . .;m and x0.

– For t ¼ 1; . . .; T

– Update descent step, lt  1
t

– For i ¼ 1; . . .; n

Update bti as follows,

bti ¼
1; if 1� yix

t�1>zt�1i [ 0

0; otherwise:

(

ð25Þ

Update zti by fixing Wt�1
j ; j ¼ 1; . . .;m, bt�1i and

xt�1,

zti  zt�1i � lt

Xm

j¼1

2Wt�1
j

>ðxji �Wt�1
j zt�1i Þ

c2 þ xji �Wt�1
j zt�1i

�
�
�

�
�
�

2

2

� �� abtiyix
t�1 þ czt�1i

0

B
B
@

1

C
C
A
:

ð26Þ

– End of For

Neural Comput & Applic (2017) 28:2293–2301 2297

123



– For j ¼ 1; . . .;m

Update Wt
j by fixing zti; i ¼ 1; . . .;m,

Wt
j  Wt�1

j � lt
Xn

i¼1

2ðxji �Wt�1
j ztiÞzti

>

c2 þ xji �Wt�1
j zti

�
�
�

�
�
�

2

2

� �þ cWt�1
j

0

B
B
@

1

C
C
A
:

ð27Þ

– End of For

– Update xt by fixing bti; i ¼ 1; . . .; n and

zti; i ¼ 1; . . .; n,

xt  xt�1 � lt �a
Xn

i¼1
btiyizi þ cxt�1

 !

: ð28Þ

– End of For

– Output: WT
j ; j ¼ 1; . . .;m, zTi ; i ¼ 1; . . .; n, and xT .

As we can see from the algorithm, in the main FOR

loop, descent step variable, l, is firstly updated, and then

the hinge loss indicator variables, bi; i ¼ 1; . . .; n and the

intact feature vectors are updated. The view-conditional

transformation matrices, Wj; j ¼ 1; . . .;m are updated, and

finally, the classifier parameter x are updated.

3 Experiments

In this section, we will evaluate the proposed algorithm on

a few real-world supervised multiview learning problems

experimentally.

3.1 Benchmark data sets

3.1.1 PASCAL VOC 07 data set

The first data set used in the experiment is the PASCAL

VOC 07 data set [13]. In this data set, there are 9963

images of 20 different object classes. Each image is pre-

sented by two different view, which are visual view and tag

view. To extract the feature vector from the visual view of

an image, we extract local visual features, SIFT, from the

image, and represent the local features as a histogram. To

extract the feature vector from the tag view from the image,

we use the histogram vector of user tags of the image as the

feature vector.

3.1.2 CiteSeer data set

The second data set is the CiteSeer data set [37]. In this

data set, there are 3312 documents of 6 classes. Each

document has three views, which are the text view,

inbound reference view, and outbound reference view.

3.1.3 HMDB data set

The third data set is the HMDB data set, which is a video

database of human motion recognition problem [17]. In this

data set, there are 6849 video clips of 51 action classes. To

present each video clip, we extract 3D Harris corners and

present them by two different types of local features, which

are the histogram of oriented gradient (HOG) and his-

togram of oriented flow (HOF). We further represent each

clip by two feature vectors of two views, which are the

histograms of HOG and HOF.

3.2 Experiment protocols

To conduct the experiments, we split each data set into 10

non-overlapping folds, and use the 10-fold cross-validation

to perform the training-testing procedure. Each fold is used

as a test set in turn, and the remaining 9 folds are used as

the training sets. The proposed algorithm is performed on

the training set to obtain the view-conditional transforma-

tion matrices, and the classifier parameter. Then the learned

view-conditional transformation matrices and the classifier

parameter are used to represent and classify the data points

in the test set. To handle the multiple class problem, we use

the one-vs-all strategy.

3.3 Performance measures

To measure the classification performance over the test set,

we use the classification accuracy. The classification

accuracy is defined as follows,

Classification accuracy

¼ Number of correctly classified test data points

Number of total test data points
: ð29Þ

It is obvious that a better algorithm should be able to obtain

a higher classification accuracy.

3.4 Experiment results

In this experiment, we first study the sensitivity of the

algorithm to the parameters, which are a and c.

3.4.1 Sensitivity to parameters

To study the performance of the proposed algorithm with

different tradeoff parameters, a and b. We perform the

algorithm by using the parameters of values 0.1, 1, 10, 100

and 1000, and measured the performance of different

parameters. Figure 1 illustrates the performance on the

PASCAL VOC 07 data set with respect to different

tradeoff parameter a. The proposed algorithm achieves a

2298 Neural Comput & Applic (2017) 28:2293–2301
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stable performance in all the settings of parameter a. In
Fig. 2, the performance against different tradeoff parameter

b is also shown. From this figure, we can also see that the

algorithm is stable tot he changes of value of b. This

suggests that MISC is not sensitive to the changes of

tradeoff parameters.

3.4.2 Comparison to state-of-the-art algorithms

We compare the proposed algorithm to the following

methods, multiview learning algorithm using local learning

(LL) proposed by Zhang et al. [43], multiview learning

algorithm using co-training (CT) proposed by Sindhwani

et al. [31], multiview learning algorithm based on view

disagreement (VD) proposed by Quadrianto [30], multi-

view learning algorithm with global consistency and local

smoothness (GL) proposed by Zhai [42], and multiview

representation method using statistical subspace learning

(SS) proposed by Chen et al. [2]. The error bars of the

classification accuracy of the compared methods over three

different data sets are given in Figs. 3, 4 and 5. From the

figures, we find that the proposed method, MISC, stably

outperforms other algorithms at all the data sets. Even on

the most difficult data set, HMDB, the proposed method,

MISC, also achieves an accuracy as high as about 0.4. The

multiple view data are optimally combined by MISC to

find the latent intact space and the optimal classifier in the

corresponding intact space. The main reason for this is the

0.1 1 10 100 1000
0.4

0.45

0.5

0.55

0.6
C

la
ss

ifi
ca

tio
n 

ac
cu

ra
cy

alpha

Fig. 1 Sensitivity curve of a over PASCAL VOC 07 data set

0.1 1 10 100 1000
0.4

0.45

0.5

0.55

0.6

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

beta

Fig. 2 Sensitivity curve of b over PASCAL VOC 07 data set

MISC SS GL VD CT LL
0.3

0.4

0.5

0.6

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Methods

PASCAL VOC 07 data set

Fig. 3 Results of comparison of different algorithms over PASCAL

VOC’07 data set
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robust property of the proposed algorithm. This algorithm

has the ability to appropriately handle the complementary

between multiple views, and learn a discriminative hidden

intact space with help of classifier learning.

4 Conclusions

We propose a novel multiview learning algorithm by

learning intact vectors of the training data points and a

classifier in the intact space. The intact vectors are assumed

to be a hidden but critical vector for each data point, and

we can obtain its multiple view feature vectors by view-

conditional transformations. Moreover, we also assume

that the intact vectors are discriminative, i.e., can be sep-

arated by a linear function according to their classes. We

propose a novel optimization problem to model both the

learning of intact vectors and classifier. An iterative algo-

rithm is developed to solve this problem. This algorithm

outperforms other multiview learning algorithms on

benchmark data sets, and it also shows its stability over

tradeoff parameters.
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