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Abstract In the last decades, a plethora of advanced

computational models and techniques have been proposed

on the modeling, assessment and design of masonry struc-

tures. The successful application of such sophisticated

models necessitates the development of reliable analytical

models capable of describing the failure of masonry mate-

rials. Nevertheless, there is a lack of analytical models due

to the anisotropic and brittle nature exhibited by the

masonry materials. In the present paper, the use of neural

networks (NNs) is proposed to approximate the failure

surface of masonry materials in dimensionless form. The

comparison of the derived results with experimental find-

ings as well as analytical results demonstrates the promising

potential of using NNs for the reliable and robust approxi-

mation of the masonry failure surface under biaxial stress.

Keywords Anisotropic behavior � Biaxial stress state �
Brittle material � Failure criterion � Failure surface �
Masonry � Neural network � NN

1 Introduction

Masonry exhibits distinct directional properties due to the

influence of the mortar joints. Depending upon the orien-

tation of the joints to the stress directions, failure can occur

in the joints alone or simultaneously in the joints and the

blocks. Nowadays, in developed societies, there is an

increased interest about reliable and robust computational

models for the modeling of masonry structures. This is

primarily due to the growing interest of protecting heritage

structures. The main characteristic of the majority of these

structures is that they are mostly made of masonry

materials.

To fulfill this need, in the last decades a large number of

macro and micro computational models have been pro-

posed both for linear and nonlinear analysis of such

structures [1–6]. Detailed and in-depth state-of-the-art

reports can be found in Lourenço [7], Roca et al. [8],

Asteris et al. [9, 10], Sarhosis [11] and Plevris and Asteris

[12].

The successful implementation of these advanced

models requires reliable analytical constitutive rules such

as constitutive equation models of masonry material fail-

ure, which is not the case at the present. To date, research

work has been focused on isotropic masonry models, which

are based, primarily, on models applied for concrete [13].

Regarding non-isotropic masonry, there are a few research

works in which failure criteria approximate the failure

surface by employing different forms of quadratic poly-

nomials. Many variations of such models have been pub-

lished to date, including those that define the failure surface

through the use of different functions for each quadrant

[14–19]. However, for certain load cases, such models

overestimate strength [20].

The main disadvantage of the above criteria is that the

corresponding failure surface is a synthesis of at least four

individual surfaces (one for each quadrant). This leads to

the formation of singular points, namely ‘‘corners’’ (curves

at which the individual surfaces intersect) where the flow

vector is not uniquely defined [21, 22], thus leading to
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indeterminate direction of straining. The existence of sin-

gular points causes significant problems to nonlinear

analysis [23]. In order to avoid the formation of such

points, the use of a closed continuous yield surface

described analytically by a single function (cubic polyno-

mial) has been recently proposed [24–26].

During the last decades, neural networks have been used

extensively for various applications in civil engineering

[27–30] and earthquake engineering [31, 32], including

many attempts on modeling the materials’ constitutive

rules [33–38]; however, to the authors’ knowledge, there

have not been many attempts to apply a neural network

(NN) for the prediction of masonry behavior in general.

The only proposal in this area is that of a previous work by

the authors [12] in which a novel method has been pro-

posed by applying neural networks (NNs) to approximate

the masonry failure surface [limited only for the case of

biaxial compressive (only) stress state]. The method com-

prises a series of NNs that are trained with available

experimental data. The results demonstrate the great

potential of using NNs for the approximation of masonry

failure surface under biaxial compressive stress.

In the present paper, following the work undertaken

above, the use of neural networks is proposed for modeling

the anisotropic masonry behavior under biaxial stress state.

In particular, a novel procedure based on NN techniques

has been introduced for acquiring the failure/yield surface

of masonry material in a dimensionless form, taking into

account available experimental results from the literature

as input data for the training and validation of NNs. It is the

first time this has been achieved in a dimensionless form,

for any quadrant of the masonry stress state.

2 Methodology

The highly anisotropic brittle nature of masonry renders

complicated, difficult and expensive the realization of

reliable experimental tests under conditions of biaxial

stress, and, even more, under conditions of biaxial tension

or heterogeneous stress. The angle of the applied loading to

the bed joint plays a significant role in the behavior of the

brick masonry disks. In general, the highest strength of

masonry is observed when the compressive load is per-

pendicular to the bed joints or in other words when the

principal tensile stress at the center of the disk is parallel to

the bed joints. In this case, failure occurs through bricks

and perpendicular joints. On the other hand, the lowest

strength is observed when the compressive load is parallel

to the bed joints or in other words when the principal

tensile stress at the center of the disk is perpendicular to the

bed joints. In this case, failure occurs along the interface of

brick and mortar joint.

The methodology of the present work is similar to

another study by the authors [12]. That previous work

focused only on the compression–compression area, where

both principal stresses were compressive, i.e. it focused on

the third quadrant of the rI–rII plane (compression–com-

pression), without having to do with the other three quad-

rants. The present work extends the investigation to all four

quadrants, namely the (A) tension–tension, (B) compres-

sion–tension, (C) compression–compression and (D) ten-

sion–compression quadrant. The former work utilized the

experimental data reported by Page [39–41], which have

been already used by many other researchers [26, 42, 43].

Ratios of vertical compressive stress rI to horizontal

compressive stress rII of 1, 2, 4, 10 and ? (uniaxial rI)
have been used in conjunction with a bed joint angle h with
respect to rI, in directions of 0�, 22.5�, 45�, 67.5� and 90�.
A minimum of four tests were performed for each com-

bination of rI/rII and h.
The present study applies neural networks in order to

approximate the experimental failure curves of a brittle

anisotropic material such as masonry. The aim of the study

was to introduce an anisotropic (orthotropic) neural net-

work—generated 3D failure surface under biaxial stress for

masonry for any angle of the joints to the vertical com-

pressive load, as described in detail in the next paragraphs.

First, for each angle h (0�, 22.5�, 45�, 67.5�, 90�) of the
joints to the vertical compressive load, a neural network

was trained with the experimental data of Page [39–41] as

inputs (5 NNs in total). Then each one of the five NNs was

asked to produce the whole 2D failure curve for each angle

h as its output, filling also the gaps between the experi-

mental points, thus ‘‘enriching’’ the experimental data with

appropriate approximations. Then another, bigger, ‘‘glo-

bal’’ NN was trained using the results of the five NNs as

inputs with the angle h as an input, also. The new NN was

then asked to fill also the gaps between the angles h, pro-
viding the whole 3D failure surface (a tube) for any angle h
(0�–90�) and any ratio of rI/rII, for all four quadrants of

stress.

3 Biaxial testing procedure

Masonry is a composite, multi-phase material that depicts

distinct brittle and strongly anisotropic nature, making

complicated, difficult and expensive, the realization of

reliable experimental tests under conditions of biaxial

stress, and, even more, under conditions of biaxial tension

or heterogeneous stress. In the next sections, the process of

both the preparation of test specimens and the tests con-

ducted under biaxial stress state are presented in detail,

with special attention to the parameters that affect the

results. At this point, it should be emphasized that available
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experimental results obtained by other researchers are used

in this paper.

3.1 Preparation of test specimens

Two main methodologies are used in the literature in order

to obtain the final test specimens with the correct shape and

size, presented in Samarasinghe [44], Page [39–41] and

Tasios and Vachliotis [45].

3.1.1 The first methodology

Specimens with horizontal and vertical joints (Fig. 1a) are

constructed with dimensions greater than those of the final

specimen, and then a square with the desired dimensions is

drawn on the surface of the wall by a pencil at the

appropriate orientation to achieve the correct layup angle

as shown in Fig. 1b.

Angle h denotes the bed joint angle with respect to the

horizontal direction, as shown in the figure, which can be

also defined as the angle between the direction of the bed

joints and one of the edges of the finished test specimen.

After a time-span of 14 days, the larger wall panels were

cut to the required size and shape by a ‘‘Clipper’’ saw

(Fig. 1b) which has the capacity to hold impregnated dia-

mond edge circular blades of varying thickness and

diameters. Two days prior to the date of testing, the

‘‘compressive edge’’ of the panel (the side on which the

compressive load was to be applied) was capped with 1:1

(cement/sand) mortar [12].

3.1.2 The second methodology

According to Page [39–41], all specimens are constructed

directly to their final shape and size as follows: All

brickwork is constructed horizontally on a rigid form with

bricks glued to a Perspex backing sheet to ensure a constant

joint thickness. Panels are made with varying bed joint

angles by cutting individual bricks to the required shape

before casting.

In the present study, five layup angles were selected for

biaxial tests, namely 0�, 22.5�, 45�, 67.5� and 90�.

3.2 Testing rig

A biaxial stress state is induced in the panel by loading

with hydraulic jacks in two orthogonal directions, as shown

in Fig. 2. A constant load ratio is maintained during each

test by means of the spreader beam. The load in each

direction is monitored by load cells immediately adjacent

to the specimen.

4 Biaxial compression tests

For all panels that were tested by Page [39–41], ratios of

compressive stress rI to horizontal compressive stress rII of
1, 2, 4, 10 and infinity (i.e. uniaxial rI) were used in con-

junction with bed joint angle h with respect to the rI
direction of 0�, 22.5�, 45�, 67.5� and 90�. Figure 3 shows

the saw-cut specimens and stress directions for the five

cases h = 0.0�, h = 22.5�, h = 45.0�, h = 67.5� and

h = 90.0�. The cases a(0�)–e(90�), b(22.5�)–d(67.5�) are

symmetric to each other, that is why they have been put one

under the other in the figure. Principal stress ratios of 0 (i.e.

uniaxial rII), 0.1, 0.25, 0.5 and 1 were obtained from the

results using the symmetry of the panels and the loading. A

minimum of four tests were performed for each combina-

tion of rI/rII and h. The failure envelopes that Page

obtained by plotting mean curves for each bed joint angle

can be found in Page [39–41] and Plevris and Asteris [12].

These failure envelopes are based on the peak strength

values obtained from running bond masonry panel tests in

which a uniform loading was applied proportionally.

It should be noted that there are no real experimental

data for the cases (d) h = 67.5� and (e) h = 90.0�, because

Fig. 1 Preparation of the

masonry specimens. a Wall

panel before saw cut, b saw-cut

specimen
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Fig. 2 Biaxial testing rig

Fig. 3 Saw-cut specimens and stress directions. a h = 0.0�, b h = 22.5�, c h = 45.0�, d h = 67.5�, e h = 90.0� [39–41]
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these cases are equivalent to the cases (b) h = 22.5� and

(a) h = 0.0�, respectively, if we reverse rI and rII, as

shown in Fig. 3.

5 Artificial neural networks

In the present study, we use Back-Propagation Neural

Networks (BPNNs), in which the output values are com-

pared with the correct answer to compute the value of a

predefined error function. The error is then fed back through

the network. Using this information, the algorithm adjusts

the weights of each connection in order to reduce the value

of the error function by some small amount. The procedure

is similar to the one used in a previous work by the authors

[12], where more details can be found. The transfer function

used in the present study is the hyperbolic tangent function,

the same for all the hidden and the input layer, which yields

output values in the interval [-1, 1], while its derivative

yields output values in the interval [0, 1]. The transfer

function for the output layer is a linear function. This

scheme has been used in all the NNs of the study.

6 Five NN models (for each angle h)

6.1 NN architecture

For all five NNs, we used a BPNN with one hidden layer,

one input layer and one output layer. The input layer had

one node (neuron) which corresponds to the angle u (in the

range [0, 2p]), which defines the ratio rII/rI, while the

output layer had also one node which corresponds to the

distance (radius) r of the point on the failure curve to the

origin of the axes. These two important parameters (u and

r) will be described in detail in the next paragraphs. The

hidden layer of each NN had 4 nodes for all h (h = 0�,
22.5�, 45�, 67.5�, 90�), ending in a 1-4-1 BPNN architec-

ture for all five cases. These values have been chosen after

some trial tests on various network architectures. The input

and output values are normalized before the NN training

and the inverse normalization is performed in order to take

the NN results for other data afterward. It should be noted

that the very same NN architecture was used for all five

cases with no exceptions.

6.2 Preparation of the NN input data

The experimental data of Page [39–41] have been used as

inputs for the first five NN models of the present study. The

figure below shows the original data for the h = 0� case (in
a normalized form, shown as blue points in the figure)

together with the average values for each rI/rII ratio

(shown as red squares) (Fig. 4).

Table 2 (in the ‘‘Appendix’’) shows the corresponding

analytical data for the h = 0� case. The table consists of

four parts, which correspond to four different types of test,

published in three different papers, as shown below:

(A) 1st quadrant: biaxial tension (rI C 0, rII C 0), Page

[39]

(B) 2nd quadrant: biaxial heterossemous stresses (com-

pression–tension) (rI B 0, rII C 0), Page [41]

(C) 3rd quadrant: biaxial compression (rI B 0, rII B 0),

Page [40]

(D) 4th quadrant: biaxial heterossemous stresses (ten-

sion–compression) (rI C 0, rII B 0), Page [41]

The first two columns of the table contain the original

experimental data, namely the failure principal stresses rI
and rII in MPa. The next two columns (columns 3, 4)

contain the same data in a dimensionless form where the

stresses have been divided with the stress fwc which is the

masonry strength for the case rI = 0 for Case C (com-

pression–compression case). The value of fwc has been

calculated as the average of the four values (highlighted in

bold in the above table) as 7.56 MPa.

In Parts B, C, D we have 2, 3 or 4 tests for every rI/rII
ratio. The tension–tension experimental test is the most

difficult to perform and also the values are small and the

data points more dense, so there is only one test for every

rI/rII ratio. The next two columns (columns 5, 6) are the

averages of the tests for each loading case, i.e. for each rII/
rI ratio. For Part A, the average values coincide with the

Fig. 4 Normalized experimental data and average values for the

h = 0.0� case
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values themselves, as there is only one test performed for

each rI/rII ratio.
For the data to be suitable for the neural network

training, a conversion to polar coordinates (r, u) is needed,
where the distance (or radius, column 8) r is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2I;aver þ r2II;aver

q

ð1Þ

where rI,aver and rII,aver are the average stresses for each

loading case (columns 5, 6).

Since we are trying to describe a full circle, the polar

angle value u has to be within [0, 2p) range. Based on the

values of rI and rII, we need to calculate the value of the

polar angle u. This can be done easily using the inverse

tangent function (Arctan), which returns values within the

(-p, p) range, as follows:

uA ¼ Arctan
rII
rI

� �

ð2Þ

uB ¼ uC ¼ pþ Arctan
rII
rI

� �

ð3Þ

uD¼ 2pþArctan
rII
rI

� �

ð4Þ

For cases where rI = 0, the above formulas do not apply

and it is obviously u = p/2 (for rII[ 0) or u = 3p/2 (for

rII\ 0). The angle u is given in column 7 of the table. The

figures below show the corresponding diagrams for the

other four h cases (h = 22.5�, h = 45�, h = 67.5�,
h = 90�) (Figs. 5, 6, 7, 8).

It should be noted that the data for h = 45� are sym-

metric with respect to the 45� diagonal line (rI = rII), due

to not only the nature of the loading but also to the

geometry of the masonry panel where for this special case

(Fig. 3c) the bed joint orientation is equal to angle

h = 45�. She data for h = 0� and h = 90� that correspond
to complementary angles are also mutually symmetric to

the line rI = rII. The same also applies for the data for

h = 22.5� and h = 67.5. These special conditions will be

studied in detail in the next paragraphs.

For each of the five angles h (h = 0�, 22.5�, 45�, 67.5�,
90�), a neural network is trained with the angle u as its input

Fig. 5 Normalized experimental data and average values for the

h = 22.5� case
Fig. 6 Normalized experimental data and average values for the

h = 45.0� case

Fig. 7 Normalized experimental data and average values for the

h = 67.5� case
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and the radius r as its output. Only the average values of each

test (denoted as ‘‘square’’ points in the above figures) are

used as training data for the neural networks. This proved to

be the best strategy for handling this kind of problem, in

order to avoid overtraining problems with the NN.

6.3 Properties of the curves: NN corrections

The failure curves have some distinct characteristics, and

the NN results have to be in some cases corrected in order

to follow the rules and comply with the characteristics.

These characteristics are presented below.

6.3.1 Consistency for u = 0 and u = 2p

The case u = 0 (start of circle) is in fact the same point as

the case u = 2p (end of circle), and the results in these two

points should coincide. Each curve has to be ‘‘closed,’’ i.e.

the two radius r0 and r2p for u = 0 and u = 2p, respec-
tively, have to be exactly the same. Also the tangents of the

curve at u = 0 and u = 2p have to coincide. The problem

is depicted schematically in Fig. 9a.

For this reason, and in order to improve the performance

of the NN, two measures have been taken:

1. Each NN is trained with two identical circles of data

(instead of one circle which would normally be the

case), so that the input corresponds to the angle u in

the range [0, 4p] and as a result the data points are

doubled. This measure helps the NN show a consistent

behavior at u = 2p (end of circle). The number of data

points for each case is given in Table 1.

2. The first measure mentioned above gives very good

results, and it improved dramatically the performance

of the NN. Although the problem is minimized, it still

exists, in the sense that there is still a slight numerical

difference between the NN-obtained r0 and r2p. In

order to obtain a perfect, closed curve, a second

measure is also taken. If r0 is the predicted distance for

the case u = 0 and r2p is the predicted distance for the

case u = 2p, then we apply the following correction

formulas:

k ¼ r2p

r0
ð5Þ

Fig. 8 Normalized experimental data and average values for the

h = 90.0� case

r0 σΙ/fwc

σII/fwc σII/fwc

r2π

(r0+r2π)/2

σΙ/fwc

(a) (b)

Fig. 9 Consistency for u = 0 and u = 2p. a Initial curve, b corrected curve

Table 1 Number of data points for NN training, for each case

NN ID Angle h (�) Number of NN data points

1 0 22 ? 22 = 44

2 22.5 22 ? 22 = 44

3 45 23 ? 23 = 46

4 67.5 22 ? 22 = 44

5 90 22 ? 22 = 44

Neural Comput & Applic (2017) 28:2207–2229 2213
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k1 ¼
1þ k
2

ð6Þ

k2 ¼
1þ k
2k

ð7Þ

r0u ¼ ru � k1 þ
u
2p

� k2 � k1ð Þ
h i

ð8Þ

For u = 0 or u = 2p, Eq. (8) gives (r0 ? r2p)/2 which

makes a closed curve, as shown in Fig. 9b. This correction

is applied to the results of all NNs.

6.3.2 Symmetry for h = 45�

For the special case of masonry with bed joint angle

h = 45�, the masonry panel exhibits a symmetry which

leads to a symmetric failure curve to the line rI = rII as
shown in Fig. 10.

Since the training data had already been symmetric,

there were only slight differences in the NN results and the

symmetry was only slightly disturbed. In any case, special

care has been taken in order to obtain a perfectly sym-

metric result for this case. In particular, the results in the

σII/fwc

Sym
metr

y l
ine

σΙ/fwc

θ=45° 

Fig. 10 Symmetry to the rI = rII line, for the case h = 45.0�

σII/fwc

σΙ/fwc

θ

90°-θ

Sym
metr

y l
ine

Fig. 11 Symmetry to the rI = rII line, between curves correspond-

ing to complementary angles (h and 90� - h)
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Fig. 12 NN approximation result for h = 0� (rII vs rI,
dimensionless)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Angle φ (Degrees)

R
ad

iu
s 

r

Theta=0
Experimental
NN Prediction

Fig. 13 NN approximation result for h = 0� (Radius r vs Angle u)
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two sides of the symmetry line were both taken into

account and the average was finally considered, ensuring

that the final result would be perfectly symmetric.

6.3.3 Symmetry for complementary angles (h and 90� - h)

It has been noted that the failure curves that correspond to

complementary angles (h and 90� - h), such as h = 0� and

h = 90� as well as h = 22.50� and h = 67.5�, are mutually

symmetric to the line rI = rII as shown in Fig. 11.

Although the results obtained by the NNs are satisfac-

tory, we apply a special correction in order to ensure that

the results for the case 0� are exactly equivalent to the

results of the case 90� and also the results for the case 22.5�
are equivalent to the results of the case 67.5�. In particular,

the results of the two equivalent cases were both taken into
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Fig. 14 NN approximation result for h = 22.5� (rII vs rI,
dimensionless)
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Fig. 15 NN approximation result for h = 45� (rII vs rI,
dimensionless)
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Fig. 16 NN approximation result for h = 67.5� (rII vs rI,
dimensionless)
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Fig. 17 NN approximation result for h = 90� (rII vs rI,
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account and the average was finally considered, ensuring

that the result would be perfectly symmetric between the

two cases.

6.4 Final approximation results of the five NNs

The five NNs were trained with the input and output data of

Tables 1, 2, 3, 4, 5 (last two columns) and then each NN

was asked to produce the full curves for each bed joint

angle, for a set of 80 segments (81 points). Although the

NN was trained for two circles of data, it was asked to

report results only for the first circle (in the range [0, 2p]).
The results are shown in the figures below.

In all the figures (Figs. 12, 13, 14, 15, 16, 17, 18), the

black dots denote the input data, i.e. the data corre-

sponding to the last two columns of Tables 2, 3, 4, 5, 6.

The blue curve denotes the NN prediction of the fitting

curve. It can be seen that the NN managed to fit all the

training data with very good accuracy, providing smooth

curves in all cases.

Figure 15 shows the h = 45� case, where it can be seen

that the curve is perfectly symmetric to the rI = rII line,
because of the extra measures that have been taken. Fig-

ure 18 shows the same case (h = 45�), where we zoom in

the tension–tension area. It is clear that the result is a

perfectly closed curve. By comparing Fig. 12 (h = 0�) to
Fig. 17 (h = 90�) and Fig. 14 (h = 22.5�) to Fig. 16

(h = 67.5�), it can be seen that the results for comple-

mentary angles are indeed symmetric to the rI = rII line.

7 ‘‘Global’’ neural network model

In the previous part of the study, five NN Models were

trained, each NN for one angle h (0�, 22.5�, 45�, 67.5� and
90�). The final purpose of the study is to add also the angle

h as a parameter of the problem, thus creating a model that

will be able to predict the entire failure curve not only for

the predefined angles, but for any angle h, from 0� to 90�.
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w
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Fig. 18 NN approximation result for the case h = 45�, zoomed in

Fig. 19 Global NN approximation result of the 3D failure surface in terms of principal stresses (tube)
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In order to achieve this, after the five NNs were trained

and they had provided their results, another bigger, ‘‘Glo-

bal’’ NN was trained which took the results of the five NNs

as inputs with the angle h as an additional input, also. The

new NN was then asked to fill also the gaps between the

angles h, providing the whole 3D failure ‘‘tube’’ for any

angle h and any angle u (ratio of rII/rI), for all four

quadrants.

The Global NN is also a BPNN with one hidden layer

containing 10 nodes (2-10-1 architecture). The two inputs

are the angles u (0 to 4p—two full circles) and h (0� to

90�), while the output is the distance (radius) r. The

transfer function of the global NN is the hyperbolic tangent

function that was used also in the first five NNs. For the

global NN, we use all the results of the other five NNs as

training patterns. This means that we have 161*5 = 805

training patterns, as we use 161 points (80*2 ? 1) for

every angle h (0�, 22.5�, 45�, 67.5� and 90�).

8 Global NN results

8.1 Failure tube in 3D

The global NN was trained and then it was asked to pro-

duce the whole 3D failure surface. Although the global NN

Fig. 20 Global NN approximation result of the 3D failure surface (‘‘onion’’) in terms of normal stresses, two different views
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was trained in two full circles ([0, 4p]), in order to achieve

better performance and to manage to ‘‘close’’ the curve for

the first circle, it was asked to produce results only for the

first circle ([0, 2p]). Specifically, the NN was asked to

produce points where the angle u was divided again in 160

(80*2) segments (161 points, each segment is equivalent to

360�/80 = 4.5�), while angle h is divided in 40 segments

(41 points, each segment is equivalent to 90�/40 = 2.25�).
The figure below shows the result of the NN approximation

in 3D. The red points (dots) denote the initial training set of

the first five NNs, i.e. the average values gathered from the

experimental results and used for the training of the initial

NNs (Fig. 19).

8.2 Closed failure surface in 3D

Knowing the principal stresses rI, rII and the angle h, we
can obtain the corresponding values of rx, ry, sxy = s,
using the following well known formulas:

rx ¼
1

2
rI þ rIIð Þ þ 1

2
rI � rIIð Þ � cos 2hð Þ ð9Þ

ry ¼
1

2
rI þ rIIð Þ � 1

2
rI � rIIð Þ � cos 2hð Þ ð10Þ

s ¼ � 1

2
rI � rIIð Þ � sin 2hð Þ ð11Þ

This way we can convert the stresses from the system of

the triplet (rI, rII, h) to the one of the triplet (rx, ry, s).

Fig. 21 The tensile area of the

3D failure ‘‘onion,’’ zoomed in

Fig. 22 Comparison of results for h = 0.0� Fig. 23 Comparison of results for h = 22.5�
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Figure 20 shows the failure curves in the 3D system of the

triplet (rx, ry, s), where an ‘‘onion’’ is formed. Again, the

red points (dots) denote the initial training set of the first

five NNs (primary training data).

Figure 21 shows the zoomed-in picture of the tensile

area of the failure onion.

9 Comparison with other criteria: discussion

The results are compared to the main analytical criteria

used to define the masonry failure surface [12]. To better

facilitate the comparison, classical failure criteria have

been used from the literature such as:

• The Von Mises modified failure criterion, which has

been adopted by many researchers [46–50].

• The second-order polynomial, which comprises a

simplified version of the cubic tensor polynomial, to

be presented afterward. It applies to anisotropic mate-

rials and is commonly used to define the failure of

masonry materials [26].

• The third-order polynomial or cubic tensor polynomial.

This criterion comprises the generalization of the

aforementioned failure criterion and has been applied

to anisotropic composite materials [20, 51, 52] includ-

ing masonry materials [24, 26].

All three failure criteria assume plane stress state and

are expressed in terms of non-dimensionless normal

stresses regarding the uniaxial compressive strength per-

pendicular to the bed joints of masonry f 90
�

wc , as shown in

[12]. Extensive and in-depth state-of-the-art reports on all

the above criteria used for masonry can be found in [53,

54].

Figures 22, 23, 24, 25 and 26 show the comparison

between the results obtained using the proposed NN

methodology, in relation to the available analytical failure

criteria, which were presented above, and the experimental

Fig. 24 Comparison of results for h = 45.0�

Fig. 25 Comparison of results for h = 67.5�

Fig. 26 Comparison of results for h = 90.0�
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results obtained by Page [39–41]. Although some of the

analytical failure criteria perform well in specific cases of

the h angle, and for specific quadrants of the stress state, it

is often observed that in other cases they perform much

worse, as they do not have the flexibility to adjust and give

the whole picture for all angles and all quadrants. On the

other hand, as shown in the figures, NN performs very well

and shows the best overall (most balanced) performance

compared to the other criteria.

10 Conclusions

Despite the plethora of analytical models that have been

proposed for the modeling of masonry material, there is no

analogous progress in models for the description of its

failure surface, which is a prerequisite for a comprehensive

and reliable implementation of them.

In the present study, an NN procedure for the modeling

of the anisotropic masonry behavior under biaxial stress

state is presented. In particular, a novel procedure based on

neural network techniques has been introduced in order to

model the failure/yield surface of masonry material in a

dimensionless form. To this end, available classical

experimental results from the literature are used as input

data for the training as well as the validation of NNs.

Being aware that masonry is a multi-phase material that

exhibits distinct brittle and anisotropic nature with wide

scatter in the values of its mechanical characteristics, the

proposed NN procedure has been shown to be reliable and

robust, providing valuable results.

In particular, the derived failure surface, on the one

hand, fits the experimental data with high accuracy and on

the other hand it is provided in a dimensionless form which

is very important as it can be easily applied to other

masonry materials of similar geometry and properties.

Furthermore, the derived surface provides valuable infor-

mation about areas of the masonry failure that have not

been investigated until now (failure under heterosemous

stresses or furthermore failure under biaxial tension for any

tilt angle of the bed joints) helping us to better understand

the whole fracture mechanics phenomenon.

Appendix

Tables 2, 3, 4, 5 and 6.

Table 2 Failure of brickwork under biaxial compression, h = 0�, and relevant calculations

rI (MPa) rII (MPa) rI/fwc rII/fwc Average rI/fwc Average rII/fwc Angle u Radius r Region, source

0.50 0.00 0.066 0.000 0.066 0.000 0.000 0.066 (A) Tension–tension

Page [39]0.35 0.20 0.046 0.026 0.046 0.026 0.514 0.053

0.24 0.24 0.032 0.032 0.032 0.032 0.784 0.045

0.15 0.26 0.020 0.035 0.020 0.035 1.050 0.040

0.00 0.29 0.000 0.038 0.000 0.038 1.571 0.038

-0.65 0.29 -0.086 0.039 -0.070 0.031 2.731 0.077 (B) Compression–tension

Page [41]-0.61 0.26 -0.081 0.035

-0.45 0.19 -0.059 0.025

-0.42 0.18 -0.056 0.024

-0.99 0.19 -0.130 0.026 -0.115 0.023 2.947 0.118

-0.89 0.18 -0.118 0.024

-0.81 0.17 -0.107 0.023

-0.81 0.14 -0.107 0.018

-2.28 0.21 -0.302 0.028 -0.214 0.019 3.051 0.215

-2.19 0.19 -0.290 0.025

-1.16 0.09 -0.153 0.012

-0.85 0.09 -0.112 0.012

-3.90 0.13 -0.516 0.017 -0.414 0.015 3.106 0.415

-3.60 0.14 -0.477 0.018

-2.94 0.11 -0.388 0.015

-2.09 0.07 -0.276 0.009

-3.53 0.00 -0.467 0.000 -0.572 0.000 3.142 0.572 (C) Compression–compression

Page [40]
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Table 2 continued

rI (MPa) rII (MPa) rI/fwc rII/fwc Average rI/fwc Average rII/fwc Angle u Radius r Region, source

-4.14 0.00 -0.548 0.000

-4.66 0.00 -0.616 0.000

-4.96 0.00 -0.656 0.000

-9.59 -0.85 -1.269 -0.113 -1.316 -0.120 3.233 1.321

-9.70 -0.87 -1.283 -0.115

-10.11 -0.90 -1.338 -0.119

-10.37 -1.01 -1.372 -0.133

-9.46 -2.26 -1.252 -0.299 -1.303 -0.312 3.377 1.340

-9.85 -2.43 -1.304 -0.322

-9.92 -2.30 -1.312 -0.304

-10.15 -2.45 -1.344 -0.324

-9.33 -4.67 -1.235 -0.618 -1.318 -0.665 3.609 1.476

-9.62 -5.01 -1.272 -0.663

-9.74 -4.95 -1.289 -0.654

-11.15 -5.48 -1.475 -0.724

-7.84 -7.76 -1.037 -1.026 -1.080 -1.073 3.924 1.522

-7.89 -7.91 -1.043 -1.046

-8.20 -8.10 -1.085 -1.071

-8.72 -8.67 -1.154 -1.147

-4.16 -7.95 -0.550 -1.052 -0.599 -1.130 4.225 1.279

-4.55 -8.57 -0.602 -1.134

-4.66 -8.84 -0.616 -1.170

-4.74 -8.81 -0.627 -1.165

-2.12 -8.34 -0.281 -1.103 -0.307 -1.175 4.457 1.215

-2.21 -8.67 -0.292 -1.147

-2.32 -9.21 -0.306 -1.219

-2.63 -9.32 -0.347 -1.233

-0.76 -7.55 -0.100 -0.999 -0.107 -1.102 4.615 1.107

-0.76 -8.42 -0.100 -1.114

-0.87 -8.42 -0.115 -1.114

-0.87 -8.93 -0.115 -1.182

0.00 27.15 0.000 -0.945 0.000 -1.000 4.712 1.000

0.00 27.27 0.000 -0.962

0.00 27.69 0.000 -1.018

0.00 28.12 0.000 -1.075

0.15 -3.70 0.020 -0.490 0.025 -0.717 4.748 0.717 (D) Tension–compression

Page [41]0.16 -5.06 0.021 -0.669

0.19 -5.52 0.025 -0.730

0.26 -7.40 0.034 -0.979

0.28 -2.55 0.037 -0.337 0.041 -0.440 4.806 0.442

0.31 -3.62 0.041 -0.478

0.34 -3.80 0.045 -0.503

0.38 -1.99 0.050 -0.263 0.064 -0.331 4.904 0.337

0.52 -2.63 0.069 -0.348

0.55 -2.88 0.073 -0.382

0.39 -0.90 0.052 -0.119 0.062 -0.154 5.097 0.166

0.50 -1.19 0.066 -0.158

0.52 -1.40 0.069 -0.185
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Table 3 Failure of brickwork under biaxial compression, h = 22.5� and relevant calculations

rI (MPa) rII (MPa) rI/fwc rII/fwc Average rI/fwc Average rII/fwc Angle u Radius r Region, source

0.30 0.00 0.040 0.000 0.040 0.000 0.000 0.040 (A) Tension–tension

Page [39]0.28 0.11 0.037 0.015 0.037 0.015 0.378 0.040

0.18 0.18 0.024 0.024 0.024 0.024 0.777 0.034

0.08 0.21 0.011 0.028 0.011 0.028 1.205 0.030

0.00 0.21 0.000 0.028 0.000 0.028 1.571 0.028

-0.56 0.26 -0.075 0.034 -0.050 0.028 2.636 0.057 (B) Compression–tension

Page [41]-0.34 0.20 -0.045 0.026

-0.24 0.17 -0.031 0.023

-1.45 0.29 -0.192 0.039 -0.158 0.031 2.947 0.161

-1.08 0.22 -0.143 0.030

-1.05 0.19 -0.139 0.025

-1.54 0.14 -0.204 0.019 -0.182 0.015 3.057 0.182

-1.39 0.11 -0.184 0.015

-1.18 0.09 -0.157 0.012

-1.92 0.05 -0.254 0.007 -0.231 0.006 3.115 0.232

-1.68 0.04 -0.223 0.005

-1.65 0.05 -0.218 0.006

-2.37 0.00 -0.314 0.000 -0.375 0.000 3.142 0.375 (C) Compression–compression

Page [40]-2.50 0.00 -0.331 0.000

-3.19 0.00 -0.422 0.000

-3.28 0.00 -0.434 0.000

-4.79 -0.60 -0.634 -0.079 -0.683 -0.093 3.277 0.689

-5.24 -0.78 -0.694 -0.104

-5.22 -0.71 -0.691 -0.094

-5.38 -0.71 -0.712 -0.094

-8.26 -2.08 -1.093 -0.275 -1.179 -0.286 3.380 1.213

-8.47 -2.12 -1.120 -0.281

-9.44 -2.18 -1.249 -0.289

-9.47 -2.27 -1.253 -0.301

-9.84 -4.96 -1.303 -0.657 -1.379 -0.725 3.626 1.558

-9.95 -5.22 -1.317 -0.691

-10.33 -5.65 -1.367 -0.748

-11.56 -6.10 -1.530 -0.807

-7.57 -7.89 -1.002 -1.044 -1.078 -1.094 3.934 1.536

-8.22 -8.31 -1.087 -1.099

-8.35 -8.53 -1.104 -1.128

-8.46 -8.35 -1.119 -1.105

-3.91 -7.83 -0.517 -1.036 -0.610 -1.204 4.243 1.349

-4.12 -8.37 -0.545 -1.107

-4.98 -9.54 -0.658 -1.262

-5.43 -10.65 -0.719 -1.409

-2.06 -7.59 -0.273 -1.005 -0.277 -1.070 4.459 1.105

-1.95 -7.84 -0.259 -1.038

-2.15 -8.27 -0.284 -1.094

-2.20 -8.65 -0.291 -1.144

-0.76 -7.23 -0.100 -0.956 -0.118 -1.040 4.600 1.047

-0.89 -7.53 -0.118 -0.996

-0.93 -7.80 -0.123 -1.032
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Table 3 continued

rI (MPa) rII (MPa) rI/fwc rII/fwc Average rI/fwc Average rII/fwc Angle u Radius r Region, source

-0.98 -8.89 -0.129 -1.176

0.00 -4.87 0.000 -0.644 0.000 -0.751 4.712 0.751

0.00 -5.39 0.000 -0.713

0.00 -5.59 0.000 -0.739

0.00 -6.85 0.000 -0.907

0.15 -4.55 0.020 -0.602 0.020 -0.619 4.745 0.620 (D) Tension–compression

Page [41]0.15 -4.70 0.019 -0.622

0.16 -4.79 0.021 -0.634

0.28 -3.34 0.038 -0.442 0.042 -0.474 4.800 0.475

0.32 -3.51 0.042 -0.464

0.34 -3.89 0.045 -0.515

0.37 -2.00 0.048 -0.265 0.057 -0.311 4.893 0.316

0.45 -2.40 0.059 -0.317

0.47 -2.64 0.063 -0.350

0.42 -0.95 0.055 -0.125 0.061 -0.134 5.142 0.148

0.51 -1.08 0.068 -0.143

Table 4 Failure of brickwork under biaxial compression, h = 45� and relevant calculations

rI (MPa) rII (MPa) rI/fwc rII/fwc Average rI/fwc Average rII/fwc Angle u Radius r Region, source

0.24 0.00 0.032 0.000 0.032 0.000 0.000 0.032 (A) Tension–tension

Page [39]0.25 0.15 0.034 0.020 0.034 0.020 0.533 0.039

0.22 0.22 0.029 0.030 0.029 0.030 0.790 0.042

0.15 0.25 0.020 0.034 0.020 0.034 1.038 0.039

0.00 0.24 0.000 0.032 0.000 0.032 1.571 0.032

-0.36 0.38 -0.048 0.050 -0.069 0.044 2.573 0.082 (B) Compression–tension

Page [41]-0.55 0.32 -0.072 0.042

-0.65 0.30 -0.086 0.040

-1.67 0.31 -0.220 0.042 -0.201 0.039 2.952 0.205

-1.56 0.31 -0.207 0.042

-1.33 0.24 -0.177 0.032

-1.94 0.24 -0.257 0.032 -0.281 0.028 3.042 0.282

-2.57 0.23 -0.340 0.031

-1.86 0.16 -0.246 0.021

-3.72 0.12 -0.492 0.016 -0.421 0.013 3.110 0.421

-3.13 0.12 -0.414 0.015

-3.14 0.09 -0.415 0.012

-2.74 0.08 -0.362 0.011

-4.09 0.00 -0.542 0.000 -0.667 0.000 3.142 0.667 (C) Compression–compression

Page [40]-4.56 0.00 -0.603 0.000

-5.14 0.00 -0.681 0.000

-5.29 0.00 -0.700 0.000

-6.11 0.00 -0.808 0.000

-6.99 -0.77 -0.925 -0.101 -0.985 -0.100 3.243 0.990

-7.52 -0.72 -0.995 -0.095

-7.52 -0.80 -0.995 -0.106

-7.76 -0.74 -1.027 -0.098
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Table 4 continued

rI (MPa) rII (MPa) rI/fwc rII/fwc Average rI/fwc Average rII/fwc Angle u Radius r Region, source

-7.54 -1.88 -0.997 -0.248 -1.108 -0.260 3.372 1.138

-8.19 -1.88 -1.083 -0.248

-8.27 -1.85 -1.094 -0.245

-9.50 -2.24 -1.257 -0.297

-8.71 -4.32 -1.153 -0.572 -1.200 -0.606 3.609 1.345

-8.83 -4.70 -1.168 -0.621

-8.94 -4.45 -1.183 -0.589

-9.80 -4.86 -1.297 -0.643

-8.14 -7.64 -1.077 -1.011 -1.140 -1.076 3.898 1.567

-8.41 -8.05 -1.113 -1.065

-8.59 -8.22 -1.136 -1.088

-9.32 -8.61 -1.233 -1.139

-7.64 -8.14 -1.011 -1.077 -1.076 -1.140 3.956 1.567

-8.05 -8.41 -1.065 -1.113

-8.22 -8.59 -1.088 -1.136

-8.61 -9.32 -1.139 -1.233

-4.32 -8.71 -0.572 -1.153 -0.606 -1.200 4.245 1.345

-4.70 -8.83 -0.621 -1.168

-4.45 -8.94 -0.589 -1.183

-4.86 -9.80 -0.643 -1.297

-1.88 -7.54 -0.248 -0.997 -0.260 -1.108 4.482 1.138

-1.88 -8.19 -0.248 -1.083

-1.85 -8.27 -0.245 -1.094

-2.24 -9.50 -0.297 -1.257

-0.77 -6.99 -0.101 -0.925 -0.100 -0.985 4.611 0.990

-0.72 -7.52 -0.095 -0.995

-0.80 -7.52 -0.106 -0.995

-0.74 -7.76 -0.098 -1.027

0.00 -4.09 0.000 -0.542 0.000 -0.667 4.712 0.667

0.00 -4.56 0.000 -0.603

0.00 -5.14 0.000 -0.681

0.00 -5.29 0.000 -0.700

0.00 -6.11 0.000 -0.808

0.12 -3.72 0.016 -0.492 0.013 -0.421 4.744 0.421 (D) Tension–compression

Page [41]0.12 -3.13 0.015 -0.414

0.09 -3.14 0.012 -0.415

0.08 -2.74 0.011 -0.362

0.24 -1.94 0.032 -0.257 0.028 -0.281 4.812 0.282

0.23 -2.57 0.031 -0.340

0.16 -1.86 0.021 -0.246

0.31 -1.67 0.042 -0.220 0.039 -0.201 4.902 0.205

0.31 -1.56 0.042 -0.207

0.24 -1.33 0.032 -0.177

0.38 -0.36 0.050 -0.048 0.044 -0.069 5.281 0.082

0.32 -0.55 0.042 -0.072

0.30 -0.65 0.040 -0.086

2224 Neural Comput & Applic (2017) 28:2207–2229

123



Table 5 Failure of brickwork under biaxial compression, h = 67.5� and relevant calculations

rI (MPa) rII (MPa) rI/fwc rII/fwc Average rI/fwc Average rII/fwc Angle u Radius r Region, source

0.21 0.00 0.028 0.000 0.028 0.000 0.000 0.028 (A) Tension–tension

Page [39]0.21 0.08 0.028 0.011 0.028 0.011 0.366 0.030

0.18 0.18 0.024 0.024 0.024 0.024 0.793 0.034

0.11 0.28 0.015 0.037 0.015 0.037 1.193 0.040

0.00 0.30 0.000 0.040 0.000 0.040 1.571 0.040

-0.95 0.42 -0.125 0.055 -0.134 0.061 2.712 0.148 (B) Compression–tension

Page [41]-1.08 0.51 -0.143 0.068

-2.00 0.37 -0.265 0.048 -0.311 0.057 2.961 0.316

-2.40 0.45 -0.317 0.059

-2.64 0.47 -0.350 0.063

-3.34 0.28 -0.442 0.038 -0.474 0.042 3.054 0.475

-3.51 0.32 -0.464 0.042

-3.89 0.34 -0.515 0.045

-4.55 0.15 -0.602 0.020 -0.619 0.020 3.109 0.620

-4.70 0.15 -0.622 0.019

-4.79 0.16 -0.634 0.021

-4.87 0.00 -0.644 0.000 -0.751 0.000 3.142 0.751 (C) Compression–compression

Page [40]-5.39 0.00 -0.713 0.000

-5.59 0.00 -0.739 0.000

-6.85 0.00 -0.907 0.000

-7.23 -0.76 -0.956 -0.100 -1.040 -0.118 3.254 1.047

-7.53 -0.89 -0.996 -0.118

-7.80 -0.93 -1.032 -0.123

-8.89 -0.98 -1.176 -0.129

-7.59 -2.06 -1.005 -0.273 -1.070 -0.277 3.395 1.105

-7.84 -1.95 -1.038 -0.259

-8.27 -2.15 -1.094 -0.284

-8.65 -2.20 -1.144 -0.291

-7.83 -3.91 -1.036 -0.517 -1.204 -0.610 3.611 1.349

-8.37 -4.12 -1.107 -0.545

-9.54 -4.98 -1.262 -0.658

-10.65 -5.43 -1.409 -0.719

-7.89 -7.57 -1.044 -1.002 -1.094 -1.078 3.920 1.536

-8.31 -8.22 -1.099 -1.087

-8.53 -8.35 -1.128 -1.104

-8.35 -8.46 -1.105 -1.119

-4.96 -9.84 -0.657 -1.303 -0.725 -1.379 4.228 1.558

-5.22 -9.95 -0.691 -1.317

-5.65 -10.33 -0.748 -1.367

-6.10 -11.56 -0.807 -1.530

-2.08 -8.26 -0.275 -1.093 -0.286 -1.179 4.474 1.213

-2.12 -8.47 -0.281 -1.120

-2.18 -9.44 -0.289 -1.249

-2.27 -9.47 -0.301 -1.253

-0.60 -4.79 -0.079 -0.634 -0.093 -0.683 4.577 0.689

-0.78 -5.24 -0.104 -0.694

-0.71 -5.22 -0.094 -0.691

-0.71 -5.38 -0.094 -0.712
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Table 5 continued

rI (MPa) rII (MPa) rI/fwc rII/fwc Average rI/fwc Average rII/fwc Angle u Radius r Region, source

0.00 -2.37 0.000 -0.314 0.000 -0.375 4.712 0.375

0.00 -2.50 0.000 -0.331

0.00 -3.19 0.000 -0.422

0.00 -3.28 0.000 -0.434

0.26 -0.56 0.034 -0.075 0.028 -0.050 5.218 0.057 (D) Tension–compression

Page [41]0.20 -0.34 0.026 -0.045

0.17 -0.24 0.023 -0.031

0.29 -1.45 0.039 -0.192 0.031 -0.158 4.907 0.161

0.22 -1.08 0.030 -0.143

0.19 -1.05 0.025 -0.139

0.14 -1.54 0.019 -0.204 0.015 -0.182 4.797 0.182

0.11 -1.39 0.015 -0.184

0.09 -1.18 0.012 -0.157

0.05 -1.92 0.007 -0.254 0.006 -0.231 4.739 0.232

0.04 -1.68 0.005 -0.223

0.05 -1.65 0.006 -0.218

Table 6 Failure of brickwork under biaxial compression, h = 90� and relevant calculations

rI (MPa) rII (MPa) rI/fwc rII/fwc Average rI/fwc Average rII/fwc Angle u Radius r Region, source

0.29 0.00 0.038 0.000 0.038 0.000 0.000 0.038 (A) Tension–tension

Page [39]0.26 0.15 0.035 0.020 0.035 0.020 0.520 0.040

0.24 0.24 0.032 0.032 0.032 0.032 0.787 0.045

0.20 0.35 0.026 0.046 0.026 0.046 1.057 0.053

0.00 0.50 0.000 0.066 0.000 0.066 1.571 0.066

-0.90 0.39 -0.119 0.052 -0.154 0.062 2.757 0.166 (B) Compression–tension

Page [41]-1.19 0.50 -0.158 0.066

-1.40 0.52 -0.185 0.069

-2.88 0.55 -0.382 0.073 -0.331 0.064 2.950 0.337

-2.63 0.52 -0.348 0.069

-1.99 0.38 -0.263 0.050

-2.55 0.28 -0.337 0.037 -0.440 0.041 3.048 0.442

-3.62 0.31 -0.478 0.041

-3.80 0.34 -0.503 0.045

-3.70 0.15 -0.490 0.020 -0.717 0.025 3.106 0.717

-5.06 0.16 -0.669 0.021

-5.52 0.19 -0.730 0.025

-7.40 0.26 -0.979 0.034

-7.15 0.00 -0.945 0.000 -1.000 0.000 3.142 1.000 (C) Compression–compression

Page [40]-7.27 0.00 -0.962 0.000

-7.69 0.00 -1.018 0.000

-8.12 0.00 -1.075 0.000

-7.55 -0.76 -0.999 -0.100 -1.102 -0.107 3.239 1.107

-8.42 -0.76 -1.114 -0.100

-8.42 -0.87 -1.114 -0.115

-8.93 -0.87 -1.182 -0.115

-8.34 -2.12 -1.103 -0.281 -1.175 -0.307 3.397 1.215
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Table 6 continued

rI (MPa) rII (MPa) rI/fwc rII/fwc Average rI/fwc Average rII/fwc Angle u Radius r Region, source

-8.67 -2.21 -1.147 -0.292

-9.21 -2.32 -1.219 -0.306

-9.32 -2.63 -1.233 -0.347

-7.95 -4.16 -1.052 -0.550 -1.130 -0.599 3.629 1.279

-8.57 -4.55 -1.134 -0.602

-8.84 -4.66 -1.170 -0.616

-8.81 -4.74 -1.165 -0.627

-7.76 -7.84 -1.026 -1.037 -1.073 -1.080 3.930 1.522

-7.91 -7.89 -1.046 -1.043

-8.10 -8.20 -1.071 -1.085

-8.67 -8.72 -1.147 -1.154

-4.67 -9.33 -0.618 -1.235 -0.665 -1.318 4.245 1.476

-5.01 -9.62 -0.663 -1.272

-4.95 -9.74 -0.654 -1.289

-5.48 -11.15 -0.724 -1.475

-2.26 -9.46 -0.299 -1.252 -0.312 -1.303 4.477 1.340

-2.43 -9.85 -0.322 -1.304

-2.30 -9.92 -0.304 -1.312

-2.45 -10.15 -0.324 -1.344

-0.85 -9.59 -0.113 -1.269 -0.120 -1.316 4.621 1.321

-0.87 -9.70 -0.115 -1.283

-0.90 -10.11 -0.119 -1.338

-1.01 -10.37 -0.133 -1.372

0.00 -3.53 0.000 -0.467 0.000 -0.572 4.712 0.572

0.00 -4.14 0.000 -0.548

0.00 -4.66 0.000 -0.616

0.00 -4.96 0.000 -0.656

0.07 -2.09 0.009 -0.276 0.015 -0.414 4.748 0.415 (D) Tension–compression

Page [41]0.11 -2.94 0.015 -0.388

0.14 -3.60 0.018 -0.477

0.13 -3.90 0.017 -0.516

0.09 -0.85 0.012 -0.112 0.019 -0.214 4.803 0.215

0.09 -1.16 0.012 -0.153

0.19 -2.19 0.025 -0.290

0.21 -2.28 0.028 -0.302

0.14 -0.81 0.018 -0.107 0.024 -0.118 4.914 0.121

0.17 -0.81 0.023 -0.107

0.18 -0.89 0.024 -0.118

0.19 -0.99 0.026 -0.130

0.18 -0.42 0.024 -0.056 0.031 -0.070 5.123 0.077

0.19 -0.45 0.025 -0.059

0.26 -0.61 0.035 -0.081

0.29 -0.65 0.039 -0.086
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