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Abstract Neutrosophic number is an important tool

which is used to express indeterminate evaluation infor-

mation. The purpose of the paper is to propose some

aggregation operators based on neutrosophic number,

which are used to handle multiple attribute group decision-

making problems. Firstly, we introduce the definition, the

properties and the operational laws of the neutrosophic

numbers, and the possibility degree function is briefly

introduced. Then, some neutrosophic number operators are

proposed, such as the neutrosophic number weighted

arithmetic averaging operator, the neutrosophic number

ordered weighted arithmetic averaging operator, the neu-

trosophic number hybrid weighted arithmetic averaging

operator, the neutrosophic number weighted geometric

averaging operator, the neutrosophic number ordered

weighted geometric averaging operator, the neutrosophic

number hybrid weighted geometric averaging operator, the

neutrosophic number generalized weighted averaging

operator, the neutrosophic number generalized ordered

weighted averaging operator, the neutrosophic number

generalized hybrid weighted averaging (NNGHWA)

operator. Furthermore, some properties of these operators

are discussed. Moreover, a multiple attribute group deci-

sion-making method based on the NNGHWA operator is

proposed. Finally, an illustrative example is proposed to

demonstrate the practicality and effectiveness of the

method.

Keywords Multiple attribute group decision making �
Neutrosophic numbers � Neutrosophic number generalized

aggregation operator

1 Introduction

Multiple attribute group decision making (MAGDM) is an

important branch of decision theory which has been widely

applied in many fields. Because of the fuzziness and the

complexity of decision problems, sometimes, it is difficult

to express the attribute values by the crisp numbers. Many

multiple attribute decision methods based on fuzzy infor-

mation were developed. Zadeh [1] proposed the fuzzy set

(FS) and Atanassov [2] proposed the intuitionistic fuzzy set

(IFS) which was produced by adding the non-membership

degree function on the basis of the FS. Obviously, the IFS

paid more attention to the membership degree and non-

membership degree and did not consider the indetermi-

nacy-membership degree. Smarandache [3] further pro-

posed the neutrosophic numbers (NNs), which can be

divided into two parts: determinate part and indeterminate

part. So the NN was more practical to handle indeterminate

information in real situations. Therefore, the NN can be

represented as the function N ¼ aþ bI in which a is the

determinate part and bI is the indeterminate part. Obvi-

ously, the fewer the indeterminate part related to the NN is,

the better the information conveyed by NN is. So, the worst

scenario is N ¼ bI, where the indeterminate part reach the

maximum. Conversely, the best case is N ¼ a where there

is not indeterminacy related the NN. Thus, it is more

suitable to handle the indeterminate information in
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decision-making problems. To this day, using NNs to

handle indeterminate problems has made little progress in

the fields of scientific and engineering techniques. There-

fore, it is necessary to propose a new method based on the

NNs to handle group decision-making problems.

A variety of information aggregation operators have

been proposed to aggregate evaluation information in

various environments [4–7, 9–13] such as the arithmetic

aggregation operator, the geometric aggregation operator

and the generalized aggregation operator. Yager [8] firstly

proposed the ordered weighted averaging (OWA) operator

which was widely used in decision field. The OWA oper-

ator can aggregate the input information by weighting the

ranking position of them. Many extension of the OWA

operator have been proposed, such as uncertain aggregation

operators [12, 14–20], the induced aggregation operators

[21, 22], the linguistic aggregation operators [23, 24], the

uncertain linguistic aggregation operators [7], the fuzzy

aggregation operators [5, 25], the fuzzy linguistic aggre-

gation operators [26], the induced linguistic aggregation

operators [27], the induced uncertain linguistic aggregation

operators [28, 29], the fuzzy induced aggregation operators

[30] and the intuitionistic fuzzy aggregation operators [31].

Based on the operators mentioned above, Xu and Chen [32]

proposed some arithmetic aggregation (IVIFAA) operators

for interval-valued intuitionistic fuzzy information, such as

the IVIFWA operator, the IVIFOWA operator, and the

IVIFHA operator. Zhao [33] proposed some generalized

weighted operator for intuitionistic fuzzy information, such

as the GIFWA operator, the GIFOWA operator, and the

GIFHA operator.

To this day, there are not the researches on the combi-

nation between NNs and generalized aggregation operator.

Thus, it is essential to do the research based on NNs

aggregation operators. In this paper, we propose a new

method, the generalized hybrid weighted averaging oper-

ator based on NNs, to handle MAGDM problems. The new

method not only can handle the indeterminacy of evalua-

tion information but also can consider the relationship

between the attributes.

The remainder of this paper is shown as follows. In

Sect. 2, we briefly introduce the basic concepts and the

operational rules and the characteristics of NNs. In

Sect. 3, some operators for NNs and these properties are

proposed, such as the neutrosophic number weighted

arithmetic averaging (NNWAA) operator, the neutro-

sophic number ordered weighted averaging (NNOWA)

operator, the neutrosophic number hybrid weighted aver-

aging (NNHWA) operator, the neutrosophic number

weighted geometric averaging (NNWGA) operator, the

neutrosophic number ordered weighted geometric aver-

aging (NNOWGA) operator, the neutrosophic number

hybrid weighted geometric averaging (NNHWGA)

operator, the neutrosophic number generalized weighted

averaging (NNGWA)operator, the neutrosophic number

generalized ordered weighted averaging (NNGOWA)

operator, the neutrosophic number generalized hybrid

weighted averaging (NNGHWA) operator. In Sect. 4, we

briefly introduce the procedure of MAGDM method based

on neutrosophic number generalized hybrid weighted

averaging (NNGHWA) operator. In Sect. 5, we give a

numerical example to demonstrate the effective of the

new proposed method.

2 Preliminaries

Definition 1 [34–36] Let I 2 ½b�; bþ� be an indetermi-

nate part, a neutrosophic number N is given by

N ¼ aþ bI ð1Þ

where a and b are real numbers, and I is indeterminacy,

such that I2 ¼ I, 0 � I ¼ 0 and I=I ¼ undefined.

Definition 2 [35, 36] Let N1 ¼ a1 þ b1I and N2 ¼ a2 þ
b2I be two NNs, then the operational laws are defined as

follows.

ð1Þ N1 þ N2 ¼ a1 þ a2 þ ðb1 þ b2ÞI ð2Þ
ð2Þ N1 � N2 ¼ a1 � a2 þ ðb1 � b2ÞI ð3Þ
ð3Þ N1 � N2 ¼ a1a2 þ ða1b2 þ a2b1 þ b1b2ÞI ð4Þ

ð4Þ N2
1 ¼ a21 þ ð2a1b1 þ b21ÞI ð5Þ

ð5Þ kN1 ¼ ka1 þ kb1I ð6Þ

ð6Þ Nk
1 ¼ ak1 þ ða1 þ b1Þk � ak1

� �
I k[ 0 ð7Þ

ð7Þ N1

N2

¼ a1 þ b1I

a2 þ b2I
¼ a1

a2
þ a2b1 � a1b2

a2ða2 þ b2Þ
I for a2 6¼ 0

and a2 6¼ �b2 ð8Þ

Theorem 1 Let N1 ¼ a1 þ b1I and N2 ¼ a2 þ b2I be two

NNs, and k; k1; k2 [ 0, then we have

ð1Þ N1 � N2 ¼ N2 � N1 ð9Þ
ð2Þ N1 � N2 ¼ N2 � N1 ð10Þ
ð3Þ kðN1 � N2Þ ¼ kN1 � kN2 ð11Þ
ð4Þ k1N1 � k2N1 ¼ ðk1 þ k2ÞN1 ð12Þ

ð6Þ Nk1
1 � Nk2

1 ¼ Nk1þk2
1 ð14Þ

ð5Þ Nk
1 � Nk

2 ¼ ðN1 � N2Þk ð13Þ

Proof

(1) the formula (9) is obviously right.

(2) the formula (10) is obviously right.

(3) for the left of the formula (11)
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kðN1 � N2Þ ¼ k ða1 þ b1IÞ � ða2 þ b2IÞð Þ
¼ k ða1 þ a2Þ þ ðb1 þ b2ÞIð Þ

for the right of the formula (11)

kN1 � kN2 ¼ kða1 þ b1IÞ � kða2 þ b2IÞ
¼ ðka1 þ kb1IÞ � ðka2 þ kb2IÞ
¼ ðka1 þ ka2Þ þ ðkb1 þ kb2ÞI
¼ k ða1 þ a2Þ þ ðb1 þ b2ÞIð Þ

So, we can get kðN1 � N2Þ ¼ kN1 � kN2 which

completes the proof of the formula (11).

ð4Þ

k1N1 � k2N1 ¼ k1ða1 þ b1IÞ þ k2ða1 þ b1IÞ
¼ ðk1a1 þ k2a1Þ þ ðk1b1 þ k2b1ÞI
¼ ðk1 þ k2Þa1 þ ðk1 þ k2Þb1I
¼ ðk1 þ k2ÞN1

So, the formula (12) is right.

(5) for the left of the formula (13)

Nk
1 �Nk

2 ¼ ak1þ ða1þ b1Þk� ak1

� �
I

� �

� ak2þ ða2þ b2Þk� ak2

� �
I

� �

¼ ak1a
k
2þ ak1 ða2þ b2Þk� ak2

� �
I

þ ak2 ða1þ b1Þk� ak1

� �
I

þ ða2þ b2Þk� ak2

� �
ða1þ b1Þk� ak1

� �
I

¼ ak1a
k
2þ ak1ða2þ b2Þk� ak1a

k
2

� �
I

þ ak2ða1þ b1Þk� ak2a
k
1

� �
I

þ ða2þ b2Þkða1þ b1Þk� ak2ða1þ b1Þk
�

�ak1ða2þ b2Þkþ ak1a
k
2

�
I

¼ ða1a2Þkþ ða2þ b2Þkða1þ b1Þk� ak1a
k
2

� �
I

for the right of the formula (13)

(6) So, the formula (13) is right.

Nk1
1 � Nk2

1 ¼ ak11 þ ða1 þ b1Þk1 � ak11

� �
I

� �

� ak21 þ ða1 þ b1Þk2 � ak21

� �
I

� �

¼ ak11 a
k2
1 þ ak11 ða1 þ b1Þk2 � ak21

� �
I

�

þ ak21 ða1 þ b1Þk1 � ak11

� �
I

þ ða1 þ b1Þk2 � ak21

� �
ða1 þ b1Þk1 � ak11

� �
I
�

¼ ak11 a
k2
1 þ ða1 þ b1Þk2ða1 þ b1Þk1 � ak21 a

k1
1

� �
I

¼ ak1þk2
1 þ ða1 þ b1Þk1þk2 � ak1þk2

1

� �
I

¼ Nk1þk2
1

So, the formula (14) is right.

Definition 3 [37, 38] Let Ni ¼ ai þ biI be a NN in which

I 2 ½b�; bþ� ði ¼ 1; 2; . . .; nÞ, ai; bi; b�; bþ 2 R, where R is

all real numbers, the NN Ni is equivalent to

Ni 2 ½ai þ bib
�; ai þ bib

þ�, then the possibility degree is

Thus, the matrix of possibility degrees can be simplified as

P ¼ ðPijÞn�n, where Pij � 0, Pij þ Pji ¼ 1, and Pii ¼ 0:5.

Then, the value of Ni ði ¼ 1; 2; . . .; nÞ for ranking order is

given as follows:

qi ¼
Pn

j¼1 Pij þ n
2
� 1

� �

nðn� 1Þ ð16Þ

Hence, the bigger values of qi ði ¼ 1; 2; . . .; nÞ is, the more

precise information of NNs conveyed can be acquired, so

the NNs of Ni ði ¼ 1; 2; . . .; nÞ can be ranked in an

ascending order according to the values of

qi ði ¼ 1; 2; . . .; nÞ.

3 Neutrosophic number aggregation operators

A NN includes two parts, determinate part a and indeter-

minate part bI. Therefore, the NN has an advantage in

expressing indeterminate and incomplete information in

real decision making. On the basis of NNs, it is necessary

to propose some aggregation operators and apply them to

the MAGDM problems in which the attribute values take

Pij ¼ PðNi �NjÞ ¼ max 1�max
ðaj þ bjb

þÞ � ðai þ bib
�Þ

ðai þ bib
þÞ � ðai þ bib

�Þ þ ðaj þ bjb
þÞ � ðaj þ bjb

�Þ
; 0

� �
; 0

� �
ð15Þ
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the form of NNs. Here, some NN aggregation operators are

proposed firstly.

3.1 The neutrosophic number hybrid weight

arithmetic averaging operator

Definition 4 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set of
NNs, and NNWAA: NNSn ? NNS. If

NNWAAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xiNi ð17Þ

where x ¼ ðx1;x2; . . .;xnÞ is the weight vector of Ni ði ¼
1; 2; . . .; nÞ satisfying xi 2 ½0; 1� ði ¼ 1; 2; . . .; nÞ andPn

i¼1 xi ¼ 1. Then NNWAA is called neutrosophic number

weighted arithmetic averaging operator. Specially, when

x ¼ 1
n
; 1
n
; . . .; 1

n

� 	
, the NNWAA operator will reduce to neu-

trosophic number arithmetic averaging (NNAA) operator:

NNAAðN1;N2; . . .;NnÞ ¼
1

n

Xn
i¼1

Ni ð18Þ

Theorem 2 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set of

NNs, and x ¼ ðx1;x2; . . .;xnÞ be the weight vector of

Ni ði ¼ 1; 2; . . .; nÞ satisfying xi 2 ½0; 1� ði ¼ 1; 2; . . .; nÞ
and

Pn
i¼1 xi ¼ 1. Then the result obtained by Eq. (17) is

still an NN and

NNWAAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xiai þ
Xn
i¼1

xibiI ð19Þ

We can prove the Eq. (19) by Mathematical induction

on n as follows:

Proof

(1) when n = 1, the Eq. (19) is right obviously.

(2) Suppose when n ¼ k, the Eq. (19) is right, i.e.,

NNWAAðN1;N2; . . .;NkÞ ¼
Xk
i¼1

xiai þ
Xk
i¼1

xibiI

Then when n ¼ k þ 1, we have

NNWAAðN1;N2; . . .;Nkþ1Þ
¼ NNWAAðN1;N2; . . .;NkÞ �xkþ1Nkþ1

¼
Xk
i¼1

xiai þ
Xk
i¼1

xibiI

 !

þ xkþ1akþ1 þxkþ1bkþ1Ið Þ ¼
Xkþ1

i¼1

xiai þ
Xkþ1

i¼1

xibiI

So, when n ¼ k þ 1, the Eq. (19) is also right.

According to (1) and (2), based on the principle of

mathematical induction, we can get the Eq. (19) is right for

all n.

Theorem 3 (Idempotency) Let Ni ¼ ai þ biI ði ¼ 1; 2;

. . .; nÞ be a set of NNs, if Ni ¼ N0 ¼ aþ bI ði ¼ 1; 2; . . .;

nÞ, then
NNWAAðN1;N2; . . .;NnÞ ¼ N0

Proof Since Ni ¼ N0, for all Ai, we have

NNWAAðA1;A2; . . .;AnÞ ¼ NNWAAðA0;A0; . . .;A0Þ

¼
Xk
i¼1

xiaþ
Xk
i¼1

xibI ¼ aþ bI

¼ N0

So Theorem 3 is right.

Theorem 4 (Monotonicity) Let Ni ¼ ai þ biI and N	
i ¼

a	i þ b	i I be two sets of NNs satisfying ai 
 a	i , b
	
i 
 bi, for

all i, i = 1,2,…,n, then

NNWAAðN1;N2; . . .;NnÞ
NNWAAðN	
1 ;N

	
2 ; . . .;N

	
n Þ

Proof Since ai 
 a	i , b	i 
 bi, for all i, we can getPn
i¼1 xiai 


Pn
i¼1 xia

	
i ,
Pn

i¼1 xib
	
i I


Pn
i¼1 xibiI So, we

can get NNWAAðN1;N2; . . .; NnÞ
NNWAAðN	
1 ;N

	
2 ; . . .;

N	
n Þ. i.e., Theorem 4 is right.

Theorem 5 (Boundedness) Let Ni ¼ ai þ biI ði ¼ 1; 2;

. . .; nÞ be a set of NNs. If Nmax ¼ maxðN1;N2; . . .;NnÞ ¼
amax þ bminI and Nmin ¼ minðN1;N2; . . .;NnÞ ¼ aminþ
bmaxI; then

Nmin 
NNWAAðN1;N2; . . .;NnÞ
Nmax

Proof Since amin 
 ai 
 amax, bmax 
 bi 
 bmin, for all i,

we can get

Xn
i¼1

xiamin 

Xn
i¼1

xiai 

Xn
i¼1

xiamax;

Xn
i¼1

xibmax 

Xn
i¼1

xibi 

Xn
i¼1

xibmin

So, we can get

NNWAAðNmin;Nmin; . . .;NminÞ
NNWAAðN1;N2; . . .;NnÞ

NNWAAðNmax;Nmax; . . .;NmaxÞ;

According to Theorem 3, we can know

NNWAAðNmin;Nmin; . . .;NminÞ ¼ Nmin

NNWAAðNmax;Nmax; . . .;NmaxÞ ¼ Nmax

So, we can get Nmin 
NNWAAðN1;N2; . . .;NnÞ
Nmax,

i.e., Theorem 3 is right.
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The NNWAA operator can consider the important of

input arguments and can do a weighting them. In the fol-

lowing, we will consider another aggregation operator

which can weight the input arguments according to the

ranking positions of them.

Definition 5 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set of
NNs, and NNOWAA: NNSn ? NNS. If

NNOWAAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xi
~Ni ð20Þ

where x ¼ ðx1;x2; . . .;xnÞ is the weight vector correla-

tive with the NNOWAA operator satisfying xi 2
½0; 1� ði ¼ 1; 2; . . .; nÞ, and

Pn
i¼1 xi ¼ 1. ~Ni is the ith lar-

gest of the Ni ði ¼ 1; 2; . . .; nÞ. Then NNOWAA operator is

called neutrosophic number ordered weighted arithmetic

averaging operator.

Theorem 6 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set of

NNs, x ¼ ðx1;x2; . . .;xnÞ is the weight vector correlative
with the NNOWAA operator satisfying xi 2 ½0; 1� ði ¼
1; 2; . . .; nÞ and

Pn
i¼1 xi ¼ 1, ~Ni ¼ a0i þ b0iI be the value of

the ith largest Ni ði ¼ 1; 2; . . .; nÞ. Then the result obtained

using Eq. (20) is still an NN and

NNOWAAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xia
0
i þ
Xn
i¼1

xib
0
iI ð21Þ

The proof is omitted here because it is similar to Theorem

2. Similar to Theorems 3–5, it is easy to prove the NNO-

WAA operator has the following properties.

Theorem 7 (Idempotency) Let Ni ¼ ai þ biI ði ¼
1; 2; . . .; nÞ be a set of NNs, if Ni ¼ N0 ¼ aþ bI, then

NNOWAAðN1;N2; . . .;NnÞ ¼ N0:

Theorem 8 (Monotonicity) Let Ni ¼ ai þ biI and N	
i ¼

a	i þ b	i I be two sets of NNs satisfying ai 
 a	i , b
	
i 
 bi, for

all i, i = 1, 2,…,n, then

NNOWAAðN1;N2; . . .;NnÞ
NNOWAAðN	
1 ;N

	
2 ; . . .;N

	
nÞ:

Theorem 9 (Boundedness) Let Ni ¼ ai þ biI ði ¼
1; 2; . . .; nÞ be a set of NNs, If Nmax ¼ amax þ bminI and

Nmin ¼ amin þ bmaxI, then

Nmin 
NNOWAAðN1;N2; . . .;NnÞ
Nmax

Theorem 10 (Commutativity) Let ðN 0
1;N

0
2; . . .;N

0
nÞ is any

permutation of ðN1;N2; . . .;NnÞ, then
NNOWAAðN 0

1;N
0
2; . . .;N

0
nÞ ¼ NNOWAAðN1;N2; . . .;NnÞ

Proof Suppose the weight of ðN 0
1;N

0
2; . . .;N

0
nÞ is

ðx0
1;x

0
2; . . .;x

0
nÞ, then since ðN 0

1;N
0
2; . . .;N

0
nÞ is any per-

mutation of ðN1;N2; . . .;NnÞ, we have

Xn
i¼1

xiai ¼
Xn
i¼1

x0
ia

0
i;
Xn
i¼1

xibi ¼
Xn
i¼1

x0
ib

0
i

So, we can get
Pn

i¼1 xiNi ¼
Pn

i¼1 x
0
iN

0
i , then

NNOWAA N 0
1;N

0
2; . . .;N

0
n

� 	
¼ NNOWAAðN1;N2; . . .;NnÞ

The NNWAA and NNOWAA operators can consider

one aspect, and cannot take into account the weights of

input arguments and their position weights, simultaneously,

then we will propose the neutrosophic number hybrid

weighted arithmetic averaging operator to overcome this

shortcoming.

Definition 6 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set of
NNs, and NNHWAA: NNSn ? NNS. If

NNHWAAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xi
~NrðiÞ ð22Þ

where x ¼ ðx1;x2; . . .;xnÞ is the weight vector correla-

tive with the NNHWAA operator satisfying xi 2 ½0; 1� ði ¼
1; 2; . . .; nÞ and

Pn
i¼1 xi ¼ 1; ~NrðiÞ is the ith largest of

the nwiNiði ¼ 1; 2; . . .; nÞ, such that ~Nrði�1Þ � ~NrðiÞ and

w ¼ ðw1;w2; . . .;wnÞT is the weighting vector of

Ni ði ¼ 1; 2; . . .; nÞ,wi 2 ½0; 1� ,
Pn

i¼1 wi ¼ 1, Then,

NNHWAA is called neutrosophic number hybrid weighted

arithmetic averaging operator.

Theorem 11 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set

of NNs, then the result obtained using Eq. (22) can be

expressed as

NNHWAAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xia
0
rðiÞ þ

Xn
i¼1

xib
0
rðiÞI

ð23Þ

The proof is similar with Theorem 2, it is omitted here.

The proposed NNWAA, NNOWAA and NNHWAA

operators can achieve the arithmetic weighting function. In

the following, we will propose some geometric weighed

aggregation operators for NNs as follows.

3.2 The neutrosophic number hybrid weighted

geometric averaging operator

Definition 7 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set of
NNs, and NNWGA: NNSn ? NNS, if

NNWGAðN1;N2; . . .;NnÞ ¼
Yn
i¼1

Nxi

i ð24Þ

where x ¼ ðx1;x2; . . .;xnÞ is the weight vector of Niði ¼
1; 2; . . .; nÞ satisfying xi 2 ½0; 1� ði ¼ 1; 2; . . .; nÞ and
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Pn
i¼1 xi ¼ 1. Then, NNWGA is called neutrosophic

number weighted geometric averaging operator. Espe-

cially, when x ¼ 1
n
; 1
n
; . . .; 1

n

� 	
, the NNWGA operator will

degenerate into neutrosophic number geometric averaging

(NNGA) operator.

NNWGAðN1;N2; . . .;NnÞ ¼
Yn
i¼1

N
1
n

i ð25Þ

Theorem 12 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set

of NNs, and x ¼ ðx1;x2; . . .;xnÞ be the weight vector of

Niði ¼ 1; 2; . . .; nÞ satisfying xi 2 ½0; 1� ði ¼ 1; 2; . . .; nÞ
and

Pn
i¼1 xi ¼ 1. Then the result obtained using Eq. (25)

is still an NN and

NNWGAðN1;N2; . . .;NnÞ ¼
Yn
i¼1

axi

i þ
Yn
i¼1

ai þ bið Þxi �
Yn
i¼1

axi

i

 !
I

ð26Þ

The proof of this theorem is similar with Theorem 2, it’s

omitted here.

Theorem 13 (Idempotency) Let Ni ¼ ai þ biI ði ¼
1; 2; . . .; nÞ be a set of NNs, if Ni ¼ N0 ¼ aþ
bI ði ¼ 1; 2; . . .; nÞ, then
NNWGAðN1;N2; . . .;NnÞ ¼ N0:

Definition 8 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set of
NNs, and NNOWGA: NNSn ? NNS. If

NNOWGAðN1;N2; . . .;NnÞ ¼
Yn
i¼1

~Nxi

i ð27Þ

where x ¼ ðx1;x2; . . .;xnÞ is the weight vector correla-

tive with the NNOWGA operator satisfying xi 2 ½0; 1� ði ¼
1; 2; . . .; nÞ and

Pn
i¼1 xi ¼ 1; ~Ni is the ith largest of the

Niði ¼ 1; 2; . . .; nÞ.Then NNOWGA operator is called

neutrosophic number ordered weighted geometric averag-

ing operator.

Theorem 14 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set

of NNs, x ¼ ðx1;x2; . . .;xnÞ is the weight vector correl-

ative with the NNOWGA operator satisfying xi 2
½0; 1� ði ¼ 1; 2; . . .; nÞ and

Pn
i¼1 xi ¼ 1, ~Ni ¼ a0i þ b0iI be

the ith largest of Ni ði ¼ 1; 2; . . .; nÞ. Then, the result

obtained using Eq. (27) is still an NN and

NNOWGAðN1;N2; . . .;NnÞ ¼
Yn
i¼1

a0xi

i þ
Yn
i¼1

a0xi

i þ b0xi

i

� 	
�
Yn
i¼1

a0xi

i

 !
I

ð28Þ

The proof of this theorem is similar with Theorem 2, it’s

omitted here.

Theorem 15 (Idempotency) Let Ni ¼ ai þ biI ði ¼
1; 2; . . .; nÞ be a set of NNs, if Ni ¼ N0 ¼ aþ bI, then

NNOWGAðN1;N2; . . .;NnÞ ¼ N0:

Theorem 16 (Commutativity) Let ðN 0
1;N

0
2; . . .;N

0
nÞ is any

permutation of ðN1;N2; . . .;NnÞ, then
NNOWGAðN 0

1;N
0
2; . . .;N

0
nÞ ¼ NNOWGAðN1;N2; . . .;NnÞ

Definition 9 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set of
NNs, and NNHWGA: NNSn ? NNS. If

NNHWGAðN1;N2; . . .;NnÞ ¼
Yn
i¼1

~Nxi

rðiÞ ð29Þ

where x ¼ ðx1;x2; . . .;xnÞ is the weight vector correla-

tive with the NNGHWA operator satisfying xi 2 ½0; 1� ði ¼
1; 2; . . .; nÞ and

Pn
i¼1 xi ¼ 1; ~NrðiÞ is the ith largest of the

nwiNiði ¼ 1; 2; . . .; nÞ,such that ~Nrði�1Þ � ~NrðiÞ; w ¼
ðw1;w2; . . .;wnÞT is the weighting vector of the

Ni ði ¼ 1; 2; . . .; nÞ, wi 2 ½0; 1�,
Pn

i¼1 wi ¼ 1, Then,

NNHWGA is called neutrosophic number hybrid weighted

geometric averaging operator.

Theorem 17 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set

of NNs, then the result obtained using Eq. (29) can be

expressed as

NNHWGAðN1;N2; . . .;NnÞ ¼
Yn
i¼1

a0xi

rðiÞ þ
Yn
i¼1

a0xi

rðiÞ þ b0xi

rðiÞ

� �
�
Yn
i¼1

a0xi

rðiÞ

 !
I

ð30Þ

The proof is similar with the Theorem 2, it is omitted here.

It is easy to prove that when w ¼ 1
n
; 1
n
; . . .; 1

n

� 	
, the

NNHWGA operator will reduce to NNOWGA operator,

and when x ¼ 1
n
; 1
n
; . . .; 1

n

� 	
, the NNHWGA operator will

reduce to NNWGA operator.

The proposed NNWAA, NNOWAA and NNHWAA

operators can achieve the arithmetic weighting function,

and proposed NNWGA, NNOWGA and NNHWGA oper-

ators can achieve the geometric weighting function. Fur-

ther, we can propose a generalized aggregation operator

which can generalize the fore-mentioned operators.

3.3 The neutrosophic number generalized hybrid

weighted averaging operator

Definition 10 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set

of NNs, and NNGWA: NNSn ? NNS, If

NNGWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xiN
k
i

 !1=k

ð31Þ

where x ¼ ðx1;x2; . . .;xnÞ is the weight vector of Niði ¼
1; 2; . . .; nÞ satisfying xi 2 ½0; 1� ði ¼ 1; 2; . . .; nÞ andPn

i¼1 xi ¼ 1, and k 2 0;þ1ð Þ. Then NNGWA is called

neutrosophic number generalized weighted averaging
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operator. Specially, when x ¼ 1
n
; 1
n
; . . .; 1

n

� 	
, the NNGWA

operator will degenerate into neutrosophic number gener-

alized averaging (NNGA) operator.

NNGAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

1

n
Nk
i

 !1=k

ð32Þ

Theorem 18 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a col-

lection of NNs, x ¼ ðx1;x2; . . .;xnÞ is the weight vector

correlative with the NNGWA operator satisfying xi 2 ½0; 1�
ði ¼ 1; 2; . . .; nÞ,

Pn
i¼1 xi ¼ 1, and k 2 0;þ1ð Þ. Then the

result obtained using Eq. (29) is still an NN and

NNGWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xia
k
i

 !1=k

þ
Xn
i¼1

xiðai þ biÞk
 !1=k

�
Xn
i¼1

xia
k
i

 !1=k
0
@

1
AI

The proof is similar with the Theorem 2, it is omitted here.

Obviously, there are some properties for the NNGWA

operator as follows.

(1) When k ! 0,

NNGWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xiN
k
i

 !1=k

¼
Yn
i¼1

axi

i þ
Yn
i¼1

ai þ bið Þxi �
Yn
i¼1

axi

i

 !
I ¼

Yn
i¼1

Nxi

i ;

So, the NNGWA operator is reduced to the

NNWGA operator.

(2) When k ¼ 1,

NNGWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xiN
k
i

 !1=k

¼
Xn
i¼1

xiaiþ
Xn
i¼1

xibiI

¼
Xn
i¼1

xiNi

So, the NNGWA operator is reduced to the

NNWAA operator.

Therefore, the NNWGA operator and NNWAA operator

are two particular cases of the NNGWA operator, and the

NNGWA operator is the generalized form of the NNWGA

operator and NNWAA operator.

Theorem 19 (Idempotency) Let Ni ¼ ai þ biI ði ¼ 1; 2;

. . .; nÞ be a set of NNs, if Ni ¼ N0 ¼ aþ bI ði ¼ 1; 2; . . .;

nÞ, then

NNGWAðN1;N2; . . .;NnÞ ¼ N0:

Definition 11 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set

of NNs, and NNGOWA: NNSn ? NNS. If

NNGOWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xi
~Nk
i

 !1=k

ð33Þ

where x ¼ ðx1;x2; . . .;xnÞ is the weight vector correla-

tive with the NNGOWA operator satisfying

xi 2 ½0; 1� ði ¼ 1; 2; . . .; nÞ,
Pn

i¼1 xi ¼ 1 and k 2 0;þ1ð Þ;
~Ni is the ith largest of the Ni i ¼ 1; 2; . . .; nð Þ. Then

NNGOWA is called neutrosophic number generalized

ordered weighted averaging operator.

Theorem 20 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a set

of NNs, x ¼ ðx1;x2; . . .;xnÞ is the weight vector correl-

ative with the NNGOWA operator satisfying

xi 2 ½0; 1� ði ¼ 1; 2; . . .; nÞ,
Pn

i¼1 xi ¼ 1 and k 2 0;þ1ð Þ,
~Ni ¼ a0i þ b0iI be the ith largest Ni i ¼ 1; 2; . . .; nð Þ. Then
the result obtained using Eq. (33) is still an NN and

NNGOWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xia
0k
i

 !1=k

þ
Xn
i¼1

xiða0i þ b0iÞ
k

 !1=k

�
Xn
i¼1

xia
0k
i

 !1=k
0
@

1
AI

ð34Þ

The proof is similar with the Theorem 2, it is omitted here.

Obviously, there are some properties for the NNGOWA

operator as follows.

(1) When k ! 0,

NNGOWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xi
~Nk
i

 !1=k

¼
Yn
i¼1

a0xi

i þ
Yn
i¼1

a0i þ b0i
� 	xi �

Yn
i¼1

a0xi

i

 !
I

¼
Yn
i¼1

~Nxi

i ;

So, the NNGOWA operator is reduced to the

NNOWGA operator.

(2) When k ¼ 1,

NNGOWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xi
~Nk
i

 !1=k

¼
Xn
i¼1

xia
0
iþ
Xn
i¼1

xib
0
iI ¼

Xn
i¼1

xi
~Ni

So, the NNGOWA operator is reduced to the

NNOWAA operator.
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Therefore, the NNOWGA operator and NNOWAA

operator are two particular cases of the NNGOWA

operator, and the NNGOWA operator is the generalized

form of the NNOWGA operator and NNOWAA

operator.

Theorem 21 (Idempotency) Let Ni ¼ ai þ biI ði ¼
1; 2; . . .; nÞ be a set of NNs, if Ni ¼ N0 ¼ aþ
bI ði ¼ 1; 2; . . .; nÞ, then
NNGOWAðN1;N2; . . .;NnÞ ¼ N0

Theorem 22 (Commutativity) Let ðN 0
1;N

0
2; . . .N

0
nÞ is any

permutation of ðN1;N2; . . .;NnÞ, then
NNGOWAðN 0

1;N
0
2; . . .;N

0
nÞ ¼ NNGOWAðN1;N2; . . .;NnÞ

Definition 12 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a

collection of NNs, and NNGHWA: NNSn ? NNS. If

NNGHWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xi
~Nk
rðiÞ

 !1=k

ð35Þ

where x ¼ ðx1;x2; . . .;xnÞ is the weight vector correla-

tive with the NNGHWA operator satisfying

xi 2 ½0; 1� ði ¼ 1; 2; . . .; nÞ,
Pn

i¼1 xi ¼ 1 and k 2 0;þ1ð Þ;
~NrðiÞ is the ith largest of the nwiNiði ¼ 1; 2; . . .; nÞ,such that

~Nrði�1Þ � ~NrðiÞ and w ¼ ðw1;w2; . . .;wnÞT is the weighting

vector of the Ni ði ¼ 1; 2; . . .; nÞ, wi 2 ½0; 1�,
Pn

i¼1 wi ¼ 1.

Then NNGHWA is called neutrosophic number general-

ized hybrid weighted averaging operator.

Theorem 23 Let Ni ¼ ai þ biI ði ¼ 1; 2; . . .; nÞ be a col-

lection of NNs, then the result obtained using Eq. (35) can

be expressed as

NNGHWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xia
0k
rðiÞ

 !1=k

þ
Xn
i¼1

xiða0rðiÞ þ b0rðiÞÞ
k

 !1=k

�
Xn
i¼1

xia
0k
rðiÞ

 !1=k
0
@

1
AI

ð36Þ

The proof is similar with the Theorem 2, it is omitted here.

It is easy to prove that when w ¼ 1
n
; 1
n
; . . .; 1

n

� 	
, the

NNGHWA operator reduce to the NNGOWA operator, and

when x ¼ 1
n
; 1
n
; . . .; 1

n

� 	
, the NNGHWA operator reduce to

the NNGWA operator.

Obviously, there are some properties for the NNGHWA

operator as follows.

(1) When k ! 0,

NNGHWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xi
~Nk
rðiÞ

 !1=k

¼
Yn
i¼1

a0xi

rðiÞ þ
Yn
i¼1

a0rðiÞ þ b0rðiÞ

� �xi

�
Yn
i¼1

a0xi

rðiÞ

 !
I

¼
Yn
i¼1

~Nxi

rðiÞ;

So, the NNGHWA operator is reduced to the

NNHWGA operator.

(2) When k ¼ 1,

NNGHWAðN1;N2; . . .;NnÞ ¼
Xn
i¼1

xi
~Nk
rðiÞ

 !1=k

¼
Xn
i¼1

xia
0
rðiÞþ

Xn
i¼1

xib
0
rðiÞI ¼

Xn
i¼1

xi
~NrðiÞ

So, the NNGHWA operator is reduced to the

NNHWAA operator.

Therefore, the NNHWGA operator and the NNHWAA

operator are two particular cases of the NNGHWA oper-

ator, and the NNGHWA operator is the generalized form of

the NNHWGA operator and NNHWAA operator.

4 Multiple attribute group decision-making
method based on neutrosophic number
generalized aggregation operator

As we all known, the objective things are complex in real

decision making, it is difficult to express people’s judg-

ments to some objective things by the crisp numbers. The

NN is a more suitable and effective tool which is used to

express the indeterminate information in decision-making

problems. The decision makers can evaluate the alterna-

tives with respect to every attribute and give the final

evaluation results by the NN. Therefore, we show a method

for processing group decision-making problems with NNs,

including a de-neutrosophication process and a possibility

degree ranking method for NNs.

In a MAGDM problem with NNs, let A ¼
A1;A2; . . .;Amf g be a discrete set of alternatives, C ¼
C1;C2; . . .;Cnf g be a set of attributes, and D ¼
D1;D2; . . .;Dsf g be a set of decision makers. If the kth

k ¼ ð1; 2; . . .; sÞ decision maker provides an evaluation

value for the alternative Ai ði ¼ 1; 2; . . .;mÞ under the

attribute Cj ðj ¼ 1; 2; . . .; nÞ by using a scale from 1 (less

fit) to 10 (more fit) with indeterminacy I, the evaluation
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value can be represented by the form of NN Nk
ij ¼ akij þ bkijI

for akij; b
k
ij 2 R ðk ¼ 1; 2; . . .; s; j ¼ 1; 2; . . .; n; i ¼ 1; 2; . . .;

mÞ. Therefore, we can get the kth neutrosophic number

decision matrix Nk:

Nk ¼

Nk
11 Nk

12 � � � Nk
1n

Nk
21 Nk

22 � � � Nk
2n

..

. ..
. ..

. ..
.

Nk
m1 Nk

m2 � � � Nk
mn

2
6664

3
7775

The weights of attributes symbolize the importance of

each attribute Cj ðj ¼ 1; 2; . . .; nÞ. The weighting vector of

attributes is given by W ¼ ðw1;w2; . . .;wnÞT with wj � 0,Pn
j¼1 wj ¼ 1. Similar to the attributes, the weights of

decision makers symbolize the importance of each decision

maker Dk ðk ¼ 1; 2; . . .; sÞ. And the weighting vector of

decision makers is V ¼ ðv1; v2; . . .; vsÞT with

vk � 0;
Xs
k¼1

vk ¼ 1:

Then, the steps of the decision-making method are

described as follows:

Step 1: Utilize the NNGHWA operator

Nk
i ¼ aki þ bki I ¼ NNGHWA Nk

i1;N
k
i2; . . .;N

k
in

� 	
ð38Þ

to derive the comprehensive values Nk
i ði ¼ 1;

2; . . .;m; k ¼ 1; 2; . . .; sÞ of each decision maker.

Step 2: Utilize the NNGHWA operator

Ni ¼ ai þ biI ¼ NNGHWA Nk
i ;N

k
i ; . . .;N

k
i

� 	
ð39Þ

to derive the collective overall values

Ni ði ¼ 1; 2; . . .;mÞ
Step 3: Calculate the possibility degree Pij ¼ PðNi �NjÞ
can be given by the Eq. (16)

So, the matrix of possibility degrees is structured as

P ¼ ðPijÞm�m.

Step 4: The values of qi ði ¼ 1; 2; . . .;mÞ for ranking

order are calculated by using Eq. (17)

qi ¼
Pn

j¼1 Pij þ n
2
� 1

� �

nðn� 1Þ

Step 5: The alternatives are ranked according to the

values of qi ði ¼ 1; 2; . . .;mÞ,and then the best one(s) is

obtained.

5 A numerical example

In this section, we give a numerical example to demonstrate the

MAGDM method based on neutrosophic number generalized

hybrid weighted averaging operator (which is cited from [39]).

An investment company wants to choose a best investment

project. There are four possible alternatives: (1) A1 is a car

company; (2) A2 is a food company; (3) A3 is a computer

company; (4) A4 is an arms company. The investment company

makes a choice according to the following three attributes: (1)C1

is the risk factor; (2) C2 is the growth factor; (3) C3 is the

environmental factor. Assume that the weighting vector of the

attributes is W ¼ ð0:35; 0:25; 0:4ÞT . There are three experts

D1;D2;D3f g who are asked to evaluate the four alternatives in
the evaluation process. The weighting vector of three experts is

V ¼ ð0:37; 0:33; 0:3ÞT , the kth (k = 1, 2, 3) expert evaluates

the four possible alternatives of Ai ði ¼ 1; 2; 3; 4Þ with respect
to the three attributes of Cjðj ¼ 1; 2; 3Þ by the form of NN

Nk
ij ¼ akij þ bkijI for akij; b

k
ij 2 R, ðk ¼ 1; 2; . . .; s; j ¼

1; 2; . . .; n; i ¼ 1; 2; . . .;mÞ, and constructs the decisionmatrix

listed in Tables 1, 2 and 3.

5.1 The evaluation steps of the new MAGDM

method based on NNGHWA operator

1. Calculate the comprehensive evaluation values Nk
i ði ¼

1; 2; 3; 4; k ¼ 1; 2; 3Þ of each expert Dk by the formula

(39) (suppose k ¼ 1), we can get

N1
1 ¼ 3:95þ 0:65I; N1

2 ¼ 5:6; N1
3 ¼ 4:55þ 0:25I;

N1
4 ¼ 5:55þ 0:4I

N2
1 ¼ 4:35; N2

2 ¼ 5:6þ 0:4I; N2
3 ¼ 4:6þ 0:35I;

N2
4 ¼ 5:6þ 0:35I

N3
1 ¼ 4:35þ 0:35I; N3

2 ¼ 5:95þ 0:4I;

N3
3 ¼ 4:95þ 0:4I; N3

4 ¼ 5:9þ 0:4I

2. Calculate the collective overall values Ni ði ¼
1; 2; 3; 4Þ by the formula (39) (suppose k ¼ 1), we

can get

N1 ¼ 4:23þ 0:3245I; N2 ¼ 5:7295þ 0:28I

N3 ¼ 4:7145þ 0:3385I; N4 ¼ 5:696þ 0:3835I

3. Calculate the possibility degree Pij ¼ PðNi �NjÞ by

the formula (17) (suppose I 2 ½0; 0:5�).

Pij ¼ PðNi �NjÞ ¼ max 1�max
ðaj þ bjb

þÞ � ðai þ bib
�Þ

ðai þ bib
þÞ � ðai þ bib

�Þ þ ðaj þ bjb
þÞ � ðaj þ bjb

�Þ
; 0

� �
; 0

� �
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P ¼

0:5000 0:0000 0:0000 0:0000
1:0000 0:5000 1:0000 0:5230
1:0000 0:0000 0:5000 0:0000
1:0000 0:4770 1:0000 0:5000

2
664

3
775

4. Calculate the values of qi ði ¼ 1; 2; . . .;mÞ by the

formula (18).

q1 ¼ 0:125; q2 ¼ 0:3352; q3 ¼ 0:2083;
q4 ¼ 0:3314

5. Rank the four alternatives. Since q2 [ q4 [ q3 [ q1,

the ranking order of the four alternatives

A2 [A4 [A3 [A1

5.2 The influence of the parameter k

and the indeterminate range

for I on the ordering of the alternatives

We use the values of parameter k to express the mentality

of the decision makers. The bigger k is, the more opti-

mistic decision makers are. In this part, in order to verify

the influence of the parameter k on decision-making

results, the different values k are used to compute the

ordering results. The final ranking results are shown in

Table 4.

As we can see from Table 4, the ordering of the alter-

natives may be different for the different values k in

NNGHWA operator.

1. When 0\k
 1, the ordering of the alternatives is

A2 � A4 � A3 � A1 and the best alternative is A2.

2. When k[ 1, the ordering of the alternatives is A4 �
A2 � A3 � A1 and the best alternative is A4.

Similar to the parameter k, in order to demonstrate the

influence of indeterminate range for Ion decision-making

results of this example, we use the different values I in

NNGHWA operator to rank the alternatives. The ranking

results are shown in Table 5. (suppose k ¼ 1)

As we can see from Table 5, the ordering of the alter-

natives may be different for the different value I in

NNGHWA operator.

Table 1 The evaluation values

of four alternatives with respect

to the three attributes by the

expert D1

C1 C2 C3

A1 4 ? I 5 3 ? I

A2 6 6 5

A3 3 5 ? I 6

A4 7 6 4 ? I

Table 2 The evaluation values

of four alternatives with respect

to the three attributes by the

expert D2

C1 C2 C3

A1 5 4 4

A2 5 ? I 6 6

A3 4 5 5 ? I

A4 6 ? I 6 5

Table 3 The evaluation values

of four alternatives with respect

to the three attributes by the

expert D3

C1 C2 C3

A1 4 5 ? I 4

A2 6 7 5 ? I

A3 4 ? I 5 6

A4 8 6 4 ? I

Table 4 Ranking the alternatives based on the different k in

NNGHWA operator

k qi Ranking

k ¼ 0:1 q1 ¼ 0:1250; q2 ¼ 0:3560

q3 ¼ 0:2083; q4 ¼ 0:3107

A2 � A4 � A3 � A1

k ¼ 1:0 q1 ¼ 0:1250; q2 ¼ 0:3352

q3 ¼ 0:2083; q4 ¼ 0:3314

A2 � A4 � A3 � A1

k ¼ 1:1 q1 ¼ 0:1250; q2 ¼ 0:3327

q3 ¼ 0:2083; q4 ¼ 0:3340

A4 � A2 � A3 � A1

k ¼ 1:2 q1 ¼ 0:1250; q2 ¼ 0:3300

q3 ¼ 0:2083; q4 ¼ 0:3366

A4 � A2 � A3 � A1

k ¼ 2:0 q1 ¼ 0:1250; q2 ¼ 0:3062

q3 ¼ 0:2083; q4 ¼ 0:3605

A4 � A2 � A3 � A1

k ¼ 3:0 q1 ¼ 0:1250; q2 ¼ 0:2917

q3 ¼ 0:2083; q4 ¼ 0:3750

A4 � A2 � A3 � A1

k ¼ 10 q1 ¼ 0:1250; q2 ¼ 0:2917

q3 ¼ 0:2083; q4 ¼ 0:3750

A4 � A2 � A3 � A1

k ¼ 15 q1 ¼ 0:1250; q2 ¼ 0:2917

q3 ¼ 0:2083; q4 ¼ 0:3750

A4 � A2 � A3 � A1

Table 5 Ranking the alternatives based on the different I in

NNGHWA operator

I qi Ranking

I ¼ 0 / A2 � A4 � A3 � A1

I 2 ½0; 0:2� q1 ¼ 0:1250; q2 ¼ 0:3479

q3 ¼ 0:2083; q4 ¼ 0:3188

A2 � A4 � A3 � A1

I 2 ½0; 0:4� q1 ¼ 0:1250; q2 ¼ 0:3374

q3 ¼ 0:2083; q4 ¼ 0:3293

A2 � A4 � A3 � A1

I 2 ½0; 0:6� q1 ¼ 0:1250; q2 ¼ 0:3327

q3 ¼ 0:2083; q4 ¼ 0:3328

A4 � A2 � A3 � A1

I 2 ½0; 0:8� q1 ¼ 0:1250; q2 ¼ 0:3321

q3 ¼ 0:2083; q4 ¼ 0:3346

A4 � A2 � A3 � A1

I 2 ½0; 1� q1 ¼ 0:1250; q2 ¼ 0:3310

q3 ¼ 0:2083; q4 ¼ 0:3356

A4 � A2 � A3 � A1
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1. When I ¼ 0; I 2 ½0; 0:2�; I 2 ½0; 0:4�, the ordering of

the alternatives is A2 � A4 � A3 � A1 and the best

alternative is A2.

2. When I 2 ½0; 0:6�; I 2 ½0; 0:8�; I 2 ½0; 1�, the ordering

of the alternatives is A4 � A2 � A3 � A1 and the best

alternative is A4.

In order to demonstrate the effective of the new method

in this paper, we compare the ordering results of the new

method with the ordering results of the method proposed

by Ye [39]. From the Table 6 and the Table 5, we can find

that the two methods produce the same ranking results.

The method proposed by Ye [39] is based on de-neu-

trosophication process, it does not realize the importance of

the aggregation information. The new proposed in this

paper is based on the neutrosophic number general hybrid

weighted averaging operators, and it provides the more

general and flexible features as I is assigned different

values.

6 Conclusions

In this paper, we propose a new MAGDM method based on

neutrosophic number generalized hybrid weighted averag-

ing (NNGHWA) operator, which is a widely practical tool

used to handle indeterminate evaluation information in

decision-making problems. Furthermore, it also considers

the relationship of the decision arguments and reflects the

mentality of the decision makers. So, the method can be

more appropriate to handle MAGDM problems. The

decision makers can properly get the desirable alternative

according to their interest and the actual need by changing

the values of k, which make the decision-making results of

the proposed method more flexible and reliable. In order to

choose the best alternative, we give the possibility degree

ranking method for neutrosophic numbers from the prob-

ability viewpoint as a methodological support for the group

decision-making problems. Lastly, we give a numerical

example to demonstrate the practicability of the proposed

method. Especially, we use the different values of k and

different indeterminate ranges for I to analyze the effec-

tiveness. In further study, we should study the applications

of the above operators. At the same time, we should con-

tinue studying other aggregation operators based on the

NNs.
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